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Introduction 

Problem 

With the increasing move to more mobile technology, the use of touch screens, such as those 

used for PDA’s and Tablet PCs, to make data input easier and more natural, handwriting 

recognition is becoming increasingly more important.  Handwriting recognition using a touch 

pad or screen has typically been done using shortcuts or simulated handwriting as a 

communication method.  However this method causes users to focus more on learning a new 

communication method than the message they are trying to communicate and can also be a 

system that intimidates those less comfortable with new technology. 

 

There are two main ways of recognizing handwriting, offline and online.  Offline handwriting 

recognition involves using a picture of something that has been written and then analyzing the 

picture to determine what has been written.  Online handwriting recognition takes time position 

data that has been collected from a touch screen with a stylus or other instrument and interprets 

this data into text.   Each of these methods of recognizing handwriting provides it own sets of 

problems and must be solved in a different way. 

Solution 

A more effective solution for data input using a touch screen is to use natural handwriting and 

transfer this message into text.  This would help mitigate many of the current problems with 

commercial online handwriting recognition using pseudo handwriting codes, like graffiti.  There 

are a few commercial products that already implement this solution.  Microsoft has a 

handwriting recognition built into Window XP and Decuma has written a handwriting 

recognition program that’s works with Palm OS PDA’s.    

 

In the overall scheme of things, the solution of on-line handwriting recognition requires some 

steps.  The overall system takes an input from a tablet digitizer, in our case a touch screen, and 

tries to handle the data to decipher text from the data drawn in the tablet.  The main steps in the 

processing can be described under three categories: Preprocessing, Shape Recognition (where the 

actual shape would be mapped to a character) and Post-processing.   
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As we will further describe, our project explored some algorithms to do the Shape Recognition 

part.  We did a very small part on the scaling of the input, and hence the preprocessing scheme 

was not as complete as that of an overall system.  At the end we found that modeling characters 

via Hidden Markov Models was a nice way to attempt a solution using our C67 EVM.  In this 

method, the algorithm would attempt to estimate an empirical pattern of so many states, decided 

by the design.  The Character Recognition would occur when there would be a pattern match. 

 

Prior Work 

551 Projects 

Two past projects have been done in 551 regarding handwriting recognition.  The first project 

was “Automatic Machine Reading of Text” which was done by Group 8 in spring 2002.  This 

group implemented an offline handwriting recognition program using Fourier Descriptors.  The 

second project “Write on! Character Recognition” was done by group 5 in spring 2003.  This 

group also implemented an offline handwriting recognition program using there own original 

algorithm and also used a dictionary to help increase accuracy.  While all of these projects have a 

similar goal of handwriting recognition the main difference between this project and these two 

projects is type of recognition system, online in comparison of to offline.    

Other Projects 

Other projects in this area have been done at other university by student both undergraduate and 

graduate and also by a few research groups.  The Nijmegen Institute for Cognition and 

Information at Nijmegen University (http://hwr.nici.kun.nl/) in the Netherlands has a group that 

had focused in the area of online cursive handwriting recognition for the past ten years.  They 

have several focus areas within this subject, UNIPEN a handwriting recognition database and 

software, combining the areas of handwriting recognition with that of speech recognition, using 

the information available in online recognition to expand offline recognition, and addressing 

these issues of a particular user’s writing variability and also the variability within groups of 

individuals.  The Pen Technologies team at the IBM Thomas J Watson Research Center 
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(http://www.research.ibm.com/electricInk/) focuses on a new dimension in the area of online 

handwriting recognition, through the use of a special tablet called CrossPad, which resembles a 

normal notepad but function in the same way as touchpad.  There are many other groups in 

addition to the Nijmegen and IBM Pen Technologies groups that do research in this area Cedar 

Center at the University of Buffalo and the CENPARMI group at Concordia, Montreal.  Each of 

this group has specific research areas however they both do research in a similar fashion to the 

research done at Nijmegen. 

 

Algorithm 

Different Solutions 

There are several different ways to solve the problem of online handwriting recognition.  The 

most common ways are the use of Markov Models, Explicit Methods, and Implicate Methods.  

