
 0

18-551, Spring 2005

Group 9, Final Report

Hand written characters to ASCII text

Isaac Dekine, idekine@andrew.cmu.edu,

Ashley President, apreside@andrew.cmu.edu
Chris Valarezo, cjv@andrew.cmu.edu

 1

Table of Contents
Introduction.. 2

Problem... 2
Solution ... 2

Prior Work ... 3
551 Projects .. 3
Other Projects ... 3

Algorithm ... 4
Different Solutions... 4
Pre-Processing .. 5
Hidden Markov Models.. 7

Motivation .. 7
The Design.. 8
Training .. 8
Recognition... 9
Overall Recognition and Thresholds .. 10

Implementation .. 11
Data Flow ... 11
Memory usage – HMM models... 12
Communication.. 12

Lab Demo ... 13
GUI ... 13
Demonstration... 14

Analysis and Conclusions ... 14
Algorithm .. 14
Results... 15
Future Work .. 17

References... 18
Papers References ... 18
Code References .. 18

 2

Introduction

Problem

With the increasing move to more mobile technology, the use of touch screens, such as those

used for PDA’s and Tablet PCs, to make data input easier and more natural, handwriting

recognition is becoming increasingly more important. Handwriting recognition using a touch

pad or screen has typically been done using shortcuts or simulated handwriting as a

communication method. However this method causes users to focus more on learning a new

communication method than the message they are trying to communicate and can also be a

system that intimidates those less comfortable with new technology.

There are two main ways of recognizing handwriting, offline and online. Offline handwriting

recognition involves using a picture of something that has been written and then analyzing the

picture to determine what has been written. Online handwriting recognition takes time position

data that has been collected from a touch screen with a stylus or other instrument and interprets

this data into text. Each of these methods of recognizing handwriting provides it own sets of

problems and must be solved in a different way.

Solution

A more effective solution for data input using a touch screen is to use natural handwriting and

transfer this message into text. This would help mitigate many of the current problems with

commercial online handwriting recognition using pseudo handwriting codes, like graffiti. There

are a few commercial products that already implement this solution. Microsoft has a

handwriting recognition built into Window XP and Decuma has written a handwriting

recognition program that’s works with Palm OS PDA’s.

In the overall scheme of things, the solution of on-line handwriting recognition requires some

steps. The overall system takes an input from a tablet digitizer, in our case a touch screen, and

tries to handle the data to decipher text from the data drawn in the tablet. The main steps in the

processing can be described under three categories: Preprocessing, Shape Recognition (where the

actual shape would be mapped to a character) and Post-processing.

 3

As we will further describe, our project explored some algorithms to do the Shape Recognition

part. We did a very small part on the scaling of the input, and hence the preprocessing scheme

was not as complete as that of an overall system. At the end we found that modeling characters

via Hidden Markov Models was a nice way to attempt a solution using our C67 EVM. In this

method, the algorithm would attempt to estimate an empirical pattern of so many states, decided

by the design. The Character Recognition would occur when there would be a pattern match.

Prior Work

551 Projects

Two past projects have been done in 551 regarding handwriting recognition. The first project

was “Automatic Machine Reading of Text” which was done by Group 8 in spring 2002. This

group implemented an offline handwriting recognition program using Fourier Descriptors. The

second project “Write on! Character Recognition” was done by group 5 in spring 2003. This

group also implemented an offline handwriting recognition program using there own original

algorithm and also used a dictionary to help increase accuracy. While all of these projects have a

similar goal of handwriting recognition the main difference between this project and these two

projects is type of recognition system, online in comparison of to offline.

