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The Wireless Intercom: An Introduction 
 

Consumers need communication technology in this information era. There is a 
great demand for reliable communication that is easy to use as well as secure. Email is 
one solution but will never be secure enough to stop someone from reading over your 
shoulder. Additionally, on a large company floor remembering several phone numbers is 
easily a hassle, especially when you only need to make a quick phone call down the hall. 
How can we make communication better or even easier than this for a simple, closed 
environment? Can it still be reliable if it is “better” or “easier”? Is there a need for 
security without complicating the system? 

It is obvious then that as technology advances the demand for better 
communication solutions increases tremendously. Wires are quickly going out of style 
with the advancement of wireless technologies and industry. Because wireless 
communication is a surging technology that shows no signs of slowing down, it has the 
potential to answer to the needs of this demanding market. Consider one of the most 
common forms of wired communication, the landline telephone. A great amount of 
money has to be poured into a wired infrastructure, which even though is fairly common 
place, contains a hidden complexity. Wireless eliminates the need for additional hardware 
to connect lots of users for a simple environment. 
 A solution to these outlined problems then would be a wireless intercom system 
using encryption, where a group of people could communicate quickly and securely 
without the need for major installation projects or complicated hardware systems. First 
consider the situation where a business team, lets call them team A, needs to discuss an 
important account without having to continually hold meetings. Most people would agree 
that organizing meetings is not always time or cost effective. With the wireless intercom 
system, each member of the team can communicate with one another instantly through a 
reliable link on a secure channel. Security is a particularly important feature if you 
consider in the same example a rival business team, team B, on a lower floor of the 
building that would like to see what team A is working on, to possibly usurp their efforts. 
This system is ready to handle problems such as multiple access on top of common 
wireless problems such asynchronous communication and noise. Using a multiple access 
scheme such as CDMA, each user will be identified as unique by a code. What this 
means is that when one team member is talking to another team member, a third person 
won't interrupt the conversation but instead will be interpreted as noise. Since CDMA is 
structured around spread spectrum, we can spread out the power spectrum of our system 
such that we could transmit at or below the noise floor. Communication would then have 
encryption and a low probability of interception which would guarantee the users a safe 
mode of communication. Consider the intercom system divided into 3 major modules: the 
voice compression, the encryption/error correction, and the wireless communication.  
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Previous Projects 
 

There have been two prior projects that involved basic components of our design. 
Group 1, in spring 2001 used linear predictive coding to do a voice morphing project; 
however, the coder used was a waveform encoder, which is designed to encode an 
audible signal in a slightly compressed format. As waveform encoders are intended for 
general audio applications, they do not achieve the compression possible when using a 
voice encoder. Human speech typically contains a variety of redundancies, as it is based 
on a fixed set of phonemes; thus, vocoders are able to search through fixed databases of 
simulated speech in order to choose filter coefficients that minimize the differences in the 
input signal and the synthesized signal. Additionally, vocoders typically produce better 
compression than the waveform encoders. The prior project and our project are similar in 
that they both use sound encoders, but in terms of application they are radically different.  
 In spring 2000, group 6 did a project similar to ours. The previous project sought 
to take voice input, use a vocoder to compress it and then transmit the encoded voice over 
a specialty modem using CDMA. They then intended to demodulate and decode the 
signal and play back the transmitted voice. Our project differs in several respects. First, 
we intend to use a different vocoder of slightly higher quality. Second we intend to 
demonstrate that our CDMA system can handle multiple users, whereas the previous 
project only had one user on the communication channel at any given point. The previous 
project also attempted to build their own modem, which they had great difficulty with, to 
the point that their project completely failed. Initially, we too wanted to either buy or 
build our own specialty communications hardware. Fortunately, we took a lesson from 
this project and decided to do a software simulation. 
 
 
System Architecture 
 

The overall system architecture consists of three major modules which include 
smaller support functions. User input will be simulated by16 bit PCM audio files 
(sampled at 8 KHz with 16 bit quantization) obtained via microphone connected to the 
PC sound card. For each user desired there will be one audio file saved on the PC 
specifiable in the graphical user interface (GUI) to be sent for communication. Again, the 
saved files are simulating real time voice transmission since the entire system is too 
complex to support real time and in the interest of meeting our deadlines. More 
discussion on this topic is provided in the wireless algorithms portion. 

The GUI will send each user file to the EVM to be compressed using our CS-
ACELP vocoder using an HPI transfer to be stored on the EVM’s 8MB SDRAM. 
Encoding one frame corresponds to 80 samples of speech signal or 10ms of speech, 
which is paged to on-chip RAM. After one frame is processed, the resulting 80 bit 
compressed speech is stored on a different section of the SDRAM. The process repeats 
until all the frames in each file are processed. After EVM processing is completed, the bit 
stream will be sent back to the PC using HPI transfer and saved as an intermediate binary 
file. This intermediate file will be sent to the encryption and ECC module next for 
processing. 
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Upon entering this module, the data rate is 8 kilobits per second (kbps). This rate 
is immediately increased to 13.5 kbps by extending each 80 bit packet to 128 bits since 
our encryption algorithm requires 64 bit blocks of data. We add 16 garbage bits to the 
packet and then add a checksum, which will later be used to check for packet corruption. 
The checksum is calculated over the first three words in the packet and inserted as the 
fourth word of the packet, which gives us the full 128 bits we need for encryption. The 
extended packet is encrypted using the TEA algorithm. Next, the bits in the packet are 
word-wise interleaved. Note that neither of these steps increases the data rate. For the last 
step of this module, error correction codes are tabulated across each byte of the packet. 
Since we are creating four more bits for every existing eight using a (12, 8) Hamming 
code, the data rate is increased by 50% to 20.25 kbps, with a packet size of 192 bits. At 
this point, the packets are ready to be sent to the wireless component of the system for 
simulated transmission.   

