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INTRODUCTION

B A C KG R O U N D

The problem of auditory source separation has intrigued and perplexed researchers and engi
neers since the mid nineteenth century. Auditory source separation is de ned as the separa

tion of a polyphonic audio stream into its component sources. For instance, Billy Joel s Pi

ano Man  can be auditory source separated into Billy Joel s vocals and the accompanying 

piano instrumental.

The rst researcher to uncover the proverbial tip of the iceberg was famous psychophysicist 
and physicist Hermann von Helmhotz, who was concerned about the grouping of harmonics 

in complex piano tones into coherent percepts1. The term auditory source separation was only 

derived much later on, in 1990 from Bregman s work on computational auditory scene analysis 

CASA 2.

This problem remains unsolved even today. Despite the lack of success, a multitude of inter
esting approaches have proposed  spatial, periodicity and harmonicity, physiological. For 

instance, substantial amount of research has been placed into guring out how human hear

ing works in an attempt to apply knowledge gleaned onto auditory source separation sys

tems  and not without good reason. Our ears perform the job of auditory source separation 

perfectly. A person can sit at a cafe table by the road, notice the Doppler e ect of a passing 
car, the honk of the school bus and yet continue to track his friends  conversations across 

the table. Similarly, in the context of our project, a person is able to listen to a song and fo

cus on the singer  his vocal in ections and other vocal subtleties. 

Applications for a system capable of performing perfect auditory source separation are 

mind boggling. It can be used in battle eld systems, to assist military personnel in conduct
ing military actions in battle eld environments, intelligent room systems  to facilitate in

teractions between people or the isolation of speci c audio sources in a noisy environment, 

such as brokers at a stock exchange. More consumer level applications might include the 

ability for your average Joe to create karaoke tracks to sing along to at home, or high delity 

elimination of a particular instrument accompaniment so that the user can practice from 
the comforts of the home.
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2 Instantaneous and Frequency Warped Signal Processing Techniques for Auditory Source Separation, 
Avery Wang, CCMRA Stanford, 1994



O B J E C T I V E

In this project, our group sought to devise an auditory source separation algorithm, as an 
eventual step towards consumer level real world application. We aim to design a system that 

can remove musical accompaniment from a 

polyphonic audio track, leaving behind only 

the vocals. One can imagine the functionality 

of our system as the inverse of some of the 
consumer grade vocal removers available on 

the market, such as the ALESIS Playmate3. In 

those devices, a song is fed into the device, 

and the output yields an audio track with vo

cals removed. However, these devices either 
have a large variance in quality depending on 

the song, or require oracle knowledge in the 

form of input from the user4 to obtain 

decent quality output.

This is where our project tries to take this process one step further. We have designed a sys
tem that does not make use of oracle knowledge in our process to eliminate the accompany

ing music. By oracle knowledge, we mean speci cs about the audio track, such as the exact 

positioning of instruments at the time of recording, musical score, genre of music and so on. 

While we are not eliminating vocals, the nature of music leads us to believe success in back

ground music removal will translate into success in vocal removal.

C O M P L E X I T Y  O F  O U R  P R O J E C T

The complexity of our project is quite high  for starters, there is still no reliable and accu

rate way to distinguish between the frequency components of voice and music when every

thing else is held equal. There is also no academic consensus as to how background music 

removal or vocal removal can be accomplished. These were established after several weeks 

of intensive research going through publications from established sources such as CCRMA 
of Stanford and Audio Engineering IEEE, as well as from our consultations with Professor 

Tom Sullivan and Professor Richard Stern here at Carnegie Mellon. 
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cleans up the resultant signal with a variety of reverb cancellation algorithms. The ALESIS 

Playmate product description can be found at 

4 Such as genre of songs, male/female vocals, e.t.c.



Although we found a detailed research thesis by Avery Wang of Stanford titled Instantaneous 
and Frequency Warped Signal Processing Techniques for Auditory Source Separation that generated 

very convincing results even when separating a tenor soprano accompanying music piece 

into any of its components, the algorithm was judged to be too complicated to be imple

mented in our case, considering we have to work with the hardware limitations of the Texas 

Instruments EVM DSP board.

In the end, we decided to formulate our own algorithms based upon our own understanding 

and research. We also chose to reduce the scope of our project, by designing an algorithm to 

work only for instances in which there is a single instrument and a single vocal. As 

mentioned before, this is because as of now, there is no way to distinguish between 

pitches of instruments in multi instrument mixes without some form of oracle 
knowledge, such as having access to the music scores of each instrument in the music 

piece. We also assume ideal harmonicity in the instruments that we pitch track, so as to fur

ther reduce the complexity of our problem, and avoid handling scenarios such as non

harmonic or in harmonic music.

H O W  O U R  P R O J E C T  D I F F E R S  F R O M  P R I O R  

P R O J E C T S

Although auditory source separation has been a topic examined by previous project groups, 
no previous projects ever made vocal removal their main focus. 

Enhanced Karaoke  Spring 99  had an aspect of voice removal. However, it was only a minor 

portion of their project. They performed the L R center channel cancellation as part of the 

process leading up to their pitch correction algorithm. 

We also identi ed Making Mozart Zippy  Spring 04  as a past project that was similar in 
nature to ours. While pitch tracking was a signi cant portion of their project, music re

moval was not their intention. Instead, the project transcribes polyphonic music into notes, 

which essentially was an automatic music transcription system that attempts to transcribe 

all musical notes of a piece into a score . While their pitch tracking algorithm was superb, 

their pitch tracking algorithm would be useless in our case, since we would not be able to 
distinguish between the pitches of instruments and vocals anyway. Without the ability to 

distinguish between the pitches of instruments and vocals, background music or vocal re

moval would be unattainable. Once again, nothing useful could be found from past projects.
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PROJECT SPECIFICS

S Y S T E M  O V E R V I E W

Figure 1: Block Overview of our Syste

The above diagram gives an overview of our entire system. Our group has assigned each part 

of the system to either the EVM or the PC as follows:

F U N C T I O N A L I T Y D E S C R I P T I O N L O C A T I O N

Pitch Tracking 

Harmonic Product        

Spectrum

Provides system with estimated pitch 
trajectory of musical instrument EVM

FFT
Radix 2 STFT to aid in the pitch track
ing process

EVM

Window to Time

Converts the original form of pitch es
timates obtained from the EVM in 

windows  into time domain in seconds
PC
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F U N C T I O N A L I T Y D E S C R I P T I O N L O C A T I O N

Comb Filter

Performs periodic notch  comb ltering 
at integral multiples of the estimated 

fundamental frequency of the musical 

instrument

EVM

C M algorithm

Chen Muttukumaru         

algorithm

Post processing technique to enable us 
to identify portions of music tracks 

without vocals
PC

GUI

Graphical user interface to allow users 
to load a wave le and apply our algo

rithm to obtain an output le for play

back

PC

Details of each aspect of the system will be discussed in further detail in the later sections. 

The Harmonic Product Spectrum HPS , Comb Filtering and C M algorithm will be dis

cussed under Algorithms Used, while the GUI will be discussed under the section GUI Desig  

and Development.

C / E V M  R E S O U R C E S  A V A I L A B L E

We were unable to locate signi cant C code or EVM resources relevant to our project. The 
only C code we found was one for STFT5  the assembly version provided to us during labs, 

as well as the FFT function we wrote for our homework were not used because they gave 

slightly di erent results from our MATLAB values. 

No EVM resources were available. Perhaps the only other useful resource we found online 

was the MATLAB code for the pitch tracking algorithm6. We later based the C code for our 
pitch tracking o  the MATLAB code. The comb ltering code was produced after confer

ring with Professor Richard Stern and Rajeev Ghandi.

In short, no code could be used wholesale, and signi cantly e ort was put into understand

ing and writing our own code for the nal product on the PC and EVM.
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6 Pitch Detection Algorithms, http://cnx.rice.edu/content/m11714/latest, Connexions



A L G O R I T H M S  U S E D

Figure 2: Algorithm Flow for our Syste

The gure above gives an overview of the algorithm we employed in our project. The input 
data rate of 352 Kbps comes from a 16 bit stereo wave le sampled at 11.025 KHz  

16*2*11025 = 352,800 bits. The output data rate is halved since output is mono. On a cursory 

glance, we can identify the following 4 major components:

1. L R center channel cancellation

2. Harmonic Product Spectrum

3. Comb Filtering

4. C M Chen Muttukumaru  algorithm
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Figure 3: Flow Diagram of Pitch Tracking/Filtering Process

The algorithm begins by performing L R center channel cancellation on the original song. 

The L R cancelled track is then pitch tracked, and the pitch info for the instruments which 

 is more dominant than vocals  is sent together with the original song into comb lter for 

Step 1 ltering, yielding an output with more dominant vocals than instruments vocals > 
bg . The output from Step 1 is then pitch tracked again.

These pitch estimates of the vocals are sent into the comb lter in Step 2, where ltering is 

then applied on the output from step 1. The resultant track has more dominant instruments 

than vocals bg > vocals . The output from Step 2 is then pitch tracked again.

The pitch information from tracking Step 2 s output is then sent in Step 3 into comb lter, 
where ltering is yet again applied to the output from Step 2. This yields an output with 

more dominant vocals than instruments vocals > bg . The output is sent for a nal time into 

the pitch tracker to give us the pitch of vocals. We have established through experimenta

tion that this process gave us the most accurate pitch tracks for voice.
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Figure 4: Comparative Time domain plots at each step 

Red =original input, Blue = ltered output at each step
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In Step 4, the pitch estimates of vocals from tracking the output of Step 3 is used to yield an 
output with signi cantly more background instrumentation than vocals. This output is then 

subtracted against the original input signal to yield our nal ltered output.

From the rst 4 plots in Figure 4, it is not clear quantitatively what has changed as a result 

of the ltering. This is because it is di cult to quantify how much of the audio signal at one 

point in time is voice or background music. However, in comparing the fth plot of the nal 
signal against the original, there is an obvious and signi cant reduction in the audio track as 

a whole. When listening to this, it is clear that most of the reduction is, in fact, the back

ground music being removed.

This process of repeated iterations of pitch tracking and comb ltering was developed dur

ing our initial MATLAB experimental phase. This concept was also partially inspired from 
an auditory source separation method we came across in Multiple fundamental equency esti

mation based on harmonicity and spectral smoothness by A. P. Klapuri, which involves repeated 

pitch tracks and ltering. A single pitch track is performed for each instrument in the audio 

mix in Klapuri s algorithm, with the assumption that their particular pitch tracking algo

rithm would be able to pick out the dominant instrument each time round. To raise the 
amount of background music that was perceived to be removed, we developed the iterative 

process that was described in the previous paragraphs.

Each component of our algorithm will be discussed in detail in the sub sections that follow.

L R Center Channel Cance ation7

To obtain a su ciently accurate estimate of the pitch of the vocals in a song, we chose to 
make use of the L R Center Channel Elimination, which takes the left and right channel of 

a stereo channel and performs a subtraction between the two. The success of this algorithm 

relies on the assumption that the vocals are mixed equally between the two channels, while 

instruments are mixed slightly to either side, which is often the case for songs recorded in a 

recording studio. The di erence from the subtraction yields a predominantly voice removed 
track with which we can estimate instrumental pitch trajectories from.

We acknowledge that by performing such a subtraction, some instrumental energies are lost. 

This technique is also does not work for all songs, as explained in the previous paragraph. 

However, as of today, there are no consistent, reliable or low cost methods of distinguishing 

between the pitches of instruments or voice when performing a global  pitch estimate on an 
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entire track. The usage of the L R Center Channel Cancellation algorithm is our best com
promise that would let us know for sure that the instrument  we are pitch tracking is in fact 

the musical instrument and not the singing vocal.

We chose to perform this component of the overall algorithm on the PC before sending the 

data over to the EVM because it is a relatively inexpensive operation. It does not make a 

di erence either way.

Harmonic Product Spectrum HPS

Figure 5: Diagrammatic representation of HPS algorith

The above gure illustrates the functioning of the pitch tracking algorithm that we selected 

for our project.

The pitch tracking algorithm works by dividing the input signal into a series of 4000

sample windows, with an overlap of 3000 samples. In other words, the algorithm generates a 

pitch estimate for every 4000 sample window and hops by 1000 samples before recomput

ing the pitch estimate for the subsequent frame. For a 11.025 KHz input le, 4000 samples 

translates into an interval of about 36 ms, which is close to the 30 ms maximum interval in 
which a pitch change can be picked up by the human ear. 

The sampling frequency was set at 11.025 KHz for a variety of reasons. Firstly, we were only 

interested in tracking pitches on the musical scale, which falls between 16.75 Hz C0  and 

4978.03 Hz D#8/Eb8   our sampling frequency of 11.025 KHz would allow us to track 

pitches up to half the sampling frequency, or roughly 5.5 KHz. It is clear the musical scale 
falls comfortably within the pitch tracking range. Secondly, 11025 samples per second is a 

reasonable and comfortable trade o  between audio delity and computational complexity. 

The downsampling also gave us higher frequency resolution than in the case of a 4096
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STFT on 44.1 KHz input data. For these reasons, our group decided upon the 11.025 KHz 
sampling frequency.

During the pitch estimation process, a 4096 point STFT is performed on each window. The 

length of the STFT was determined through experimentation. A 4096 point STFT gave us 

the best results in terms of computation time versus pitch estimation accuracy. A 2048 point 

STFT gave us inaccurate pitch tracks, while a 8192 point STFT took longer to complete 
without signi cantly raising accuracy. 

Moving on, in our instance of HPS, the FFT is then downsampled 3 more times, to give a 

total of 4 frequency spectrums. These spectrums are then squared, before being multiplied 

with one another. We square the spectrums so as to accentuate the peaks. The highest peak 

on the resultant spectrum gives rise to the estimated fundamental frequency of the window. 
The algorithm is complete once a pitch estimate is obtained for each window in the input 

song. A 25 second audio clip at 11.025 KHz gives rise to 273 windows, and subsequently 273 

pitch estimates. However, due to the downsampling process, HPS has a tendency to overes

timate pitches by an octave  this problem was taken care of when we post process the pitch 

trajectory.

The algorithm works by assuming ideal harmonicity  whereby subsequent harmonics exist 

in integral multiples of the base fundamental frequency. By downsampling and multiplying, 

the subsequent harmonics of the downsampled spectrums will continue to line up with the 

fundamental frequency of the original spectrum, further accentuating the peak. The algo

rithm is also relatively inexpensive per iteration, and is immune to multiplicative noise.

Figure 6: Pitch Trajectory of Piano playing rising C scale 4th to 5th octave
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We ran tests to verify the accuracy of our pitch tracker, by tracking the pitches of a piano 
recording that played a rising scale, from C 4th octave  to C 5th octave . The gure above 

shows how well our pitch tracker performs. We can see from the staircase like results that 

the pitch tracker works perfectly. Closer examination show every step of the staircase corre

sponds to the pitch of the note that was played +/  5 Hz . Noise from the recording process 

also did not seem to a ect the accuracy, which is an advantage imparted by the HPS algo
rithm.

Figure 7: Pitch Trajectory of Guitar playing rising C scale 1st to 2nd octave

We conducted a more rigorous test with stronger note attacks by testing our pitch tracker 

on a rising C scale played by an acoustic guitar. Once again, the general staircase trend is 

present, with only a few irregularities. The dips were the result of the notes dying out before 

the next note was done. Pitch errors due to string attacks were largely eliminated by post
processing in winToTime 8, but these can still be seen in the form of the small steps right 

before t=4 and t=5 in Figure 7. On the whole, our pitch tracker continues to perform well.

To handle pitch overestimations, we reduced all pitch estimates our pitch tracker was re

turning by an octave. While there will be instances where HPS accurately detects the pitch, 

as we can see from Figure 7, frequency of such occurrences are far and few in between. Any 
resultant error will be insigni cant on the nal output to the human ear.
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Figure 8: Pitch Trajectory of a 25 second portion of Now and Forever  sung by James Cha

The above gure shows the pitch estimates of the guitar in a 25 second portion of one of 
our test tracks, Now and Forever . Most of the pitch estimates fall between 100 Hz to 300 

Hz, which ranges from A 2nd octave  to E 4th octave . While it does not appear very pre

cise or consistent, this range in fact does include the octave range in which the song was 

performed in. The outliers or peaks and troughs are likely to be estimation errors induced 

by the attack of the guitar strings9, or simply regions in which pitch changes occur across 2 
windows. These are the edge cases in which the pitch tracker would fail.

Comb Filtering

Because of our assumption of ideal harmonicity, comb ltering became the natural ltering 

technique of choice. We chose the recursive notching  form of the comb lter, so as to re

duce the harmonic components of the estimated fundamental frequency pitch  of the 
background music. The lter equation is as follows:

y n  = x n   x n  M  + g*y n  M . 

                                                                where M = round FS/FO

                                                             g = 0.5
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The value M determines the location of the poles and zeroes for our lter, and it is the 
rounded value of sampling frequency FS  divided by estimated pitch FO .

Figure 9: MATLAB plot of held spectra plots of magnitude response of comb lter 

and FFT of sample window

The above gure shows the FFT of a sample window, with the magnitude plots of our comb 

lter with a variety of di erent g values. A higher g value translates into a tighter notch, and 

vice versa. Here, we can see that a value of 0.9 would be too narrow to notch out the 4 main 

harmonic components, and a value of 0.1 would be indiscriminately wide. Through a series 

of trial and error, our group decided upon the value of g=0.5 for our comb lter that seemed 
to give us the best delity.

Chen Muttukumaru C M  Algorith

To further improve the quality of our output track, it was clear some form of post

processing was necessary. Despite our best e orts, comb ltering was simply unable to re

move all music from portions of the input song where there are no vocals. However, it gave 
us enough information to identify portions of the track without vocals via some nifty post

processing work.
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Figure 10: Pitch Trajectory of Piano playing rising C scale 4th to 5th octave

The above gure shows 2 signals  the L R cancelled signal of a 25 second clip red wave

form , and its comb ltered output blue waveform  after the series of pitch tracking as ex

plained two sub sections ago. Through second by second song analysis, we noticed a rela
tionship between the two signals. The L R cancelled waveform should be purely instru

ments, while the comb ltered waveform should be purely vocals. It also appeared that por

tions of the L R cancelled waveform that were higher in amplitude than the ltered wave

form also corresponded with portions of the song where there were no vocals. From these 

two ndings, we felt it was possible to perform a time domain comparison between the two 
tracks and employ some form of tolerance checks to determine segments of the clip devoid 

of vocals.
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Figure 11: Overlaid time domain plots of L R cance ed signal and nal ltered outpu

To prepare the waveforms for post processing, we applied a 1000 sample moving average 

smoothening process to both waveforms to smoothen out spikes and excessive troughs. We 

then compared waveform X L R cancelled  and Y ltered . If the amplitude of X was 
greater than Y, we would gain that portion of Y by 0.05, so as to clip those musical portions 

of the ltered track without any vocals.

Because of the computational complexity of the moving average smoothening process, we 

chose to perform this computation on the PC, after the ltered data is returned from the 

EVM.
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RESULTS AND ANALYSES

T E S T  S I G N A L S  U S E D

A series of audio tracks were recorded via Apple s Garageband for experimental and demo 
purposes. Due to equipment limitations, our group had to record the instrument pieces via a 

MIDI keyboard and sample o  Garageband s instrument library. Although the recordings 

are not from the actual instruments, we felt it was a reasonable compromise as test signals 

in our initial MATLAB experimental phase. File type was 16 bit WAVE at 44.1 KHz, and 

downsampled to 11.025 KHz before being fed into our system.

As mentioned under the Algorithms Used section, we used the following tracks to test our 

pitch tracking algorithm:

1. Instruments  Piano

2. Instruments  Acoustic Guitar

3. Instruments  Alto Sax

We then proceeded to record a series of songs for use on the eventual nished product.

1. Now and Forever, by Richard Marx

2.  Chinese pop song , by Emil Chau

3.  Chinese pop song , by David Tao

In Now and Forever , James  vocal was mixed centrally, with bass and piano slightly to the 
left or right as it would be recorded if it was done at a proper studio. The bass and piano 

were recorded using a MIDI keyboard and real instrument audio samples from Garage

band s instrument library.

In both  and , a real acoustic guitar was used as the accompanying instrument to 

James  vocals.

The following commercial songs were also selected as additional test tracks, to evaluate the 

performance of our system on commercial songs.

4. You re My Home  Billy Joel

All test signals were downsampled from 44.1 KHz to 11.025 KHz before being passed 

through our system.
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P R O B L E M S  E N C O U N T E R E D ,  S O L U T I O N S  A D O P T E D

Our initial attempts to compile our code in Visual C with the Microsoft C compiler led to 
output results that were di erent from what we obtained on the GCC compiler. Instead of 

wasting time troubleshooting, we switched to an alternative open source IDE  Bloodshed 

Dev C, which employs a X86 port of the GCC compiler.

We were also initially unable to allocate larger variables onto the heap or stack  increasing 

the heap/stack limit solved that problem that.

Pro ling via pro ling a range or function did not always yield consistent results. When op

timization was turned on, pro ling the function hps  yielded abysmal cycle counts. We g

ured this could be because of the call to the t  function from within the hps  function. To 

obtain a consistent performance indicator upon which to base our comparisons, we resorted 

to physically timing each function call by break pointing and stepping over. Without opti
mization and paging, the t  and combFilter  cycle counts of 35,274,127 and 91,835,560 were 

close to the physical timings we obtained based upon the 133 MHz speed of the DSP chip. 

E V M  M E M O R Y  I S S U E S / A N A L Y S E S

Code size/Memory A ocatio

C O D E  T Y P E C O D E  S I Z E  I N  H E X

Without paging, without 
optimization

0xA1E0

Without paging, with 
optimization level 3

0xA020

With paging, without 
optimization level 3

0xA120

With paging, with 
optimization level 3

0xA5870

In all instances, the program data t into ONCHIP_DATA without any issues.

A 25 second input song data requires 2*11025*25*4 = 2 MB 11025 samples per second, at 4 

bytes per sample, one array to contain the input song and a second array to hold the nal 

ltered output  in o chip memory.
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Optimizations Performed

The hps  function was easily the most memory intensive function in our program. The fol

lowing are some characteristics of this function:

1. A 25 second clip contains roughly 273 windows, each 4000 samples in length. 

2. Since hps  works only on a single window at a time, window data alone occupies 

4,000*4 bytes = 16 KB variable name: windx .

3. The t  function is called 273 within the hps  function. The 4096 point STFT re

quires 4096*2*4 bytes = 32 KB multiplied by 2 because of real and imaginary output 

of the STFT, variable names as fxr and fxi respectively .

4. The downsampling process then takes place after all the t  calls.

5. Each downsampling process takes roughly 2048*4 bytes = 8KB. We require two 8 KB 
memory block variable names: page, fx3  for a total of 16 KB to store each subse

quent downsampled spectrum and perform the multiplication.

6. Total memory requirement for hps  is as follows:

16 KB windx  + 16 KB page + fx3  + 32 KB fxr + fxi  = 64 KB, which is exactly the 

ONCHIP_DATA capacity of 64 KB.

Because global variables are also placed in ONCHIP_DATA, we are unable to keep every

thing in hps  on chip. We chose to sacri ce fx3 since it had the lowest array size and fewest 

accesses, hence the lowest penalty incurred for going o chip. All other variables in hps  

were either paged using dma_copy_block  or were already in ONCHIP_DATA. 

We chose not to pre fetch the subsequent 1000 samples from the next window to speed up 
computation because of obvious memory constraints. Also, the hps  runtime was much 

higher than a single copy of 1000 samples. No signi cant time can be saved by parallelizing 

this process.

We chose not to implement loop unrolling in the bottleneck function, hps . This is because 

of the high number of loops we have in that function, which eliminates any speed gains by 
unrolling loops four  or even eight at once. This assertion was in fact veri ed, where we saw 

no speed improvements in terms of cycles or physical runtimes after unrolling loops in hps 

by 4. 

We chose not to optimize combFilter , since its runtime per iteration was not the bottle

neck in our algorithm. It would also be di cult to page the ltering process, due to the ini

18 551 Digital Communications and Signal Processing Systems Design, Group 7

Project Final Paper Page 21 of 28



tial conditions in the recursive ltering process. As a result, the entire ltering process was 
carried out in o chip memory.

Speed Analysis

C O D E  T Y P E H P S F F T C O M B F I L T E R

Without paging, 
without optimization

2 min 9.86 sec 0.74 sec 1.44 sec

With paging, without 
optimization

1 min 49.26 sec 0.09 sec 0.63 sec

Without paging, with 
optimization level 3

1 min 2.79 sec 0.58 sec 0.69 sec

With paging, with 
optimization level 3

53.62 sec 0.48 sec 0.79 sec

Table shows runtimes for single iteration of function. Times for t  and combFilter  are not accurat  

because they were too fast to be timed accurately by hand

The times in the above table represent total time taken to complete a single call of each 

function. We can see from the above table that hps  is the bottleneck in our algorithm. A 

total of 4 calls to hps , 273*4=1092 calls to t  one t per window, 273 calls to t  for 
each hps function  from within hps , and 4 calls to combFilter  are made in the entire 

process of our algorithm. Prior to any paging or optimization, processing a 25 second input 

le took our system almost 9 minutes! Paging and turning level 3 optimization gave us a nal 

runtime of about 4 minutes. 

To give further insight into the runtimes, the following table gives an estimate of the 
amount of computation within these three functions with paging and level 3 optimization:

F U N C T I O N C O M P U T A T I O N S

combFilter

8.2 million cycles
= 0.06 seconds based on 133 MHz clock

11025 samples per second, 15 cycle penalty for accessing o chip 

memory twice for each array, to perform ltering from original into 

ltered array

hps   t 9,093,142 cycles via pro le range  = 0.0683 sec

t 9,374,816 cycles via pro le function  = 0.0705 sec
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F U N C T I O N C O M P U T A T I O N S

hps

273* 0.0683+0.0705  = 37.90 sec < 53.62 sec
We measured these times by splitting the entire hps  call into the 

above two components and removing the rest of the system. This was 

prompted by the timing di culties we mentioned in Problems encou

tered, Solutions adopted on page 20. We postulate that by stripping 

down the rest of the system, the compiler has more memory to make 
the function faster by 15.72 sec.

G U I  D E S I G N  A N D  I M P L E M E N T A T I O N

We designed a graphical user interface in VB 6.0. The design is as shown in the following 
gure.

Figure 12: Screenshot of Lamb Chop  Graphical User Interfac

The GUI allows the user to navigate between folders and select wave les as the input le 

into our system. It is to be noted that no downsampling is performed by our program  a 

downsampled clip is assumed to be fed into the system. As explained before, we have lim

ited wave les to be a maximum of 25 seconds in duration  longer music tracks will not t 
onto the EVM without signi cant paging. Furthermore, our algorithm already takes 3+ min
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utes to process a 25 second track  allowing longer clips would result in undesirably long 
computation times.

Once the algorithm completes its work, the text eld on the right will show details of the 

process. A separate window will also pop up to indicate completion, with an OK  button to 

dismiss the separate window. The user will then be able to click on the radio button to the 

left of the output le text eld, which loads the output le into the Windows Media Player 
plugin on the lower right of the GUI.

The following Figure 12, shows the organizational structure of our GUI, and how it relates 

to the rest of the system. Note that our C program on the PC side performs a board reset 

and loads the EVM program onto the board before initiating the system.

Figure 12: Block diagram depicting interfacing between GUI and rest of syste

D I S C U S S I O N  O F  R E S U L T S  O F  O U R  S Y S T E M

The following tracks were used to test our system. Now and Forever ,  and  
were recorded by James Chan in Garageband, while 25 second clips of Billy Joel s You re My 

Home  was extracted from one of his audio CDs.

Generally, our system worked very well. It was able to eliminate portions of the clips with

out vocals perfectly in Now and Forever  and , and reduced a signi cant portion of 

the background instrument. Only the attacks of notes could be heard during portions of the 
clips with vocals  few notes were sustained. These two tracks embody the success that we 

set out to achieve in the beginning.

However, putting  through our system gave us abysmal results. In depth analysis 

showed that the L R cancelled signal did not give a clear separation between vocals and in
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struments. In addition, the guitar strings were constantly being struck, leading to a signi
cantly higher number of attacks than in the previous 2 tracks. These combined to cause our 

system to fail miserably.

We then went a step further and tested our system on commercial tracks. Most failed mis

erably as well, because the L R cancellation gave our system nothing to work with. This is an 

important step to get our algorithm underway without oracle knowledge, because we rely on 
the L R cancellation to give us relatively isolated instruments from which to pitch track. 

Billy Joel s You re My Home  worked surprisingly well, and further analysis showed a high 

degree of voice removal in the L R cancelled track, which explains the success of our system.
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SUMMARY
From Discussion of Results of our System, it is apparent that our system is far from perfect. 
However, it achieves what we have set out to do very well. Nevertheless, it is important to 

acknowledge the limitations of our system  we assume perfect harmonicity, yet sound is not 

always perfectly harmonic, i.e. with harmonics in perfect integral multiples. Our pitch track

ing algorithm assumes perfect periodicity and as a result fails to take into account inhar

monic signals or non harmonic sound such as those produced by the saxophone.

We came across several ideas in our work that we were unable to apply or try due to hard

ware, time or knowledge limitations. An excellent example would be the multiple harmonic 

trackers that Avery Wang uses in his paper titled Instantaneous and Frequency Warped Signal 

Processing Techniques for Auditory Source Separation. We regret that we were unable to pursue 

that path and implement it this time round, and hope that a future group will take up the 
challenge on an updated, more powerful version of the Texas Instruments EVM and dupli

cate Avery Wang s success. For an example of how successful his algorithm is, listen to his 

audio samples from 

ftp://ccrma ftp.stanford.edu/pub/Publications/Theses/AveryWangThesis/sound_demos.

Easy and reliable auditory source separation remains an open problem even today  yet if 
progress in the realm of DSP is anything to go by, we can be assured that an elegant solution 

will be found sometime in the near future. Until then, our ears shall remain king.
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It s the end...

No more cries for help from the poor lambs.

The lambs have been silenced!
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