Other Projects

Other projects in this area have been done at other university by student both undergraduate and

graduate and also by a few research groups. The Nijmegen Institute for Cognition and

Information at Nijmegen University (http://hwr.nici.kun.nl/) in the Netherlands has a group that

had focused in the area of online cursive handwriting recognition for the past ten years. They

have several focus areas within this subject, UNIPEN a handwriting recognition database and

software, combining the areas of handwriting recognition with that of speech recognition, using

the information available in online recognition to expand offline recognition, and addressing

these issues of a particular user’s writing variability and also the variability within groups of

individuals. The Pen Technologies team at the IBM Thomas J Watson Research Center

 4

(http://www.research.ibm.com/electricInk/) focuses on a new dimension in the area of online

handwriting recognition, through the use of a special tablet called CrossPad, which resembles a

normal notepad but function in the same way as touchpad. There are many other groups in

addition to the Nijmegen and IBM Pen Technologies groups that do research in this area Cedar

Center at the University of Buffalo and the CENPARMI group at Concordia, Montreal. Each of

this group has specific research areas however they both do research in a similar fashion to the

research done at Nijmegen.

Algorithm

Different Solutions

There are several different ways to solve the problem of online handwriting recognition. The

most common ways are the use of Markov Models, Explicit Methods, and Implicate Methods.

Markov Models are a stochastic process which determines the hidden process through the use of

observations. This method is explained in more detail in the next section. Explicit methods and

models are derived from linear discriminate analysis, principal components analysis and

hierarchical clusters analysis. The Li-Yeung method uses geometrical features of the characters

and uses the pressure information to creates a recognition scheme. These models are well

supported mathematically, however they have two main problems first they rely heavily on

assumptions about the form of characters or the statistical distribution of characters and secondly

that explicit methods require extensive computations and memory resources. Implicate Methods

refers to models that are based on neural networks. The classification of the model behavior is

based purely on statistics of an underlying system. A recent development in this area is the

Kohonen self organized feature maps (SOFM) and convolution time-delay neural networks,

which are similar to the concept of k-means clustering. One benefit of this approach is its

invariance to spatial and temporal variations. While each of these methods has its own benefits,

none of these methods provides a total solution or perfect accuracy. A new direction in the area

online handwriting recognition is to combine the different aspects of each of these solutions into

one system, for example the use of Markov Models and neural networks, in the hopes of

improving accuracy.

 5

Pre-Processing

Our handwriting recognition algorithm (HMM-based) expects the input data for testing and

model generation to be of a certain format. To this end, we generate time-ordered stroke data

from the user’s input writing. This is not a trivial task to perform correctly, given that our

Windows interface receives pen events (events containing point location data, touch pressure,

and time) from the Wacom tablet at a theoretical maximum of 100 Hz. It is notable that this is a

maximum, for the events are only generated when the pen status changes, thus if the user does

not write anything or writes very slowly, the actual update rate will be slower. The method that

we picked of processing this point-data into a physical representation was to classify the curves

drawn by the user into stroke types, of which 24 exist. These 24 are: for each of the 4 cardinal

directions and the intermediate directions (i.e. “N, NE, E, SE, S, SW, W, NW”), a straight line in

that direction, a concave-up curve in that overall direction, and a concave-down line in that

overall direction. Furthermore, we wanted our pre-processing to create a scale-invariance, and

we wanted to eliminate error introduced by jitter or slight variations in writing. As you will see,

the methods we chose of performing pre-processing eliminates most of these problems rather

effectively.

The first step that occurs in pre-processing is a downsampling of the pen events. This is achieved

in two steps: first, a time downsampling, which ignores input events that occur within a smaller

time interval than 10ms (i.e. we rate limit to 100 Hz). Second is an event-based downsampling,

which further downsamples the number of events which reach the algorithm by a factor of 5.

These two downsampling rates are important and necessary, as simply downsampling in time

would fail, given that the pen events are not received at a regular rate. Additionally, while the

tablet is theoretically sending at a maximum rate of 100 Hz already, this step serves to ensure

that the data is actually at 100 Hz, which might not be the case if the tablet driver is “bursty” in

receiving data, or if the code is later used with a faster tablet. Maintaining the point data input

speed below 100 Hz is important as opposed to simply downsampling the pen events does not

help in smoothing out “bursty” input data, and this was an efficient way of dealing with it. The

effect of all of this downsampling and rate limiting is to reduce the effects of jitter. As will be

shown shortly, the more points that are received, especially nearby points, the more (possibly

erroneous) strokes are generated.

