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Introduction 

 

Problem 
Drivers generally have a harder time doing back in parking as oppose to head in parking. 

What makes back in parking difficult is that we do not have the full vision behind the 

vehicle. Also, it is hard to estimate the space on the side of the car to ensure enough room 

on both sides for the driver and passengers to get in or out of the car easily.  

 

Solution 
We implemented a system using a LEGO© car with Logitech QuickCam® Zoom™ - 

Silver mounted on it to simulate the situation which there is a camera behind the vehicle. 

To solve the abovementioned problem, we first identify the white grid lines in each frame. 

By calculating the tilted angle between the lines and the direction of the automobile, we 

know how much steering is needed and how far the car is from the parking space at that 

moment. The LEGO car is controlled by Handyboard as shown below.  
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Previous Works 
A similar previous project was 2004’s group 4, “Car Eye for the Drunk Guy”.  Their 

project used Hough Transform to recognize the white lines on highway.  They then 

processed the video from a car-mounted camera to keep track of the location of road lines 

and determined whether the driver is driving safely. 

 

There are certain differences between their project and ours.  Our project is real-time and 

we need to recognize three parking lines of different angles. On top of that, we need to 

program the Handyboard to recognize instruction from the PC and perform the action we 

desired. 

 

Assumptions 
Certain assumptions were made in our project: 

 

1. For our program to work properly, it is necessary to ensure that the mounted-

webcam captures all three lines of the parking space. 

2. We assume that the model car is in a position such that only one turn is necessary 

for parking.  Backing out and making two turns are out of the scope in this project. 

3. The model needs to be either on the imaginary middle line of the parking space or 

some angle away from it. 

4. All calculations and calibrations are assumed to be perfect. 
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System Overview 
 
 

 
 

 

The system starts after the user clicked “Start” on the PC program. The webcam on the 

car will capture a frame and convert the RGB image to grayscale image and then perform 

thresholding to obtain a binary image. The binary image will be sent to the EVM. 

Straight lines are detected and the appropriate action is determined. The action is sent 

back to the PC where the PC will send the action to the car. After the car is done 
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performing the instruction, the webcam will capture another frame and the same process 

repeat.  

 

Detailed Algorithm 
 

Framing 
C++ code for framing is obtained from http://www.codeproject.com/audio/avicapwrp.asp.  

The source codes, Frame Grabber, offers options for formatting the webcam, such as 

resolution, colors, brightness, contrast, etc.  This program captures frame from the 

webcam and saves the frame as a bitmap file any time when the “Save As” button is 

clicked.  However, we did not use these options, and we hardcode the image size to be 

160 * 120. 

 

The modified window for Frame Grabber looks like this: 

 

 
 

The entire parking process is automated once the START on the toolbar is clicked. 
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We only need to capture two frames for the entire process.  The first frame is taken at the 

starting position, as shown in Fig. 1.  The car would then back up straight a little and turn 

until the car is parallel with the parking lines. The second frame will be taken once the 

car is stopped and parallel to the parking lines, as shown in Fig. 3. 

 

 

 
Fig. 1 Fig. 2 Fig. 3 

 

RGB Image 
The reference we used is http://www.microsoft.com/msj/1097/wicked1097.aspx.  The 

program generates a color palette of a bitmap file.  We found the CQuantizer class 

particularly useful.  It helps to convert the 32-bit DIB to 24-bit RGB format one scan line 

at a time. Then it reads individual pixels by scanning the line from left to right using the 

same logic it uses to read 24-bit DIBs.  We modified the codes such that when it reads 

individual pixels, it saves the RGB values into three arrays, redA, greenA and blueA at 

the same time. 

 



 -8- 

 
 

RGB Image 

Grayscale 
We then grayscale the RGB values of each pixel according the following equation: 

 

16098.0504.0257.0 +×+×+×= bluegreenredgray  

 

The maximum and minimum of these gray values are recorded to calculate the threshold 

by using the following equation: 

 

min;min)(max7.0 +−×=threshold  

 

After that, we need to convert the grayscale image to binary image.  If the gray value of a 

pixel is greater than the threshold value, we assign a “1” to it to represent an “ON” pixel, 

vice versa. These binary numbers are saved in an array and the array is sent to EVM for 

further processing. 
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Grayscale Image 

 

 
 

Binary Image 
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EVM Input and Output 
The input to the EVM is a 160 * 120 pixels binary image. Since the EVM is capable of 

receiving 3MB/sec, the transfer of image data from the PC to the EVM is not a problem. 

The output of the EVM is the instructions to the Handyboard. They are numbers which 

represent the desired movement of the LEGO car. 

 

Line Detection 
To detect the straight lines from the captured frame, we used the following method. 

 

for every ‘ON’ pixel 

 for all the other ‘ON’ pixel 

  draw a line AB to join the two ‘ON’ pixels 

   determine the θ and d of the line 

   increment the Accumulator array of the cell (d, θ) 
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From the Accumulator array, choose (d, θ) points which have a value higher than a 

threshold value and classify them as “lines”.   

 

 
 

Detected lines are plotted as blue lines in the figure above. 

 

There is a popular line detection algorithm called Hough Transform that we did not use. 

Hough Transform transforms the image from the Original Coordinate Plane to the Hough 

Plane. Lines are parameterized according to the equation p = x * cos θ + y * sin θ. Hough 

Transform runs much faster but lines of 90o can not be detected. 
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Line Clustering 
 

To cluster the many detected lines into 3 groups, we put lines of distance (d1-d2)2 + (θ1- 

θ2)2 less than a certain threshold into the same group. After clustering, an average is 

calculated to represent each line. In most of the cases, this method works well and do not 

require a lot of calculation. Sometimes, however, a 4th group of line might be found and 

affect our detection algorithm. 