The CDMA module takes the data from the previous blocks where it first adds a 
32 bit preamble to each packet making the new size 224 bits so that in can later be 
synchronized with the receiver. This step increases our bit rate to 23.625 kbps. Each file 
can be modulated using BPSK or QPSK. BPSK does not change the bit rate but QPSK 
multiplies by a factor of two for 47.25 kbps. Data is then converted to spread spectrum 
through a pseudorandom noise (PN) sequence used as CDMA codes to uniquely identify 
each user. The GUI lets the user choose between PNs of length 20 or 30 or enabling Gold 
codes, a special type of PN sequence which will be discussed in detail later, of length 31. 
The old bit rate is multiplied by the spread factor and can range from 472.5 kbps to 1.476 
Mbps. The spread out data is sent over an additive white Gaussian noise (AWGN) 
channel model where each of the specified users will interfere, as they are all transmitted 
on the same channel. The receiver will then locate the correct user, also specifiable by the 
GUI, and despread as well as demodulate the received data to store it as a binary file for 
the decryption and correction module. 

Once the binary file has been decrypted, it can be transferred back to the EVM for 
decompression using HPI transfer to be stored on the SDRAM. For decoding, the EVM 
will page in 80 bits from the bit stream. The decoding process yields 80 samples of 
reconstructed speech signal, yet again stored on a different portion of the SDRAM. The 
process repeats until all the bits in the stream have been processed.  

After processing, the reconstructed speech file will be sent back to the PC using 
HPI transfer to be saved as a PCM file where the user then can playback the file through 
the PC’s soundcard.  
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System Block Diagram – Transmission and Receiving 
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Algorithms: 
Voice Compression using CS-ACELP 
 

Since we will be simulating a practical wireless communication system, there are 
certain restrictions that constrict our project in terms of resources, the transmission 
bandwidth and data storage. Since our system is multiple access, which is detailed later 
on, bandwidth takes priority. If we had all the resources in the world, we would have 
been able to do without compression at all; however, this is not the case. Our project is 
based on transmitting a person’s voice over a wireless channel and resources are limited, 
so we have a requirement for voice compression. 
 
Human Speech and LPC Modeling 
 Most low bit rate voice coders are based on Linear Predictive Coding (LPC) to a 
certain extent. LPC modeling takes advantage of the predictable elements of human 
speech to “predict” sample values. This achieves a huge factor of compression compared 
to Pulse Code Modulation (PCM) schemes where all samples are digitized regardless of 
whether the samples do not represent any excitation in the speech. It is best to examine 
the very nature of human speech and how LPC attempts to model this natural occurrence 
mathematically. 
 There are two types of speech sounds, voiced and unvoiced, that produce different 
sounds and spectra due to their differences in sound formation. With voiced speech, air 
pressure from the lungs forces normally closed vocal cords to open and vibrate. The 
vibration frequencies (pitch) vary from about 50 to 400 Hz, depending on the person’s 
age and sex, and forms resonance in the vocal tract at odd harmonics. See figure 1.1 for a 
sample waveform of voiced speech. 
 

 
figure 1.1 Waveform of voiced speech 

  
Unvoiced sounds, called fricatives (e.g., s, f, sh sounds) are formed by forcing air 

through an opening, hence the term, derived from the word “friction”. Fricatives do not 
vibrate the vocal cords and therefore do not produce as much periodicity as seen in the 
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formant structure in voiced speech. Unvoiced sounds appear more noise-like. As you can 
see from the waveform in figure 1.2, the time domain samples lose periodicity.  
 

 
figure 1.2 Waveform of unvoiced speech 

 
Linear Predictive Coding attempts to model the properties of speech. The mathematical 
model for LPC is given below in figure 1.3. Where: 
 

• Vocal Tract is represented by H(z) (LPC Filter)  
• Air is represented by u(n) (Innovations)  
• Vocal Cord Vibration is represented by V (voiced)  
• Vocal Cord Vibration Period is represented by T (pitch period)  
• Fricatives and Plosives (s, f, sh sounds etc) is represented by UV (unvoiced) Air  
• Volume is represented by G (gain) 

  

 
figure 1.3 Liner Predictive Coding 

 
The equation for the LPC filter given by: 
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The predicted speech will be of the form: 
 

 
 

S = (s(0), s(1),... s(n)) where n is the number of samples in a frame 
 
8Kbps CS-ACELP 

We decided upon using the 8Kbps Conjugate Structured - Algebraic Codebook 
Excited Linear Prediction (CS-ACELP) algorithm to help conserve resources. The basic 
properties of CS-ACELP is it will have an output transmission rate of 8Kbps from the 
128Kbps input rate (8 KHz * 16 bit) so we get a compression ratio of 16:1 which is 
tremendous. This compression is also achieved without any perceptible loss in sound 
quality thus making CS-ACELP a good choice for making our system as close to 
practical as possible. The system level diagram for a CELP encoder is given below in 
figure 1.4. 
 

 
 

figure 1.4 CS-ACELP encoder 
 

The 8kbps CS-ACELP compression scheme we have decided upon is the ITU 
recommended G.729 speech codec and is readily available on the ITU website in C. The 
coder accepts a 16 bit PCM linear digital signal of the incoming analog signal that was 
sampled at 8 KHz. The coder operates on 10ms frames of speech which corresponds to 
80 samples at a sampling rate of 8000 samples per second. Every 10ms, the speech signal 
is analyzed to extract the CELP parameters to be transmitted through the channel. These 
parameters are the Linear-Prediction Filter coefficients, codebook indices and gains. The 
way these parameters are determined is by doing an exhaustive search of the codebook 
and determining the entries which minimize the error between the actual speech signal 
and modeled speech signal based on current and incoming frames. Instead of transferring 
the actual error value, only the indices of the codebook and coefficients are transmitted. 
Each 10ms frame is subdivided into two sub frames of 5ms each. This subdivision is 
done so that the spectral transition from one frame to the other is not abrupt, thus 
improving sound quality. The resulting output of the encoder after processing one speech 
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frame is the encoded parameters in the form of a bit stream containing 80 bits. Figure 1.5 
shows the how the 80 bits are allocated: 
 

 
figure 1.5 packet allocation 

  
At the decoder, the parameters are extracted from the bit stream corresponding to 

a 10ms frame. The following steps are repeated for every 5ms sub frame. First the 
excitation signal is constructed by adding the codebook vectors and scaling by their 
gains. This signal is then passed through the LP synthesis filter to reconstruct the speech. 
The reconstructed speech signal is then put through a high pass filter and scaled. The 
resulting speech signal at the output of the decoder is a 16 bit PCM linear digital signal 
sampled at 8 KHz. The system level-diagram for a Codebook Excited Linear Prediction 
decoder is shown below in figure 1.6: 
 

 
figure 1.6 CS-ACELP decoder 

 
 
Algorithms: 
Encryption and Correction 
 
Data Encryption 

Security is a critical component of our system. If a malicious individual gains 
access to our voice transmissions, we like would to present him with garbled, unusable 
data, thereby giving an additional layer of protection to our user. The obvious solution to 
this problem is the use of data encryption. In general, there are two goals for any 
encryption algorithm: security and speed. The first goal of the encryption algorithm is 
obvious. We need an algorithm that can provide data protection, even if we have 
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intelligent cryptanalysts with large computing facilities and large amounts of time at their 
disposal. According to Claude Shannon, the quality of an algorithm depends on confusion 
– making the encryption algorithm complex and difficult to reproduce without heavy 
analysis, and diffusion – decreasing the statistical relationship between the bits of the 
input and output. For a good algorithm, changing a single bit of the input should alter 
each bit of the output by exactly 50%. To realize confusion, a technique known as 
Substitution-Box (S-Box) is used. When presented with an input, the S-Box substitutes 
the bits of the input for the bits of the output. To accomplish diffusion, a Permutation Box 
(P-Box) is used. The P-Box permutes the input bits to form the output bits. S-Box and P-
Box are fundamental to many efficient encryption algorithms.  
 In addition to searching for a good encryption algorithm, we face additional 
constraints on the algorithm we choose. Our encryption algorithm is required to operate 
in what is essentially an embedded environment on the DSP board. The algorithm must 
consume limited memory resources (both data size and text size must be considered) and 
use only a small percentage of the processing power of the DSP chip. An ideal algorithm 
would provide relatively fast, secure encryption and be effectively described in a small 
amount of code. However, our resource constraints and requirement for good security is 
somewhat contrarian; implicit in strong encryption is a long, difficult to reproduce 
algorithm which may require either specialized hardware or significant computing power. 
Our limited resources will dictate which algorithms we can use. 

During the design phase of the project, we explored two algorithms that were 
designed for embedded environments: Tiny Encryption Algorithm (TEA) and Turing. 
TEA is, in fact, tiny. Its implementation requires on the order of twenty lines of code for 
both encryption and decryption, which makes it quite attractive for implementation on the 
test-constrained DSP board. The basic premise of the TEA is to use add, xor, and shift 
operations to replace the traditional P-Box and S-Box. The usage of simple arithmetic 
operations makes it reasonably fast in terms of computations. Additionally, TEA is a 
block-based Fiestel cipher and it can be effectively implemented in a single for loop. 
TEA operates on 64 bits of input at a time, and uses 32 rounds of calculation. DSP 
parallelism can be exploited by processing multiple blocks at the same time, as blocks are 
independent. Analysis of the sample code shows that for each block (64 bits) that we 
wish to encrypt, 1280 simple arithmetic (20 operations per round) operations are 
required. However, if we exploit system parallelism, we can complete a 64-bit encryption 
or decryption in 256 cycles. This computational requirement is negligible in terms of 
processor time.  

TEA has few known weaknesses, although due to some redundancies, multiple 
keys are known to map to the same produced output. This effectively reduces the 
encryption strength of the algorithm by 2-3 bits, but for our application, TEA should 
provide adequate encryption. Additionally, since TEA is a block-encryption algorithm 
(see figure 2.1), it is less susceptible to data loss over the wireless transmission because 
the decryption technique is constant across all data. Since our transmitted data consists of 
well-defined packets, a block cipher makes a lot of sense, as the information transmitted 
by each packet is semantically distinct A corrupted and, therefore dropped, packet is a 
highly localized error, and typically has no effect of previous or subsequent packets. 
Additionally, TEA does not extend the amount of data transmitted: the encrypted size of 
64 bits is 64 bits. Ultimately, we chose to use the TEA algorithm as our means of 
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encrypting packets. TEA proved to have extremely low computational overhead and a 
straightforward implementation. Additionally, TEA gave us ‘atomic’ encryption, 
essentially allowing us to encrypt each packet separately and to view each packet as an 
entity independent of other data, which allowed use to achieve our goal of providing 
quality of service, while at the same time realizing that high interference will inevitably 
lead to data loss.  
 

 
Figure 2.1 One block of Tiny Encryption 

 
 The Turing algorithm is a stream cipher, meaning that given an input, the 
encrypted output is dependent on not only, the input, but also the position of the data in 
the data stream. For example, if a stream algorithm encrypts two consecutive characters, 
then the two consecutive outputs will not be the same. This positional dependence is a 
key element of the stream ciphers since it enables them to encrypt small quantities of data 
without compromising security. The Turing algorithm has several additional features. 
The algorithm is based on a single pass through an S-box and P-box (a special P-Box 
called the Q-box is used) with the internals of the S and P boxes varying based on a fast, 
lookup table based version of a linear shift register. The advantage of the Turing 
algorithm is that the values used for the S and P boxes and the LSR can be calculated 
quickly during operation. Typically, these values must be stored in system RAM, which 
may prove infeasible on the DSP. However, since these values only take up 
approximately four kilobytes of RAM space, it may be possible to store them in the DSP 
RAM without incurring significant overhead.  

To improve the diffusion offered by the Turing algorithm, its creators also 
included a four-word pad. That is, for each 32-bits of data transmitted, an additional 128 
bits of padding is added. Whereas this data padding does improve security, it presents our 
system problems as we cannot afford this data dilution and still have our system be 
available to be implemented in hardware. However, our analysis of the algorithm 
suggests that this stage of the encryption may be removed. If the Turing S-Box and P-
Box values are pre-computed and stored in RAM, Turing requires 134 cycles to encrypt a 
byte of data. However, if the coefficients are pre-computed, Turing requires just 34 
cycles to encrypt a byte of data. These computational requirements will be acceptable for 
our system. On problem with the Turing algorithm is that it may run into difficulties if 
our transmission capabilities are poor, and ultimately, this was the reason we decided not 
to use it. Voice transmissions need to relatively robust, and since ours is a multi-user 
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system, we must provide adequate recovery from high levels inter-user interference, 
which will surely be present in our system. Since Turing is a stream cipher, dropping or 
corrupting a cipher packet may result in the rest of the stream becoming unreadable. Our 
initial tests with Turing suggested that it was incapable of handling even small amounts 
of noise, such as would be present if two users were to broadcast simultaneously. Given 
it’s aptitude for failure in the face of our anticipated interference requirements, we 
decided not to use the Turing algorithm as our encryption mechanism.    
    
Bit-wise Packet Interleave 
        In communications systems, interference frequently occurs in bursts of large 
magnitude, but short duration, creating a high probability that successive transmitted bits 
could be corrupted. Even if error correction is employed, there can be too many 
erroneous bits within the error correction region. For example, in our (12,8) error 
correction code, if two bits are corrupted out of any contiguous ( well, nearly so, if the 
error spans two consecutive twelve bit fields, it may be corrected) twelve bit encoded 
field, then an entire packet is dropped. Thus, a short burst of interference could 
potentially destroy an entire packet, and if the interference was periodic in nature, it could 
potentially corrupt many packets. Additionally multi-bit symbol modulations, such as 
QPSK, can encounter a multi-bit error. If even a single symbol is corrupted, a multi-bit 
symbol misinterpretation could occur. A simple, and low cost solution to this problem is 
packet interleaving:  the bitwise, systematic mixing of packet data prior to modulation. 
Interleaving solves the previously mentioned problem cases. If multiple packets are 
mixed together, then consecutive bit errors due to brief, high interference are spread 
across multiple packets and error correction regions, then the errors are likely to be 
corrected by the ECC.  
 Similarly, errors in multi-bit modulation schemes are also ameliorated as 
adjacent bits that are modulated into the same symbol are from different packets, and so 
badly misinterpreting a symbol has minor effects, rather than heavily corrupting a single 
packet. In our system, since we support only BPSK and QPSK, we interleave consecutive 
words in the encrypted packets (refer to the system block diagram to observe where 
interleaving occurs) at a time. We take two consecutive 32 bit words and shuffle them 
together bit by bit for two new 32 bit words, each comprised of exactly half of the parent 
packets. Thus, when we use QPSK for modulation, each bit of the two bit symbol comes 
from a different word. At the receiving end we simply undo the interleave operation and 
then attempt to decrypt the resulting packet.  
 In practice, packet interleave vastly decreases the amount of errors that we 
encounter when using QPSK modulation while broadcasting on a noisy channel. In fact, 
the use of packet interleaving masked a bug in our packet correlation. We had a small off 
by one bug in the correlation that effectively corrupted the last symbol of any transmitted 
packet. Our initial testing did not catch this bug because we were testing BPSK, and so 
the single bit error that was generated was fixed by the ECC. When we started testing 
QPSK modulation, we notice that even at low noise levels the last symbol was being 
corrupted enough so that a debilitating two bit error was resulting. We noticed the 
problem, and attributed it to bad luck, and introduced packet interleaving to solve it. 
Packet interleaving virtually removed the error, and it was not until several days later, 
when someone noticed a very obvious bug in the correlation that we realized that the 
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packet interleave was actually masking a bug in our own code, rather than fixing a bug 
created by the transmission process. 
 
Error Correction and Checksum 
 Multi-user, single channel systems inherently have a large amount of interference, 
and indeed each user within the system can be viewed as interfering with every other user 
in the system. CDMA is intended to help avoid some of the user interference by 
spreading the transmitted data signal so that other users have a smaller probability of 
actually disrupting the data transmission. However, even CDMA has occasional bit 
errors, even if they are infrequent. Normally, low frequency errors don’t cause a 
transmission problem: a single bit flip often has limited effect on the meaning of the 
transmitted data. In our case, the data transmitted is encrypted, and, as discussed above, a 
single bit error in the encrypted data has nearly a 50% probability of flipping each bit in 
the decrypted output when a good encryption algorithm is chosen. Thus, a single bit 
corruption during transmission will completely destroy a transmitted packet, rendering it 
unusable to recover encoded voice. Given that bit errors can occur frequently in wireless 
systems, and our packet size is 128 bits, the probability of single bit (assuming a bit error 
probability of .1%) is approximately 12%, meaning that roughly one out of eight packets 
is dropped. This drop rate is unacceptably high, so we employed a simple error correction 
scheme to help raise it.  
 In our system, we use (12,8) Hamming codes to provide error correction across 
packets. The (12, 8) Hamming code takes eight bits of data and adds a four bit error 
correcting code to the end of the byte. Hamming codes essentially number each bit of 
data by including the bit as a term in calculating the error correcting code corresponding 
to its numbering. For example, the sixth bit is included in the parity check for ECC bits 
one and two (21 + 22 = 6). Each bit of the ECC is essentially a parity check on the data 
bits that have the particular power of two in their numbering. When we go to correct 
errors, we simply recalculate the parity bits for the data and compare them to the ECC 
code. If the parity bits match, then no singleton error has occurred, but if some of the 
parity bits don’t match, the combined indices of the failing parity bits indicate which bit 
of the data has been flipped, and we can flip this bit to correct the error. Hamming codes 
provide detection for single and double bit errors within the combined data and ECC, and 
they can correct a single bit error. In our case, this means that we encode eight bits of 
data as twelve bits, and we can tolerate a single bit-error across the twelve bit field. 
Nominally, across a 192-bit packet (the 128-bit packet extended to include ECC data) we 
can support up to sixteen single bit errors. Again assuming a .1% chance of a bit error, 
this reduces the probability of a dropped packet to .11%, which means that we drop only 
one of one-thousand transmitted packets, which is a huge increase in reliability over the 
non-error corrected transmission.  
 Error-correction by itself provides more than a ten-fold decrease in the number of 
dropped packets. However, in the presence of multiple users and high interference on the 
communication channel, packets will still occasionally be dropped. Hamming codes 
provide the ability to detect two-bit errors. However, depending on the amount of 
corruption within the transmitted, more than two single-bit errors could result. Thus, we 
employ a simple 32-bit checksum to discover whether decrypted packets are actually 
valid. Vocoder packets require only 80 bits of data, but our TEA cipher requires a 64-bit 
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input, and so each encrypted data packet is extended from 80 bits to 128 bits by the TEA 
algorithm. This effectively gives us 48 bits at the end of the original packet to use for 
whatever purpose we see fit. We chose to utilize this space for a simple 32-bit checksum. 
We calculate the sum of the first three 32-bit words in the packet and place the negation 
of their sum in the fourth word. To check for corruption, we simply add the four words. If 
their sum is zero, then the packet was not corrupted, but if their sum is non-zero, then we 
have encountered packet corruption and we drop the packet. In place of the dropped 
packet, we place a vocoder packet known to decode to silence. 
 
 
Algorithms: 
Wireless Communication using Code Division Multiple Access 
 
 Transmission takes place, once all the audio data has been ciphered and 
compressed, as the last module in our system. It should be noted that we chose to 
simulate the RF hardware on the PC instead of purchasing it for several reasons which 
will be detailed at the end of the discussion of our communication algorithm. 
 
Modulation  

To address the problems of reliable communication including multiple access, 
synchronization, and noise we implemented a Code Division Multiple Access (CDMA) 
system. First the incoming data has a 32 bit preamble added to the beginning of each 
packet, increasing its size to 224 bits. The preamble is simply 32 ‘1’ bits for the purpose 
of synchronization and will be detailed shortly. The bits are modulated via M-ary Phase 
Shift keying (MPSK), a standard for CDMA. The reason being is that the process of 
spreading and despreading the signal causes major magnitude changes in the transmitted 
symbols. MPSK modulation divides the unit circle into M sectors called decision regions, 
where each contains a constellation or symbol. As an example, figure 3.1 illustrates the 
signal space for 8-PSK, where the circle is divided into 8 phase sectors. When a received 
constellation falls within a sector, no matter how near or far from the origin it is, it will 
still be mapped to the same symbol because of it’s phase. 
 

 
figure 3.1 

 
The most commonly used PSK schemes in CDMA, which we provide, are Binary 

PSK (BPSK) and Quadrature PSK (QPSK). In BPSK each bit can be mapped to a real, 
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(positive or a negative value), usually 1, where as in QPSK each set of two bits is mapped 
to a point with both a real and imaginary component, as its name suggests. In our 
implementation we do not include an actual carrier wave to phase shift. The reason being 
is that, should this system be implemented for real use, a proper FCC band and 
bandwidth would need to be assigned. Since that topic is outside the purpose of the 
project we simply use the method mapping bits to points on the real-imaginary axis. 
Mathematically both are correct, so for our purpose, this is an acceptable substitution.  
 
CDMA and Spread Spectrum 

Once modulation has been completed we take our packet of symbols and perform 
the CDMA algorithm on it. CDMA, as the name suggests, is an algorithm to allow 
multiple users access to a communication channel with minimal losses due to interference 
between those users (co-channel interference). Our implementation utilizes Direct 
Sequence Spread Spectrum (DSSS) in order to achieve the CDMA, since CDMA is 
structured around spread spectrum systems. A PN sequence is generated using a preferred 
irreducible polynomial and a linear feedback shift register. The size of the register is the 
amount by which the signal is spread. In our test data, we generated codes from lengths 
20 to 31 for comparison purposes to illustrate that the higher the value, the more users we 
can support. Each symbol is multiplied by a different PN sequence (also called a chip 
sequence) for each user. This being completed, we effectively have spread out the signals 
Power Spectral Density (PSD). Now instead of transmitting a few frequencies at high 
power we transmit several at a lower power. Figure 4.1 illustrates this effect and also 
shows that you could choose an amount to spread such that you could hide your signal 
below the noise floor. 

 

 
figure 4.1 An illustration of Spread Spectrum 

 
To someone who does not have the code, the signal now looks like noise thanks to 

the pseudo-randomness of the code. The spread signal is then simulated as being 
transmitted over an AWGN channel where the signal to noise ratio (SNR) is specifiable. 
Noise is added to each user while all their data interferes (sums up). Without multiple 
access, the co-channel interference would be enough to corrupt each user’s transmission. 
Rather than users waiting for a turn to transmit data (talk), they can do so whenever they 
please since users are unique by their codes. Once the data is received, we correlate for 
the preamble so that we can find where to begin decoding. With a 32 bit preamble, 
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BPSK, and a spread factor of 31, our maximum spreading, we receive 992 symbols as the 
encoding for the preamble. This maximum score should be more than high enough to find 
peaks when data is buried in noise and interference. Once the signal is synchronized with 
the receiver properly it can begin the decode process 
 Decoding is fairly simple for the AWGN channel. To implement it, we simply 
apply a matched filter to each spread factor sized set of symbols. The filter is matched to 
that users PN sequence, removing the code, despreading the signal, and attenuating noise. 
The matched filter given in figure 5.1 has a chip sequence Ck, a received signal Zk, and a 
spreading factor of L. 
 

 
figure 5.1 Our Matched Filter 

 
Since the matched filter is simply an inner product, this computation is not as expensive 
for this channel as a receiver filter for a random channel could be. Once the data has been 
decoded it can be mapped back to bits through the decision device. The decision device 
makes a choice by assigning the received symbols to the closest actual constellation 
points through a minimum distance function. Clearly, if the noise power was enough, we 
could get an error in decision making. Once the data is mapped back to bits, it can be 
passed back to the other modules to be processed as well. 
 The other modules are dependent upon proper communications algorithms to give 
the best performance in terms of error so that they can produce meaningful data. This 
being said, choosing the best codes for use with the CDMA algorithm are important. 
Previously it was thought that orthogonal codes were the best for this application. If we 
have a code for one user and we received data for the other user when we attempt to 
match filter, the output will be zero since the inner product of two orthogonal vectors is 
zero (see figure 6.1). The problem becomes apparent when considering time skews. If the 
two given codes are even slightly delayed relative to one another, the dot product is no 
longer zero and thus the codes do not appear orthogonal. This implies then that the 
matched filter would essentially produce the incorrect data, useless to the next blocks. In 
our implementation after correlating for the first packet, we see if its checksum is valid 
since the probability of having a high score and having a valid checksum is extremely 
close to zero. 

  
figure 6.1 Orthogonal codes 

 
The solution to the problems of orthogonal codes is PN sequences. Since they 

don't depend on orthogonality, PN sequences are more robust, implying they are better 
for CDMA use. A time skew is similar to having an error. If we have five zeros and then 
25 symbols encoded by the PN sequence using a spread factor of 30, obviously that 
symbol can still be decoded because the spreading repeats one symbol 30 times, so we 
can still get a high score as the output of the matched filter, which is desirable. Since the 
codes for each user are unique, correlating two codes together should not return a high 
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score, meaning that the interference from other users can be removed without the codes 
having to be orthogonal; however, this isn’t always guaranteed. 
 As we researched and ran tests we found that randomly chosen PN sequences 
were not the best for use in our application. The reason being is that randomly chosen PN 
sequences are just output from a shift register. There is no guarantee that the cross 
correlation between PNs will always be low all of the time for time shifted sequences. 
Although the time shifted autocorrelation is guaranteed to perform better over orthogonal 
codes, the cross correlation does not always give the best performance. Researching 
asynchronous communication lead us to find a better type of PN sequence, Gold codes, 
which have special properties such as provably low cross correlation peaks. 
 Gold codes can be created by generating two PNs using a generator polynomial in 
a shift register and then using modulo two additions (xor) to combine the two sequences 
together. Gold codes have cross correlations with peaks that are no larger than half the 
length of the code. They are better than orthogonal codes since they are built out of PN 
sequences which are proven to be better for time shifts but they are better than regular 
PNs in that they are built to have these specific properties that make them more reliable 
than normal PNs in terms of cross correlations. The randomness of where and how high 
the cross correlation peaks occur is removed, which is what makes Gold codes so useful. 
They are just as easy to generate as PNs but are much more resistance to time shifts.  

Consider the following figures, figure 7.1 and 7.2. In figure 7.1 we have the cross 
correlation between two normal PN sequences used in our system. As you can see, there 
are very large peaks at random intervals in the cross correlation. What this would mean in 
terms of communication is that if two users were interfering and a time delay existed 
between them, the correlator and matched filter could have trouble distinguishing 
between the two if the time shift was enough to cause the matched filter to fall upon one 
of these peaks. In other words the receiver could receive corrupted data or if the cross 
correlation is high enough, the wrong user could be seen. In figure 7.2 we have the cross 
correlation of two gold codes. It is clear that the cross correlation peaks are low, as 
previously stated which means less co-channel interference will be present. In addition 
we should never enter the case where we decode the wrong user. For more performance 
analysis using Gold codes versus normal PN sequences, refer to the test results section. 
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figure 7.1 PN sequence cross correlation 

 

 
figure 7.2 Gold code cross correlation 
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Additional Notes 
One of the downfalls of our wireless algorithm however is the channel 

assumption. In reality, the wireless channel would be modeled by a fading channel that 
has multipath propagation. The fading channel has a random impulse response so it's 
difficult to design a good receiver for it using simple matched filter techniques. As figure 
8.1 illustrates, mulitpaths are created from the transmitted signal bouncing off 
environmental objects such as the ground, atmosphere, buildings, etc. This causes inter-
symbol interference (ISI), which cannot be addressed without proper equalization. In the 
interest of time and given the already large complexity of the project, ISI could not be 
properly addressed within our system. The purpose of this system is to be a model of 
what an actual system might need to do in order to resolve the problem we identified 
previously.  
 
 

 
Figure 8.1 Multipaths 

 
 As for the reasoning behind transmission simulation, difficulty among other items 
could explain several issues. After much time searching for RF hardware to implement 
the wireless link we came to the realization that learning to use hardware would be a 
project in itself. In addition, all the boards we looked at would not give us access to the 
analog signals we wanted to process; as a result, we would have had to buy several cards 
to interfere on the same channel that already implemented a modulator, spread spectrum, 
and CDMA. If there was an existing board with all these specifications that we could buy 
for consumer use, then we would have had the communications portion of our project 
completely finished, invalidating the purpose of the project. We also referenced a 
previous CDMA paper that used hardware in their project for communication and noted 
that they were unable to complete theirs because of the nightmare debugging the 
hardware became. It was in the best interest then of our project in terms of time, money, 
and success that we instead simulate the wireless transmission in software. 
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Available Software and Issues 
 

There are several readily available implementations of the G.729 vocoder. One of 
the first that we found was the VoiceAge G.729 Open Initiative, which is based on the 
ITU recommended G.729 vocoder. VoiceAge’s implementation works well in the sense 
that we are able to achieve the desired 16:1 compression ratio. In a test case, we were 
able to compress a 256Kb PCM file down to about 16Kb. The code takes in a PCM file 
as its input and outputs a bit stream file. The problem with this implementation is that it 
has to open and read the input file from a disk and thus changes have to be made if we are 
going to port it to the EVM. The other problem with VoiceAge’s implementation is that 
they obfuscate their main codes by pre-compiling them as Windows libraries. The only 
codes that are literally available in C are the main driver files where functions are called. 
The inner workings of the functions are hidden. Since we foresaw that the Windows 
libraries could pose some problems when ported to the EVM, we then decided to discard 
VoiceAge’s implementation and use something else. 

The next implementation we tinkered with was ITU’s own G.729 vocoder, 
specifically G.729 Annex A which is a reduced complexity implementation of the 
original G.729. The main issue with this implementation is that the output format is not 
the one desired. In ITU’s G.729A, 1 output bit is represented by 2 bytes, thus instead of 
getting a 16:1 compression ratio, we were getting something on the order of 1:1. After 
realizing this fact, we changed the bit stream formatting so that 1 output bit is represented 
by 1 bit accordingly. The other issue we realized is that G.729A is a fixed-point 
implementation of the algorithm but to fully utilize the floating point capabilities of the 
EVM, we later decided to use ITU’s G.729 Annex C floating point implementation 
instead.  

Once we finalized the voice compression scheme to use, we proceed to make 
changes necessary so that the code would work on the EVM. Since we can’t open a file to 
read data from the EVM, we needed to feed the data from the PC. Thus we implemented 
two components to making the EVM code work. First is the PC side which contains 
mainly the HPI transfer calls (from Lab 3) and some code that extracts data from file and 
also writes data to file. The second is the EVM side which contains the vocoder and some 
function calls to initiate HPI transfer (from lab 3).  

Once the vocoder code was on the EVM instead of the PC, it no longer made 
function calls to reading and writing to files. Instead all the data the vocoder needed was 
available on the SDRAM after HPI transfers are done.  
 In addition to the vocoder, we also used an AWGN channel model provided on a 
public web page (see references) and added some changes to make it more applicable for 
our purposes. This portion of provided C code worked without any major issues. 
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Working with the EVM 
 

The biggest hurdle while working with the EVM was error messages that we 
didn’t really understand. The biggest mistake we made while working with the EVM was 
to create our own project file in Code Composer instead of using a template project from 
one of the labs. In doing so, we encountered ‘Referencing Errors’ in CCS and CCS 
indicated that standard functions and libraries like ‘printf’ and ‘math.h’ were giving out 
the errors. Once we used the project template from lab 3 and moved the vocoder codes 
into the template, the problem was resolved. The problem was caused probably by some 
settings and linking that weren’t done properly as in the labs. It would have saved us a lot 
of time if we had realized it sooner or somewhat addressed during the course of the labs. 
 
Memory Needs and Speed 

The following are the memory requirements of the EVM: 
 

• Input Speech: 80KB (128Kbps with an average length of 5 seconds) 
We allocated nearly 4MB on the SDRAM so we can practically support up to 4 minutes of 
speech 

• Bit Stream: 5KB (assuming we always achieve a 16:1 compression ratio) 
We allocated nearly 200KB on the SDRAM  

• Output Speech: 80KB  
We allocated nearly 4MB on the SDRAM so we can practically support up to 4 minutes of 
reconstructed speech 

• Code: 257KB 
Before doing any kind of optimization, the runtime for encoding 1 frame of 

speech was roughly 167ms which was too slow for any type of real-time processing 
(which requires about 15ms). Decoding naturally takes less time (nearly ½ the encoding 
time) because all that needs to be done is to match up the parameters to extract the speech 
whereas in encoding, most time is spent on determining which parameters will minimize 
the error between predicted speech and actual speech. 

 
EVM Optimizations 

We did several levels of optimizations to further speed up the processes on the 
EVM. To document the speed improvements we achieved after the different levels of 
optimizations, we profiled the EVM running on several configurations. 

• Firstly there was no optimization at all; no paging was done, and since the 
vocoder code is too big to fit on the ONCHIP_PROG, all the codes reside in the 
slower SBSRAM_PROG. 

• Secondly, we did paging from the SDRAM but the codes still reside in the slower 
SBSRAM_PROG. 

• Finally we tinkered with the linker and filled the ONCHIP_PROG with most of 
the code and the remaining codes will be put on the SBSRAM_PROG. We did 
this by profiling the vocoder code using ‘gprof’ on UNIX and by doing so we 
could determine which functions are called most often. Thus, we know which 
functions to move to the faster on-chip RAM. So even though the functions are 
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called often, now that they’re on faster on-chip memory, the whole processing 
time will significantly be reduced. 
 

In addition to the above steps, we also utilized the built in optimization options in CCS. 
The optimization levels we employed were: 
 

• Local (-o1) 
• Local (-o1) with ‘printf’s removed from EVM code. These ‘printf’s calls were on 

the EVM mainly for debugging purposes and as an indicator that the program is 
running. These ‘printf’s were called every time a frame is processed. So it can be 
seen that for a five second file, there will be 500 frames to be processed and 500 
times the ‘printf’ is called. Eliminating the ‘printf’s prove to be very cost 
effective.  

• File (-o3) with loop unrolling (as done in lab 3) and removed printfs  
 

Optimization Results 
 
7.81KB speech file (50 frames, 0.5 second) 
 

Optimization 
Level 

 

• Code in 
slow RAM 

• No paging 
• Local (-o1) 

 
 

• Code in slow 
RAM 

• With paging 
from SDRAM 

• Local (-o1) 
 

• Code in fast 
RAM 

• With paging 
from SDRAM 

• Local (-o1) 
• Printfs removed 

 

• Code in fast 
RAM 

• With paging 
from SDRAM 
• Printfs 

removed 
• Loop unrolling 

• File (-o3) 

# of Cycles 
 

Encode: 
203,545,336 

Decode: 
55,678,055 

 

Encode: 
202,881,966 

Decode: 
55,676,378 

 

Encode: 
102,285,466 

Decode: 
26,544,863 

 

Encode: 
70,052,720 

Decode: 
16,789,101 

 

Time (seconds) 
 

Encode: 
8.142s 

Decode: 
2.227s 

Encode: 
8.115s 

Decode: 
2.227s 

Encode: 
4.091s 

Decode: 
1.062s 

Encode: 
2.802s 

Decode: 
0.672s 

Frame 
Processing Rate 

(frames/s) 
 

Encode: 
~ 6 frames/s 

Decode: 
~ 22 frames/s 

Encode: 
~ 6 frames/s 

Decode: 
~ 22 frames/s 

Encode: 
~ 12 frames/s 

Decode: 
~ 47 frames/s 

Encode: 
~ 17 frames/s 

Decode: 
~ 74 frames/s 
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27.2 KB speech file (172 frames, 1.74s) 
 

Optimization 
Level 

 

• Code in slow RAM 
• With paging from 

SDRAM 
• Local (-o1) 

 

• Code in fast RAM 
• With paging from 

SDRAM 
• Local (-o1) 

• