
AutoScore: The Automated Music Transcriber

Project Proposal 18-551, Spring 2011

Group 1

Suyog Sonwalkar, Itthi Chatnuntawech
ssonwalk@andrew.cmu.edu, ichatnun@andrew.cmu.edu

May 1, 2011

Abstract

This project works on developing an automatic music transcription system for a single
instrument throughout its entire chromatic range. In this project, we train a transcrip-
tion system for a keyboard using a non-negative matrix factorization method as refer-
enced in [3]. The preliminary testing was performed in MATLAB, then reimplemented
on the TI TMS320C6713B Digital Signal Processor (DSP). The final implementation
was done in real-time primarily on the DSP with a Graphical User Interface (GUI) on
a Macintosh-based computer. The DSP and Mac were connected through a networking
interface that transferred note data in real-time to the Mac.

Problem

Music transcription is the process of converting raw music signals into a musical score.
Automated musical transcription can help musicians create sheet music as well as serve
as an educational tool for amateurs. Manually transcribing music requires significant
skill and time commitment from musicians. Currently, it is difficult for computers to
transcribe music as well. This is due to the fact that modern music contains multi-
ple instruments with multiple notes being played simultaneously (polyphony). Many
methods have been developed to transcribe music from a single instrument, including
bayesian-based methods [1] and even genetic algorithms [2]. Our project implements
a recently proposed method that uses a non-negative matrix factorization technique to
perform real-time music transcription.

Solution

Our solution uses a recently developed method for real-time music transcription of mu-
sic as described in [3]. We use a CTK-591 Casio Keyboard to train and test the music
transcription system. The system block diagram can be seen in Figure 1.

The system consists of multiple parts. First, the system was trained on musical note
samples from the keyboard. This was performed ”off-line”, meaning it was completed
before any testing was done and was not part of the real-time system. Training the
system of the note templates consisted of obtaining the short-time Fourier Transform

1

Figure 1: Block diagram of our music transcription system [3].

(STFT) of each of the musical note inputs, then performing Non-negative matrix fac-
torization (NMF) on the spectrogram representation obtained from the STFT. The
Non-negative matrix factorization produced note templates w(k) for each of the k music
samples. This process was performed for each note on the keyboard and the resulting
w(k)’s were stacked into a matrix representation W . This completed the training phase
of our musical transcription system. The training phase was implemented on a Mac in
MATLAB in order to speed up the training process.

The testing phase of our system was performed in real-time with most of the work
done on the TI TMS320C6713B Digital Signal Processor (DSP). The DSP obtained
new musical input data at short time intervals and calculated the Fourier Transform
(FT) of those signals. For the purposes of notation, we label the magnitude of the FTs
of these signals vj . For each vj , the DSP performs correlation against the template
matrix W to compute the musical note activations hj using the template dictionary W
that was trained in the previous step. This is represented by the following equation:

hj ≈Wvj

These activations determine whether or not a specific note is being played.

Note that we perform pre-processing on the training notes in order to max-normalize
the w(k) of each training sample. In addition, we perform filtering and thresholding on
the activations hj as part of post-processing the data.

In the next section, we cover the mathematical background of our system.

2

Background

Short-Time Fourier Transform (STFT)

The short-time Fourier Transform, or STFT, is a Fourier-related transform that is used
to determine the sinusoidal frequency and phase content of local sections of a signal as
it changes over time [4].

In the discrete-time STFT, the signal is broken into chunks by a window function w[n].
Each chunk is then Fourier transformed. This can represented by the following equation:

STFT{x[n]} = X(m,ω) =
∞∑

n=−∞
x[n]w[n−m]e−jωn

Here m represents the shift of the window in time, while ω represents the frequency.

The spectrogram is represented as the magnitude of the STFT [4].

Spectrogram{x(t)} = |X(m,ω)|2

An example of a Short Time Fourier Transform can be seen in Figure 2.

The window function used when computing the STFT was a hamming window, as
defined by the following equation:

w[n] = 0.54− 0.46 ∗ cos(2π n
N

), 0 ≤ n ≤ N

In our implementation, the window length was equal 4096.

An example of the hamming window function can be seen in Figure 3.

Non-negative Matrix Factorization (NMF) Non-negative Matrix Factorization
(NMF) is a process that aims to factorize an n x m non-negative matrix V into an n
x r non-negative matrix W and an r x m non-negative matrix H. Here r is a positive
integer less than n and m [3,6]. r is called the rank of factorization. This will produce
an approximation of V such that:

V ≈WH

The problem in solving for the NMF of a matrix is to find a goodness of fit measure
called the cost-function. The standard cost function uses a Euclidean Distance measure.
This makes the problem of solving for the NMF a minimization problem of the function:

1

2
||V −WH||2

The method used to solve for this equation has been extensively studied. To compute
the W and H matrices, the iterative multiplicative updates algorithm, introduced in
[5], is used. In [8], Lee and Seung provide proofs as to why the algorithm works. The
updates for the Euclidean Distance metric are as follows:

3

Figure 2: Short-Time Fourier Transform Example. The x-axis represents time domain (seconds),
the y-axis represents frequency (Hertz).

Figure 3: 4096-point Hamming Window

4

W ←W ⊗ V HT

WHHT

H ← H ⊗ W TV

W TWH

Where ⊗ is the element-wise multiplication of matrices and the division is the element-
wise division of the matrices.

The rank used in our implementation is r = 1. This is due to the fact that we are
using vectors for each training template. These vectors are later stacked into a matrix
dictionary W.

Correlation Method

In the real-time testing phase, it is necessary to compute the correlation of the magni-
tude of the Fourier representation vj . This method was chosen because it is extremely
efficient and simple to implement on the DSP. The correlation method can be repre-
sented by the following equation:

hj ≈Wvj

Alternative methods to use for performing a similar computation would involve using
a distance metic to determine the correspondence between the template vectors in W
and the magnitude of the Fourier representation vj . These methods will be described
in the future work section.

What we implemented

Database

For our project, we created our own database of training samples from the CTK-591
Casio Keyboard. We created a database of 61 musical note samples from each of the
keys of the Casio Keyboard. These were used in the training phase of our solution.

Testing

We test our data by performing error calculations on musical samples played on the
Casio Keyboard. We compute an error between our transcriptions and the actual note
played. The total error is a combination of the substitution error εsubs, the missed error
εmiss, and the timing error εtime. The substitution error is the error that occurs when
the transcription classifies a note as another note, including octave errors. The missing
error is the error that occurs when the transcription does not classify any note when a
note is actually playing. The timing error is the error that occurs when the transcrip-
tion does not identify small timing issues. An example of a timing error is when one
note is played multiple times in a short interval, but is classified as only being played
once.

5

Hardware

We used a Mac with MATLAB installed in order to train the musical template dic-
tionary. In order to display the output data of our musical transcription system, we
created a GUI on Mac OS X. The GUI is displayed in Figure 4.

We performed the real-time transcription calculations on the TI TMS320C6713B Digi-
tal Signal Processor (DSP). We communicated between the Mac and the DSP using a
TCP sockets networking interface.

DSK Implementation

The implementation of the real-time algorithm on the DSP consisted of using a 44.1 KHz
sampling rate on the line input from the keyboard. The Fourier Transform computation
was performed at every 4096 samples (0.1 seconds). The magnitude of the FT was
obtained, then correlated with the template matrix W.

The template matrix W was sent dynamically from the Mac after a network connection
was established. The output from the correlation was returned to the Mac using the
same network connection.

Real-time Speed Issues

The DSP code performed its calculations in real-time and sent data to the Mac period-
ically with little lag. The DSP code did have significantly more timing errors than the
MATLAB tested code. These issues could be addressed in future work which involves
performing the calculations on interleaved windows.

Demo

A live demo displaying our system transcribing notes from the keyboard was performed
on April 26, 2011. An image of an example demo is provided in Figure 5.

The notes were input into the DSP from the line in, transcribed, then displayed on the
Mac on a virtual keyboard. We also allowed others to test our system by playing their
own notes. In addition, when the tone of the keyboard was changed, the algorithm still
performed an acceptable transcription even though the system was not trained as such
(an example of which is a trumpet tone).

6

Figure 4: Mac OS X GUI (top), with notes playing (bottom)

7

Figure 5: Example Demo, Keyboard (left), Mac GUI (right), DSK is in background

Results

Figure 6 displays the template dictionary matrix W that was trained on the individual
notes of the keyboard. The training was performed in MATLAB on a Mac. The X-axis
shows the (k)th note of the keyboard (out of 61) while the Y-axis displays the w(k)

template vector for the corresponding note (k).

MATLAB Testing Results

We performed a test of the system in MATLAB over a sample song of Mary Had a Little
Lamb in C major. The results are shown in Figure 7. The X-axis shows the (j)th time
window while the Y-axis represents the 61 notes. The song was sampled at 44.1 kHz
while the time window used was 4096 samples. The red bars in the figure represent notes
that were activated at a given time frame. The sample song is provided in the given CD.

MATLAB Error Rates

The error rates calculated for the Mary Had a Little Lamb song are provided below.
The explanations of each error rate was provided in the Testing Implementation section
above.

Error Fraction Percent

Timing Error 2/25 0.08
Substitution Error 0/25 0.00

Missing Error 1/25 0.04

Total Error 3/25 0.12

Success Rate 22/25 0.88

8

Figure 6: Template Dictionary Matrix W

Figure 7: Template Dictionary Matrix W

9

DSP Error Rates

The DSP error rate was calculated for the entire chromatic scale of 61 notes. Note
that timing errors were not included in this calculation, as there were significant timing
errors with the DSP implementation. An improvement will be discussed in the future
work section.

Error Fraction Percent

Substitution Error 8/61 0.13
Missing Error 8/61 0.13

Total Error 16/61 0.26

Success Rate 45/61 0.74

Timeline

Date Tasks Responsibility

Week 6-8 (2/14-3/6) Obtained the training data set Suyog
(Keyboard note samples)

Started MATLAB training code Itthi
(Compute STFT and NMF on training samples)

Week 9 (3/7-3/13) Finished up MATLAB training code Itthi
Started implementing DSP code Suyog

Week 10 (3/14-3/20) Implemented Mac code and Networking Suyog

Week 11 (3/21-3-27) Finished up DSP code Itthi and Suyog

Week 12 (3-28-4/3) Combined the systems and finished coding Itthi and Suyog
(Combine Mac and DSP code)

Week 13 (4/4-4/10) Tested on synthetic data Itthi and Suyog

Week 14 (4/11-4/17) Reimplemented MATLAB code Itthi
Retrained Training Notes Itthi and Suyog

Finish up GUI Suyog

Week 15 (4/18-4/24) Optimization of code and system Suyog
Evaluation on test data Itthi

Clean up and properly comment code Itthi and Suyog

10

Previous Work in 18-551

Previous projects in the course have performed limited transcription, either in the case
of not using stringed instruments (such as G8-S05’) or only detecting single-tones in a
limited octave range (such as G9-S00’).

Novelty

Our project performed transcription on a keyboard in real-time with notes playing
throughout its full range. In addition, we utilized the DSP to perform most of our
real-time calculations. In comparison, the paper referenced in [3] implemented their
real-time solution in MATLAB on a 2.4 GHz PC.

Discussion & Future Work

Improvement of Accuracies

For future work, we would like to improve our accuracies on the lower octaves by spread-
ing out the template matrix. This can be achieved by downsampling, which spreads out
the frequency content in the Fourier domain. In addition, we can improve the resolution
of the template vectors w(k) after downsampling by zero-padding in time [7].

Alternative to Correlation & Polyphonic Music

In addition, we can modify our algorithm by using a non-negative matrix decomposition
method to determine the hk vectors [3] (rather than the correlation method currently
used).

This is done in [3] by using an idea similar to NMF to solve for the activations hj , given
a fixed W. This can be represented by the following equation:

vj ≈Whj

In [3], the Beta-Divergence Distance Metric is used as a cost function to solve for hj ,
which is defined as follows:

dβ(x|y) =
1

β(β − 1)
(xβ + (β − 1)yβ − βxyβ−1)

This distance metric, used in [3] for computing the activations hj , produces the following
update equation:

h← h⊗ (W ⊗ (veT))T (Wh).β−2

W T (Wh).β−1

Where e is defined as a vector of ones and the powers are element-wise powers.

We can use this new hj vector to potentially improve our accuracies while testing. In
addition, [3] mentions that this new hj vector can work with polyphonic music as well.
This could allow our implementation to work with multiple notes at the same time.

11

Improve DSP Implementation

Our DSP implementation does not currently use interleaved or hamming windowed
functions (as our MATLAB implementation does). We can potentially improve the
accuracies of our DSK implementation by using 50% overlapping hamming windows for
time window of the input signal.

References

[1] - Peeling, Paul H., ”Probabilistic Modelling and Bayesian Inference Techniques for
Music Transcription,” University of Cambridge, 2007.

[2] - Reis, G.; Fonseca, N.; Ferndandez, F.; , ”Genetic Algorithm Approach to Poly-
phonic Music Transcription,” Intelligent Signal Processing, 2007. WISP 2007. IEEE
International Symposium on , vol., no., pp.1-6, 3-5 Oct. 2007

[3] - Dessein, A.; Cont, A.; Lemaitre, G; , ”Real-time Polyphonic Music Transcription
with Non-Negative Matrix Factorization and Beta-Divergence,” International Society
for Music Information Retrieval Conference, 2010.

[4] - ”Short-time Fourier Transform.” Wikipedia, the Free Encyclopedia. Web. 12 Feb.
2011. http://en.wikipedia.org/wiki/Short Time Fourier Transform.

[5] - Lee, D.; Seung S., ”Learning the parts of objects by non-negative matrix factor-
ization,” Nature, 1999.

[6] - Berry, M.; Browne, M.; Langville, A.; Pauca, V.; Plemmons, R.; ”Algorithms and
Applications for Approximate Nonnegative Matrix Factorization,” Elsevier Preprint,
2006.

[7] - Oppenheim, A.V., Schafer, R.W., Yoder, M.T., and Padgett W.T., ”Discrete-Time
Signal Processing”, Prentice Hall, 2009.

[8] - Lee, D.; Seung, S.; Algorithms for non-negative matrix factorization, Advances in
Neural Information Processing Systems, April 2001. 556-562.

12