Markov Models are a stochastic process which determines the hidden process through the use of 

observations.  This method is explained in more detail in the next section.  Explicit methods and 

models are derived from linear discriminate analysis, principal components analysis and 

hierarchical clusters analysis.  The Li-Yeung method uses geometrical features of the characters 

and uses the pressure information to creates a recognition scheme.  These models are well 

supported mathematically, however they have two main problems first they rely heavily on 

assumptions about the form of characters or the statistical distribution of characters and secondly 

that explicit methods require extensive computations and memory resources.  Implicate Methods 

refers to models that are based on neural networks.  The classification of the model behavior is 

based purely on statistics of an underlying system.  A recent development in this area is the 

Kohonen self organized feature maps (SOFM) and convolution time-delay neural networks, 

which are similar to the concept of k-means clustering.  One benefit of this approach is its 

invariance to spatial and temporal variations.  While each of these methods has its own benefits, 

none of these methods provides a total solution or perfect accuracy.  A new direction in the area 

online handwriting recognition is to combine the different aspects of each of these solutions into 

one system, for example the use of Markov Models and neural networks, in the hopes of 

improving accuracy.   
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Pre-Processing 

Our handwriting recognition algorithm (HMM-based) expects the input data for testing and 

model generation to be of a certain format. To this end, we generate time-ordered stroke data 

from the user’s input writing. This is not a trivial task to perform correctly, given that our 

Windows interface receives pen events (events containing point location data, touch pressure, 

and time) from the Wacom tablet at a theoretical maximum of 100 Hz. It is notable that this is a 

maximum, for the events are only generated when the pen status changes, thus if the user does 

not write anything or writes very slowly, the actual update rate will be slower. The method that 

we picked of processing this point-data into a physical representation was to classify the curves 

drawn by the user into stroke types, of which 24 exist. These 24 are: for each of the 4 cardinal 

directions and the intermediate directions (i.e. “N, NE, E, SE, S, SW, W, NW”), a straight line in 

that direction, a concave-up curve in that overall direction, and a concave-down line in that 

overall direction. Furthermore, we wanted our pre-processing to create a scale-invariance, and 

we wanted to eliminate error introduced by jitter or slight variations in writing. As you will see, 

the methods we chose of performing pre-processing eliminates most of these problems rather 

effectively. 

 

The first step that occurs in pre-processing is a downsampling of the pen events. This is achieved 

in two steps: first, a time downsampling, which ignores input events that occur within a smaller 

time interval than 10ms (i.e. we rate limit to 100 Hz). Second is an event-based downsampling, 

which further downsamples the number of events which reach the algorithm by a factor of 5. 

These two downsampling rates are important and necessary, as simply downsampling in time 

would fail, given that the pen events are not received at a regular rate. Additionally, while the 

tablet is theoretically sending at a maximum rate of 100 Hz already, this step serves to ensure 

that the data is actually at 100 Hz, which might not be the case if the tablet driver is “bursty” in 

receiving data, or if the code is later used with a faster tablet. Maintaining the point data input 

speed below 100 Hz is important as opposed to simply downsampling the pen events does not 

help in smoothing out “bursty” input data, and this was an efficient way of dealing with it. The 

effect of all of this downsampling and rate limiting is to reduce the effects of jitter. As will be 

shown shortly, the more points that are received, especially nearby points, the more (possibly 

erroneous) strokes are generated. 
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Moving along, after the input is downsampled, we store a history buffer of points received from 

the pen. Once our buffer contains at least 3 points, we can begin processing it. The 3 most recent 

points in the buffer are analyzed, and determine from it the general direction and concavity, 

which we henceforth will call a stroke, which we store in a stroke history buffer. When an 

additional point is added, we generate the next stroke event based on this new point, and the two 

previous points. This is done until the user stops writing. If the pen is lifted during any part of 

this procedure, causing the pressure seen in a event to fall below a certain threshold, we generate 

a pen-up “stroke” (while it is not technically a stroke, it is treated as one for the purposes of 

HMM estimation and analysis).When the pen returns to the tablet, we clear the point buffer and 

begin processing points into stroke history again as before. Included in this stroke generation is a 

simple redundancy filter: when multiple strokes of the same type are generated, sequentially, the 

code reduces it to one stroke of that type. This is where the entirety of our scale-invariance 

comes into play. If a person draws a particular character, and then proceeds to draw it again at 

twice the size, this presumably generates twice the number of sampling points, and likewise 

would generate twice the number of strokes. However, the redundancy filter eliminates this 

multiplicity of strokes, and should bring the set of ordered strokes down to its simplest 

representation. The only bane of this is jitter, in which a jittery hand can generate, in place of one 

stroke, two similar strokes with perhaps different concavities. This is reduced somewhat by 

downsampling, though it still ends up being perhaps our biggest problem in recognition, due to 

the fact that it causes the models to differ somewhat. 

 

Finally, we do not actually store stroke data for any length of time. As soon as we are finished 

receiving input data, we either send the ordered stroke history to the EVM to perform 

recognition, or we run Baum Welch HMM model creation code on it to generate an HMM model 

which we store locally and send to the EVM as training data. 
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Windows-side GUI

Wacom
Tablet/Pen USB Interface -> PC Windows WinTAB API

Pen Status Packets

BBTablet Tablet Interface

Tablet Event Packets

Monitoring 
Thread

Rate limiting to 
100 Hz

Downsampling 
by 1/5

Generating 
Stroke Info

Tablet Event 
Packets

a b c

HMM code

Strokes

a,b,c

b,c,d

 
Overview of the signal path of sample pen/tablet data from the hardware level to the HMM level. 

 

Hidden Markov Models 

Motivation 

Our solution uses a Hidden Markov Model Based Algorithms.  The motivation is that 

handwriting is an empirical process.  There is no real set pattern of what happens in a person’s 

mind when they attempt to write a character.  For a moment we thought, that by modeling a 

pattern of stroke movements in a given direction, would sufficiently be able to tell us that this is 

a correct pattern.  From this one would think that we are after modeling a Finite State Machine of 

stroke transition movements.  However, one can’t really map these states to a stroke type, so then 

the model can have fewer states and still be precise enough to describe the writing pattern of a 

character. From the fact that there is little intuition of what real event the states in the model map 

to, comes the idea of hidden model. 
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The motivation to use Hidden Markov Models is that it would be helpful in describing states in 

empirical processes.  In fact Hidden Markov Models have been used to predict different 

processes from speech all the way to war conflicts.  We can think handwriting is another 

empirical process where the written data does not signify a given state in the process, but are 

rather time observations while a presence in some empirical state. 

The Design 

The idea is that Handwriting can be modeled as a random process.  The states have transitions to 

other states, each with different probabilities.  At each state a physical observation of the process 

can be made.  In our project the observations are actually the strokes recorded as detailed in the 

previous section. This model looks real close to the working of Markov Chains.  In our research 

we learned that Hidden Markov Models have three main parts 

Matrix A:  State Transition Probability Matrix, which models the likelihood of 

switching from some state to another. 

Matrix B:  Observation Probability Table, which models the likelihood of having 

an observation when the process is at a given state. 

Matrix π:  Initial Probability Distribution, which models the likelihood of a state 

being the first state in the state sequence. 

Since the number of states is based on an empirical model, we can randomly select a 

number of states N to perform our analysis.  We chose to use 16 states for all of our 

models for two reasons.  The first reason is the use of a paper by a PhD student at 

Berkeley.  He researched the numbers of states necessary for each character and come up 

with a best number.  The character m had the maximum number of states at 16.  The 

reason whey we did not use the approximated state number for each letter was to help 

optimize our code to generate static arrays. 

Training 

In our design we wanted to have a single HMM for each character we wanted to test.  We wanted 

to test all 52 uppercase and lowercase English letter, the 10 digits, and 10 other symbols.  Our 

system would verify against 72 models.  We believed that one HMM per character was fine, 

since there are re-estimation algorithms, that improve the HMM model information as more data 

is trained with it.  The main algorithms that could be used for HMM training and estimation were 
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Viterbi, Forward-Backward and Baum Welch.  Our design finally chose Forward-Backward with 

Baum Welch training done on the PC side.  At the end we had to tweak our training scheme to 

have nice use of parallelism on the EVM. 

 

The algorithms first analyze the probability of each stroke from all the strokes received, and then 

the algorithm tries to match this stroke sequence to state transition sequence.  As each possible 

sequence is examined the AND probability is compounded from previous transition to future 

transition.  This way the Transition Matrix A is modified and re-estimated.  As this sequence is 

being evaluated one can see that a stroke observation is being mapped to a state.  Basically, the 

stroke probability can be multiplied to its respective part in the B Matrix.  This way the B Matrix 

is re-estimated.  In a similar manner, the initial distribution is re-estimated in the given code. 

 

The training algorithms tweak the probability values of each of the state transitions according to 

the new possible sequences it gets from the set of collected training data.  Theoretically a single 

Hidden Markov Model that would have been heavily trained would be able to recognize 

handwriting of characters independent of the users.  At this point, this would imply the Hidden 

Markov Model has accounted for the majority of the ways anyone can write a given character, 

and hence regardless of the test user, the system should be able to recognize it.  Of course, due to 

constraints of processing time and space on the EVM, having training done on the EVM would 

be a long task.  So we decided to train as much as we can before hand, store the HMM in a file, 

and initially load this to the EVM.  Then, when a new user wants to train, he can re-estimate this 

already trained HMM. 

Recognition 

Now, the next simple stage of this algorithm is to identify the actual shape character.  The basic 

algorithm we followed is to use the forward algorithm.  The idea is that given an input test 

sequence, the algorithm would go through the entire state transition matrix A.  As it would 

traverse the matrix, it would compute the probability of a given state sequence that is mapped 

according to the input sequence. Note that matrix A has mapped out the probabilities for 

theoretically every single possible sequence that would represent a given character.  Therefore, 

we see that summing all the computed probabilities, would give you an interesting value. The 
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sum of all the computed probabilities would give you the OR probability of the input sequence 

being any of the possible input sequences described in the HMM model.  Thus, this probability 

would be a good representation of how likely the input sequence matches the character 

represented in the HMM. 

 

From our research and readings, we have found that since the complexity of HMM probability 

computation is very complex, probability values come awfully close.  Virtually, on all papers, 

the probability results are expressed in terms of the logarithm of the probability value mentioned 

on the previous paragraph. 

Overall Recognition and Thresholds 

The mentioned algorithm describes basically, the computation of a simple probability.  This only 

answers the question “How is likely is the thing I wrote a letter ‘blah’?”  Now our design goals 

were to compare which letter is the one that was written.  Basically, we tackled this problem by 

computing the probability of a sequence against each of the 72 models we tried to provide.  

Soon, we realized more models would be needed.  We would keep this in a basic “for” loop, and 

always keeping the best score and the character model such scored belonged to.  That way we at 

the end of the loop, the EVM would have found the best model, with the best match. 

 

At the end we realized this was almost a complete solution.  But in one of our demos the TAs 

asked whether this method was able to find or determine when someone is just doodling rather 

than attempting to write a character.  From running multiple experiments of the real characters 

and attempting to recognize them, we found the recognition log probabilities go as far as -27. 

Therefore, we found it appropriate to have a threshold of -30.  This means if the best log 

probability is below -30, then we believe it is highly likely that the input data is just doodling.  

This way we implement another feature to our system. 
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Implementation 

Data Flow 

Our implementation of computer-based handwriting recognition was not quite straightforward. 

The project was organized as follows. On the PC resides a GUI which has numerous modes, 

including a training mode, a recognition mode, and a standard user-interface mode. The standard 

user-interface mode is used for typing text (to associate with training data) and clicking various 

buttons. The training and recognition modes are very similar in that they both monitor the tablet 

for input data; they differ in where the data is sent after the mode is completed. The training 

mode generates an HMM model of the input data after being pre-processed (see pre-processing 

section), and sends it to the EVM using a PCI transfer. The recognition mode sends the stroke 

data (not converted to HMM model) to the EVM using a PCI transfer. The reason for the 

difference in transmission format is that we wanted as much data to be stored as HMM models 

when possible – thus the training data gets run through the Baum-Welch algorithm for forward-

backward HMM estimation/re-estimation on the PC-side to create an HMM model before 

sending it to the EVM. However, for recognition, we run the input strokes through each HMM 

model using the Forward algorithm only. This requires having the ordered list of strokes, not an 

HMM model. Thus this is the one place where stroke data, not an HMM model, is transmitted to 

the EVM.  

 

Looking more in depth at recognition, the following steps are executed. Upon receiving the 

ordered stroke data, we loop over all characters and perform the following steps: 

1) Page all models for that character from SDRAM into local heap memory (for speed) 

2) For each model, run the strokes through the forward algorithm using that model and 

calculate the log probability of the strokes matching that model.  

3) This letter’s score is the largest value seen in step 2 over all models for the letter. 

After analyzing all of the letters, the one with the largest score (from step 3 above) is declared 

the winner, if its log probability exceeds the threshold (which we have set at      

-30).  
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Memory usage – HMM models 

In more detail, the HMM models are handled as follows: on the PC, at load time, the GUI 

attempts to load from disk 5 models for each character (there are 72 defined characters). These 

files are stored as plaintext matrices, named based on the character that it represents and the 

model # of the particular model. It sends as many as it could load, and dummy models (basically 

uniform transition probability matrices) for those that were not found, to the EVM via a PCI 

transfer. Each HMM model contains an A matrix, which is 16x16, a B matrix, which is 16x25, 

and a pi matrix, which is 1x16. The purpose of these matrices is explained in depth in the 

algorithm section of the paper. This translates to 672 values, stored as 8-byte doubles, per model. 

There are 72 characters, each of which have 5 models associated with it, thus the transfer size 

(and consequently, the SDRAM memory footprint of this data on the EVM) is approximately 1.9 

MB. Thus it should be obvious as to why it is stored on SDRAM – it definitely wouldn’t fit on 

chip. When the EVM code uses these matrices, generally for recognition, it pages in from 

SDRAM as needed, performing recognition on a set of data already paged in, while paging in the 

set to be worked on next. For ease of use, the PC side models are maintained in memory while 

the program is running, and updated if the user performs training. When the training is 

performed on a character, one of the 5 models that are maintained for that character are 

overwritten, in all 3 places: 

• on disk 

• on PC memory 

• on EVM memory (it arrives via a PCI transfer) 

The PC and EVM both eliminate data starting from model #1, and as each model is overwritten 

(assuming the user keeps training for that character), the model number that is overwritten is 

incremented and wrapped around. Thus in general, the model that is least recently created will be 

overwritten. However, this information about which model was written least recently is only 

maintained until the PC GUI exits. 

Communication 

Finally, a look at the PC EVM communications. The PC and EVM operate in what can be 

viewed on as a master/slave communication configuration. The EVM essentially runs as the 

master, sending commands to the PC. The first command sent is a 
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SEND_ALL_TRAINING_DATA command, which tells the PC that the EVM just started and 

needs all of the HMM data to load onto memory, for later use in recognition. The PC 

acknowledges by sending all of the training data. After that, the EVM sends the PC a 

REQUEST_COMMAND message, which tells the PC that it is done, and is ready to receive 

commands from the PC. This is where the GUI and the user comes in. When it receives the 

REQUEST_COMMAND message, the GUI alerts the user to the EVM’s readiness by updating 

the small “Rockstar” logo on the left side to green. At this point, the user can enter a training or a 

recognition mode. When this occurs, the PC sends to the EVM a command, and depending on 

the command, the EVM then sends a command to the PC requesting the associated data for the 

mode (either the new HMM training model, or stroke information). While the EVM technically 

is the master by controlling the mode in which both operate, the EVM generally is sending the 

PC the REQUEST_COMMAND command, which yields control to the PC. Whenever the PC 

has not received this packet, the “Rockstar” logo on the GUI is purple, to indicate that the EVM 

is not ready for a new command.  

 

Lab Demo 

GUI 

The GUI was designed for simplicity and ease-of-use. There are four modes in which it operates: 

user-interface, free-writing, training, recognition. The modes are relatively self-explanatory, but 

we will include a brief explanation nonetheless: 

• User-interface: All buttons and controls are enabled. The user can enter a character to 

train for, or select a button (training, recognition, or quit) to enter another mode. Pressing 

escape enters free-writing mode. 

• Free-writing mode: The buttons and controls are disabled. The GUI monitors the tablet 

device for point data, and when it is received, draws it on the screen, connecting the 

discretized dots with line segments. Pressing escape returns to user-interface mode. 

• Training mode: After entering a character into the text box and selecting “Train”, the 

user’s input is monitored much like in Free-writing mode. However, when the user 
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presses escape, the stroke data is converted to HMM model format and send to the EVM, 

and also stored locally on the PC (to disk). 

• Recognition mode: After selecting “Recognize”, the user’s input is monitored much like 

in Free-writing mode. However, when the user presses escape, the stroke data is sent to 

the EVM and run through the recognition algorithm on the EVM. The resulting letter is 

displayed in the text box in the GUI. 

When the EVM is ready for commands (the EVM PC command structure details are outlined 

further in the Implementation section), the “Rockstar” (R*) logo turns green. When the EVM is 

processing or transferring data to/from the PC and not yet ready, the logo turns purple. 

 

Demonstration 

The lab demonstration consisted of one of the individual showing our recognition system 

recognize characters that had been trained using the system.  The demo also had an untrained 

individuals try to recognize characters on the system. 

 

Analysis and Conclusions 

Algorithm 

The algorithms described in the previous section were implemented as best as possible as 

described in the Implementation Section.  Yet as we made experiments, we found that the 

training of HMM did not behave as expected.  Once the HMM was trained with a recent sample, 

the HMM would discriminately favor the last sample trained.  So we found that the HMM re-

estimation works, but does not show a true training.  Basically our experiments showed, that the 

log probability of previously sampled data would fall tremendously (below -30), when new data 

was trained on the HMM.  There was no true sense that a single HMM would account for all 

possible ways a character would be written anymore.  We attribute this failure to perhaps a lack 

of training data.  We know the data sets considered for HMM recognition is huge, and perhaps 

more data was needed to stabilize the Matrix values in A, B and π. 
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Therefore, we went with the idea of having for each character a single HMM for a way a 

character can be written.  We realized this set was infinite, and so we went ahead and tried 5 

training samples for each character.  Each of those samples would create a discriminate model to 

a different way the character was written.  This way we attempt to cover different ways the 

character can be written.  This way, we went from having 72 training HMM models on the EVM, 

to having 72*5=360 models.  This made the problem more interesting, because we believed the 

computation would be way slow for the par of the project and its goals. 

 

Here we realized we should do Training on the PC side.  This was done because besides having a 

lot of code that would risk size constraints on the EVM, now we were faced with having to do 

360 training calls when training stages would occur. 

 

Another interesting approach we used is to have input paging using both of the DMA burst 

channels.  We realized that a character set of HMM models (five models per character) would be 

about 25 Kb in size, and therefore we can fit 2 characters in the ON-Chip memory.  With paging, 

we can be doing recognition analysis on one character, while loading up the data for recognition 

analysis on the next character in the other DMA channel.  Theoretically this paging scheme 

would reduce our run-time by a factor 2. 

 

These two changes in the algorithm helped translate the project from pure PC code, to something 

that can robustly run on the EVM. 

Results 

We tested our system using three individuals attempted to write each character three times.  One 

of the individuals, User A, trained the Markov models that were used, while the other two 

individuals, User B and User C, used models that the first person trained. 

 

The data was classified in two different ways.  The first was an exact match.  This happens when 

the system matches the exact character that was written.  The second type of match is a similar 

match.  This occurs when the system matches to either the exact character that was written or a 

character with a similar writing pattern.  For example the letter b, D, p, and P all have a similar 
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stroke pattern.  As the figure below shows, the first stroke is a downward line and the second 

stroke is a curve.  This pattern can be combined into several different letters. 

 
This was also used for characters where the upper and lowercase version of the letter stroke 

pattern is similar but size is different.  The HMM Model pattern does not distinguish between the 

size of letters.  Also some characters were grouped into similar match groups because the system 

has a hard time distinguishing when an additional line is added into the system.  For example the 

difference between the character T and the character I is an additional line.  The system will 

sometimes match these into the same group based on a single line. Bellow is a grouping of 

characters that were put into a similar match group.  Some characters appear in multiple groups 

because they have a pattern that is similar to features in both groups. 

• a, g, q, 9 
• b, B,  p, D, P 
• B, k, K 
• d, k, K 
• E, F, I, t, T, + 
• G, 6 
• h, m, M, n, N 
• j, J 
• l,1, L 
• o, O, Q, @, 0 
• s, S, 8, $ 
• u, U, v, V, w, W 
• x, X 
• z, Z 

 

Stroke 1 

Stroke 2 

b p and P 

D 
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The table below shows what the match percentage was for each user in each match category, 

exact and similar.  The table separates the characters into lowercase, uppercase, numbers, others 

and then a total for all characters.  

 

 Exact Match  Similar Match  
 User A User B User C User A User B User C 
Lowercase 42.3% 16.7% 15.4% 94.9% 51.3% 34.6%
Uppercase 55.1% 29.5% 25.6% 94.9% 71.8% 41.0%
Numbers 83.3% 26.7% 10.0% 96.7% 50.0% 23.3%
Other 93.3% 50.0% 43.3% 96.7% 66.7% 46.7%
Total 59.7% 27.3% 22.2% 95.4% 60.6% 37.0%

 

The table shows that the recognition percentage for User A is higher in all categories, including 

recognition for exact and similar matches.  Another key thing to note is that the recognition in 

the Other category is much higher.  This can be explained because the characters in this group 

are more unique than characters in the other groups.  The recognition percentage also increases 

drastically when the Similar Match scheme is used.  They HMM system works and correctly 

identifies the different patterns created by a character and then matching that pattern to an 

appropriate model.  The models do not however distinguish between characters with a similar 

stroke pattern.  This is fault of the HMM recognition system and could be improved by adding in 

position and size data. 

Future Work 

Future work that could be done in the area of online handwriting recognition for future projects 

in this course would be implement an online recognition program that used one of the other two 

methods, explicate or implicate.  Another expansion in this focus would be to improve 

recognition aspect of the program using a dictionary or vocabulary system or to add weight 

different characters differently based on their expected use, for example the character e would 

have more weight than the character z, sense the character e is used more often in the English 

language.  An interesting expansion to this project would be to combine the Hidden Markov 

Model with the use of position on the tablet.  This would help distinguish between the characters 

like D, b, P, and p. 
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Code References 

Wintab  

http://www.pointing.com/WINTAB.HTM 

This is a Windows API for interfacing with various tablet input devices for PCs. It 

provides a wide range of functionality, much of which was unnecessary for our project, 

however would be useful depending on the features required of the tablet. To be useful, 

we combined it with the BBtablet software below. 

BBtablet  

http://www.billbaxter.com/projects/bbtablet/ 
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BBTablet is an interface to the Wintab API, providing a simpler interface and an 

message-based interface to the tablet device. The code makes it very easy to receive 

tablet information (such as pen location and pressure). 

HTK 

http://htk.eng.cam.ac.uk/  

This site provides detailed code that can be used for Speech Recognition.  The HTK 

system provides a detailed Speech Processing Toolkit along with a Hidden Markov 

Model Toolkit.  While this system could be useful for a Speech Recognition project, the 

basic HMM function are embedded within speech processing toolkit. 

UMDHMM-v1.02 

http://www.cfar.umd.edu/~kanungo/software/software.html  

University of Maryland software that provides basic HMM functions in c.  This code was 

used for our final implementation.  This code however is very basic and does not provide 

a good re-estimation algorithm for models. 