 6

Moving along, after the input is downsampled, we store a history buffer of points received from

the pen. Once our buffer contains at least 3 points, we can begin processing it. The 3 most recent

points in the buffer are analyzed, and determine from it the general direction and concavity,

which we henceforth will call a stroke, which we store in a stroke history buffer. When an

additional point is added, we generate the next stroke event based on this new point, and the two

previous points. This is done until the user stops writing. If the pen is lifted during any part of

this procedure, causing the pressure seen in a event to fall below a certain threshold, we generate

a pen-up “stroke” (while it is not technically a stroke, it is treated as one for the purposes of

HMM estimation and analysis).When the pen returns to the tablet, we clear the point buffer and

begin processing points into stroke history again as before. Included in this stroke generation is a

simple redundancy filter: when multiple strokes of the same type are generated, sequentially, the

code reduces it to one stroke of that type. This is where the entirety of our scale-invariance

comes into play. If a person draws a particular character, and then proceeds to draw it again at

twice the size, this presumably generates twice the number of sampling points, and likewise

would generate twice the number of strokes. However, the redundancy filter eliminates this

multiplicity of strokes, and should bring the set of ordered strokes down to its simplest

representation. The only bane of this is jitter, in which a jittery hand can generate, in place of one

stroke, two similar strokes with perhaps different concavities. This is reduced somewhat by

downsampling, though it still ends up being perhaps our biggest problem in recognition, due to

the fact that it causes the models to differ somewhat.

Finally, we do not actually store stroke data for any length of time. As soon as we are finished

receiving input data, we either send the ordered stroke history to the EVM to perform

recognition, or we run Baum Welch HMM model creation code on it to generate an HMM model

which we store locally and send to the EVM as training data.

 7

Windows-side GUI

Wacom
Tablet/Pen USB Interface -> PC Windows WinTAB API

Pen Status Packets

BBTablet Tablet Interface

Tablet Event Packets

Monitoring
Thread

Rate limiting to
100 Hz

Downsampling
by 1/5

Generating
Stroke Info

Tablet Event
Packets

a b c

HMM code

Strokes

a,b,c

b,c,d

Overview of the signal path of sample pen/tablet data from the hardware level to the HMM level.

Hidden Markov Models

Motivation

Our solution uses a Hidden Markov Model Based Algorithms. The motivation is that

handwriting is an empirical process. There is no real set pattern of what happens in a person’s

mind when they attempt to write a character. For a moment we thought, that by modeling a

pattern of stroke movements in a given direction, would sufficiently be able to tell us that this is

a correct pattern. From this one would think that we are after modeling a Finite State Machine of

stroke transition movements. However, one can’t really map these states to a stroke type, so then

the model can have fewer states and still be precise enough to describe the writing pattern of a

character. From the fact that there is little intuition of what real event the states in the model map

to, comes the idea of hidden model.

 8

The motivation to use Hidden Markov Models is that it would be helpful in describing states in

empirical processes. In fact Hidden Markov Models have been used to predict different

processes from speech all the way to war conflicts. We can think handwriting is another

empirical process where the written data does not signify a given state in the process, but are

rather time observations while a presence in some empirical state.

The Design

The idea is that Handwriting can be modeled as a random process. The states have transitions to

other states, each with different probabilities. At each state a physical observation of the process

can be made. In our project the observations are actually the strokes recorded as detailed in the

previous section. This model looks real close to the working of Markov Chains. In our research

we learned that Hidden Markov Models have three main parts

Matrix A: State Transition Probability Matrix, which models the likelihood of

switching from some state to another.

Matrix B: Observation Probability Table, which models the likelihood of having

an observation when the process is at a given state.

Matrix π: Initial Probability Distribution, which models the likelihood of a state

being the first state in the state sequence.

Since the number of states is based on an empirical model, we can randomly select a

number of states N to perform our analysis. We chose to use 16 states for all of our

models for two reasons. The first reason is the use of a paper by a PhD student at

Berkeley. He researched the numbers of states necessary for each character and come up

with a best number. The character m had the maximum number of states at 16. The

reason whey we did not use the approximated state number for each letter was to help

optimize our code to generate static arrays.

Training

In our design we wanted to have a single HMM for each character we wanted to test. We wanted

to test all 52 uppercase and lowercase English letter, the 10 digits, and 10 other symbols. Our

system would verify against 72 models. We believed that one HMM per character was fine,

since there are re-estimation algorithms, that improve the HMM model information as more data

is trained with it. The main algorithms that could be used for HMM training and estimation were

 9

Viterbi, Forward-Backward and Baum Welch. Our design finally chose Forward-Backward with

Baum Welch training done on the PC side. At the end we had to tweak our training scheme to

have nice use of parallelism on the EVM.

The algorithms first analyze the probability of each stroke from all the strokes received, and then

the algorithm tries to match this stroke sequence to state transition sequence. As each possible

sequence is examined the AND probability is compounded from previous transition to future

transition. This way the Transition Matrix A is modified and re-estimated. As this sequence is

being evaluated one can see that a stroke observation is being mapped to a state. Basically, the

stroke probability can be multiplied to its respective part in the B Matrix. This way the B Matrix

is re-estimated. In a similar manner, the initial distribution is re-estimated in the given code.

The training algorithms tweak the probability values of each of the state transitions according to

the new possible sequences it gets from the set of collected training data. Theoretically a single

Hidden Markov Model that would have been heavily trained would be able to recognize

handwriting of characters independent of the users. At this point, this would imply the Hidden

Markov Model has accounted for the majority of the ways anyone can write a given character,

and hence regardless of the test user, the system should be able to recognize it. Of course, due to

constraints of processing time and space on the EVM, having training done on the EVM would

be a long task. So we decided to train as much as we can before hand, store the HMM in a file,

and initially load this to the EVM. Then, when a new user wants to train, he can re-estimate this

already trained HMM.

Recognition

Now, the next simple stage of this algorithm is to identify the actual shape character. The basic

algorithm we followed is to use the forward algorithm. The idea is that given an input test

sequence, the algorithm would go through the entire state transition matrix A. As it would

traverse the matrix, it would compute the probability of a given state sequence that is mapped

according to the input sequence. Note that matrix A has mapped out the probabilities for

theoretically every single possible sequence that would represent a given character. Therefore,

we see that summing all the computed probabilities, would give you an interesting value. The

 10

sum of all the computed probabilities would give you the OR probability of the input sequence

being any of the possible input sequences described in the HMM model. Thus, this probability

would be a good representation of how likely the input sequence matches the character

represented in the HMM.

From our research and readings, we have found that since the complexity of HMM probability

computation is very complex, probability values come awfully close. Virtually, on all papers,

the probability results are expressed in terms of the logarithm of the probability value mentioned

on the previous paragraph.

Overall Recognition and Thresholds

The mentioned algorithm describes basically, the computation of a simple probability. This only

answers the question “How is likely is the thing I wrote a letter ‘blah’?” Now our design goals

were to compare which letter is the one that was written. Basically, we tackled this problem by

computing the probability of a sequence against each of the 72 models we tried to provide.

Soon, we realized more models would be needed. We would keep this in a basic “for” loop, and

always keeping the best score and the character model such scored belonged to. That way we at

the end of the loop, the EVM would have found the best model, with the best match.

At the end we realized this was almost a complete solution. But in one of our demos the TAs

asked whether this method was able to find or determine when someone is just doodling rather

than attempting to write a character. From running multiple experiments of the real characters

and attempting to recognize them, we found the recognition log probabilities go as far as -27.

Therefore, we found it appropriate to have a threshold of -30. This means if the best log

probability is below -30, then we believe it is highly likely that the input data is just doodling.

This way we implement another feature to our system.

 11

Implementation

Data Flow

Our implementation of computer-based handwriting recognition was not quite straightforward.

The project was organized as follows. On the PC resides a GUI which has numerous modes,

including a training mode, a recognition mode, and a standard user-interface mode. The standard

user-interface mode is used for typing text (to associate with training data) and clicking various

buttons. The training and recognition modes are very similar in that they both monitor the tablet

for input data; they differ in where the data is sent after the mode is completed. The training

mode generates an HMM model of the input data after being pre-processed (see pre-processing

section), and sends it to the EVM using a PCI transfer. The recognition mode sends the stroke

data (not converted to HMM model) to the EVM using a PCI transfer. The reason for the

difference in transmission format is that we wanted as much data to be stored as HMM models

when possible – thus the training data gets run through the Baum-Welch algorithm for forward-

backward HMM estimation/re-estimation on the PC-side to create an HMM model before

sending it to the EVM. However, for recognition, we run the input strokes through each HMM

model using the Forward algorithm only. This requires having the ordered list of strokes, not an

HMM model. Thus this is the one place where stroke data, not an HMM model, is transmitted to

the EVM.

Looking more in depth at recognition, the following steps are executed. Upon receiving the

ordered stroke data, we loop over all characters and perform the following steps:

1) Page all models for that character from SDRAM into local heap memory (for speed)

2) For each model, run the strokes through the forward algorithm using that model and

calculate the log probability of the strokes matching that model.

3) This letter’s score is the largest value seen in step 2 over all models for the letter.

After analyzing all of the letters, the one with the largest score (from step 3 above) is declared

the winner, if its log probability exceeds the threshold (which we have set at

-30).

 12

Memory usage – HMM models

In more detail, the HMM models are handled as follows: on the PC, at load time, the GUI

attempts to load from disk 5 models for each character (there are 72 defined characters). These

files are stored as plaintext matrices, named based on the character that it represents and the

model # of the particular model. It sends as many as it could load, and dummy models (basically

uniform transition probability matrices) for those that were not found, to the EVM via a PCI

transfer. Each HMM model contains an A matrix, which is 16x16, a B matrix, which is 16x25,

and a pi matrix, which is 1x16. The purpose of these matrices is explained in depth in the

algorithm section of the paper. This translates to 672 values, stored as 8-byte doubles, per model.

There are 72 characters, each of which have 5 models associated with it, thus the transfer size

(and consequently, the SDRAM memory footprint of this data on the EVM) is approximately 1.9

MB. Thus it should be obvious as to why it is stored on SDRAM – it definitely wouldn’t fit on

chip. When the EVM code uses these matrices, generally for recognition, it pages in from

SDRAM as needed, performing recognition on a set of data already paged in, while paging in the

set to be worked on next. For ease of use, the PC side models are maintained in memory while

the program is running, and updated if the user performs training. When the training is

performed on a character, one of the 5 models that are maintained for that character are

overwritten, in all 3 places:

• on disk

• on PC memory

• on EVM memory (it arrives via a PCI transfer)

The PC and EVM both eliminate data starting from model #1, and as each model is overwritten

(assuming the user keeps training for that character), the model number that is overwritten is

incremented and wrapped around. Thus in general, the model that is least recently created will be

overwritten. However, this information about which model was written least recently is only

maintained until the PC GUI exits.

Communication

Finally, a look at the PC EVM communications. The PC and EVM operate in what can be

viewed on as a master/slave communication configuration. The EVM essentially runs as the

master, sending commands to the PC. The first command sent is a

 13

SEND_ALL_TRAINING_DATA command, which tells the PC that the EVM just started and

needs all of the HMM data to load onto memory, for later use in recognition. The PC

acknowledges by sending all of the training data. After that, the EVM sends the PC a

REQUEST_COMMAND message, which tells the PC that it is done, and is ready to receive

commands from the PC. This is where the GUI and the user comes in. When it receives the

REQUEST_COMMAND message, the GUI alerts the user to the EVM’s readiness by updating

the small “Rockstar” logo on the left side to green. At this point, the user can enter a training or a

recognition mode. When this occurs, the PC sends to the EVM a command, and depending on

the command, the EVM then sends a command to the PC requesting the associated data for the

mode (either the new HMM training model, or stroke information). While the EVM technically

is the master by controlling the mode in which both operate, the EVM generally is sending the

PC the REQUEST_COMMAND command, which yields control to the PC. Whenever the PC

has not received this packet, the “Rockstar” logo on the GUI is purple, to indicate that the EVM

is not ready for a new command.

Lab Demo

GUI

The GUI was designed for simplicity and ease-of-use. There are four modes in which it operates:

user-interface, free-writing, training, recognition. The modes are relatively self-explanatory, but

we will include a brief explanation nonetheless:

• User-interface: All buttons and controls are enabled. The user can enter a character to

train for, or select a button (training, recognition, or quit) to enter another mode. Pressing

escape enters free-writing mode.

• Free-writing mode: The buttons and controls are disabled. The GUI monitors the tablet

device for point data, and when it is received, draws it on the screen, connecting the

discretized dots with line segments. Pressing escape returns to user-interface mode.

• Training mode: After entering a character into the text box and selecting “Train”, the

user’s input is monitored much like in Free-writing mode. However, when the user

 14

presses escape, the stroke data is converted to HMM model format and send to the EVM,

and also stored locally on the PC (to disk).

• Recognition mode: After selecting “Recognize”, the user’s input is monitored much like

in Free-writing mode. However, when the user presses escape, the stroke data is sent to

the EVM and run through the recognition algorithm on the EVM. The resulting letter is

displayed in the text box in the GUI.

When the EVM is ready for commands (the EVM PC command structure details are outlined

further in the Implementation section), the “Rockstar” (R*) logo turns green. When the EVM is

processing or transferring data to/from the PC and not yet ready, the logo turns purple.

Demonstration

The lab demonstration consisted of one of the individual showing our recognition system

recognize characters that had been trained using the system. The demo also had an untrained

individuals try to recognize characters on the system.

Analysis and Conclusions

Algorithm

The algorithms described in the previous section were implemented as best as possible as

described in the Implementation Section. Yet as we made experiments, we found that the

training of HMM did not behave as expected. Once the HMM was trained with a recent sample,

the HMM would discriminately favor the last sample trained. So we found that the HMM re-

estimation works, but does not show a true training. Basically our experiments showed, that the

log probability of previously sampled data would fall tremendously (below -30), when new data

was trained on the HMM. There was no true sense that a single HMM would account for all

possible ways a character would be written anymore. We attribute this failure to perhaps a lack

of training data. We know the data sets considered for HMM recognition is huge, and perhaps

more data was needed to stabilize the Matrix values in A, B and π.

 15

Therefore, we went with the idea of having for each character a single HMM for a way a

character can be written. We realized this set was infinite, and so we went ahead and tried 5

training samples for each character. Each of those samples would create a discriminate model to

a different way the character was written. This way we attempt to cover different ways the

character can be written. This way, we went from having 72 training HMM models on the EVM,

to having 72*5=360 models. This made the problem more interesting, because we believed the

computation would be way slow for the par of the project and its goals.

Here we realized we should do Training on the PC side. This was done because besides having a

lot of code that would risk size constraints on the EVM, now we were faced with having to do

360 training calls when training stages would occur.

Another interesting approach we used is to have input paging using both of the DMA burst

channels. We realized that a character set of HMM models (five models per character) would be

about 25 Kb in size, and therefore we can fit 2 characters in the ON-Chip memory. With paging,

we can be doing recognition analysis on one character, while loading up the data for recognition

analysis on the next character in the other DMA channel. Theoretically this paging scheme

would reduce our run-time by a factor 2.

These two changes in the algorithm helped translate the project from pure PC code, to something

that can robustly run on the EVM.

Results

We tested our system using three individuals attempted to write each character three times. One

of the individuals, User A, trained the Markov models that were used, while the other two

individuals, User B and User C, used models that the first person trained.

The data was classified in two different ways. The first was an exact match. This happens when

the system matches the exact character that was written. The second type of match is a similar

match. This occurs when the system matches to either the exact character that was written or a

character with a similar writing pattern. For example the letter b, D, p, and P all have a similar

 16

stroke pattern. As the figure below shows, the first stroke is a downward line and the second

stroke is a curve. This pattern can be combined into several different letters.

This was also used for characters where the upper and lowercase version of the letter stroke

pattern is similar but size is different. The HMM Model pattern does not distinguish between the

size of letters. Also some characters were grouped into similar match groups because the system

has a hard time distinguishing when an additional line is added into the system. For example the

difference between the character T and the character I is an additional line. The system will

sometimes match these into the same group based on a single line. Bellow is a grouping of

characters that were put into a similar match group. Some characters appear in multiple groups

because they have a pattern that is similar to features in both groups.

• a, g, q, 9
• b, B, p, D, P
• B, k, K
• d, k, K
• E, F, I, t, T, +
• G, 6
• h, m, M, n, N
• j, J
• l,1, L
• o, O, Q, @, 0
• s, S, 8, $
• u, U, v, V, w, W
• x, X
• z, Z

Stroke 1

Stroke 2

b p and P

D

 17

The table below shows what the match percentage was for each user in each match category,

exact and similar. The table separates the characters into lowercase, uppercase, numbers, others

and then a total for all characters.

 Exact Match Similar Match
 User A User B User C User A User B User C
Lowercase 42.3% 16.7% 15.4% 94.9% 51.3% 34.6%
Uppercase 55.1% 29.5% 25.6% 94.9% 71.8% 41.0%
Numbers 83.3% 26.7% 10.0% 96.7% 50.0% 23.3%
Other 93.3% 50.0% 43.3% 96.7% 66.7% 46.7%
Total 59.7% 27.3% 22.2% 95.4% 60.6% 37.0%

The table shows that the recognition percentage for User A is higher in all categories, including

recognition for exact and similar matches. Another key thing to note is that the recognition in

the Other category is much higher. This can be explained because the characters in this group

are more unique than characters in the other groups. The recognition percentage also increases

drastically when the Similar Match scheme is used. They HMM system works and correctly

identifies the different patterns created by a character and then matching that pattern to an

appropriate model. The models do not however distinguish between characters with a similar

stroke pattern. This is fault of the HMM recognition system and could be improved by adding in

position and size data.

Future Work

Future work that could be done in the area of online handwriting recognition for future projects

in this course would be implement an online recognition program that used one of the other two

methods, explicate or implicate. Another expansion in this focus would be to improve

recognition aspect of the program using a dictionary or vocabulary system or to add weight

different characters differently based on their expected use, for example the character e would

have more weight than the character z, sense the character e is used more often in the English

language. An interesting expansion to this project would be to combine the Hidden Markov

Model with the use of position on the tablet. This would help distinguish between the characters

like D, b, P, and p.

 18

References

Papers References

L.R. Rabiner, "An Introduction to Hidden Markov Models", in IEEE ASSP Magazine, pp. 4-16,

January 1986.

This paper provides a general introduction to the concept of HMM and also explains in

general terms how HMM can be used in Speech Processing. This document was found

using IEEExplore.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech

recognition. Proc. of IEEE, 77, 257--286.

This paper proves a more details introduction to HMM than the “An Introduction to

Hidden Markov Models.” This paper also provides a detail description of how HMM can

be used to incorporate into a Speech Processing.

Shankar Narayanaswamy. Pen and Speech Recognition in the User Interface for Mobile

Multimedia Terminals. Ph.d. thesis, University of California at Berkeley, 1996.

This paper showed an implementation of using HMM for online handwriting recognition.

It was usefully even though he showed no code, because it gave us incite into the number

of states N that were necessary. It allowed us to minimize the amount of time spent using

trial and error trying to determine the level of N.

Code References

Wintab

http://www.pointing.com/WINTAB.HTM

This is a Windows API for interfacing with various tablet input devices for PCs. It

provides a wide range of functionality, much of which was unnecessary for our project,

however would be useful depending on the features required of the tablet. To be useful,

we combined it with the BBtablet software below.

BBtablet

http://www.billbaxter.com/projects/bbtablet/

 19

BBTablet is an interface to the Wintab API, providing a simpler interface and an

message-based interface to the tablet device. The code makes it very easy to receive

tablet information (such as pen location and pressure).

HTK

http://htk.eng.cam.ac.uk/

This site provides detailed code that can be used for Speech Recognition. The HTK

system provides a detailed Speech Processing Toolkit along with a Hidden Markov

Model Toolkit. While this system could be useful for a Speech Recognition project, the

basic HMM function are embedded within speech processing toolkit.

UMDHMM-v1.02

http://www.cfar.umd.edu/~kanungo/software/software.html

University of Maryland software that provides basic HMM functions in c. This code was

used for our final implementation. This code however is very basic and does not provide

a good re-estimation algorithm for models.