 

Another method of finding three groups of lines was suggested during the demo. Instead 

of using a fixed threshold to find out the lines, start out with a high threshold and lower 

the threshold until three groups of lines are detected. 
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Back in Calculation 
 

 
 

 

From the starting position, the car first back up straight for distance D. The car will then 

turn with a turning radius of r and travel a distance of r*θ. After this, the car should be 

inside and parallel to the parking space. 
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Serial Port Communication 
Serial port is used for data transfer between PC and Handyboard. 

Handyboard 
The Handyboard can read and write character (ASCII 1 to 127) to the serial port. 

PC 
A serial library in C++ is available at http://www.codeproject.com/system/serial.asp.  It 

provides the send and receive functions to send the instruction to the handyboard. 

Instructions for the Movement of the Car 
The Visual C++ program sends the following information to the Handyboard via Serial 

Port 

 

(1) Back up distance 

(2) Left or right indicator 

(3) Left or right distance 

 

The distance (the time the motor has to be ON) is represented by values from 1 to 126 

and the Left/Right indicator is either 1 or 2. 

 

After the Handyboard received an instruction, it writes the number 127 to the serial port 

so that the Visual C++ program can read and proceed to send the next number. 

 

Speed Issues 
We have to access ‘ON’ pixels many times when we detect the straight lines. Instead of 

searching through the whole image every time, we first find all the ‘ON’ pixels in the 

image and store the ‘ON’ pixel array index into another array lineArray. Now we only 

need to access lineArray when we perform straight line detection. 
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The size of lineArray depends on the number of ‘ON’ pixel in the captured frame. On 

average there are around 800 ‘ON’ pixels in a 19200 pixel frame. Therefore, the size of 

lineArray is much smaller than that of the frame. 

 

However, our line detection algorithm requires a lot of calculation and needs a relatively 

long time to finish the whole process. The time needed to complete the line detection also 

depends on the number of ‘ON’ pixels. A frame with 800 ‘ON’ pixels would take roughly 

10 seconds to finish the straight line detection process.  

During the demo, we were suggested to perform Skeletonization on the image before line 

detection. Skeletonization is the process of peeling off of a pattern as many pixels as 

possible without affecting the general shape of the pattern. In other words, after pixels 

have been peeled off, the pattern should still be recognized. The skeleton hence obtained 

must have the following properties:  

- As thin as possible  

- Connected 

- Centered 

When these properties are satisfied, the algorithm must stop.  
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  Before Skeletonization  After Skeletonization 

After Skeletonization, the number of pixels that need to be processed would decrease 

drastically and thus, increase the speed of our system. Also, we will not get multiple lines 

of slightly different d and θ from one thick line as shown in the figure below.  
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Errors 
 

Motor Calibrations 
Major errors come from calibrations.  We supply the model car with ±100V to its motor 

for forward and backward motion, and also another motor for left and right turn.  To 

control the movement, power is supplied to each motor for a certain period of time.  We 

measured the time versus distance traveled for all four motions: forward, backward, left 

turn, right turn.  All of these motions are not linear with respect to time due to the fact 

that there is a sudden surge of power for its initial movement, thus making the first few 

0.1 seconds more erroneous.  Also, due to the unsteadiness of the motor, the model car 

does not travel the same distance every time, given the same amount of power and time. 

 

Starting Position 
When the car’s starting position is just in front of the parking space and parallel to the 

parking case, the lines detected are very close to 0o and 90o. We have a special instruction 

for this case. However, the line detection algorithm is not perfect. Errors often occur 

when the car is almost parallel to the parking space and caused the system to think that 

the car is parallel to the parking space. In this case, our system will fail.  

 

Webcam Position 
Since the webcam is not LEGO pieces, it can not be fixed onto the car tightly. The 

position of the webcam could be moved and could produce error in our calculation. A 

slight movement of the webcam could make the car unable to move to a position parallel 

to the parking space and such. 
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Demo 
During the demo, we put the car at a distance from the parking space and let our system 

control the movement of the car. In most starting positions, with or without obstacles 

blocking part of the white lines, our system worked. Starting positions where the car is 

almost parallel to the parking space or only a very little portion of one of the lines can be 

seen caused our system to fail. 

 

 

 
Initial position – facing the parking space 
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Back up straight and turn 

 

 
Turn until the car is parallel to the parking space 
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Back up straight until the car reaches the end of the parking space 

 

 

References 
 

1. C++ code for framing. 

http://www.codeproject.com/audio/avicapwrp.asp 

 

The demo files provide an application to capture frames from webcam and save 

them as bitmap files in real time.  There are other functions such as editing the 

settings of the webcam which is not used in our project. 

 

2. C++ code for creating palette of a given bitmap file. 

 

http://www.microsoft.com/msj/1097/wicked1097.aspx 
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The source codes only pick out color from the bitmap file and convert it to a color 

palette.  Our project, however, requires the RGB values of each pixel, thus 

changes are applied to the source codes to fit our needs. 

 

3. C++ code for serial communication. 

http://www.codeproject.com/system/serial.asp 

 

The source files contain Send and Receive functions of the serial port, which is all 

that is needed for this part of the project. 

 

4. C code for serial port communication for the Handyboard 

http://www.handyboard.com/software/contrib/drushel/ 

 


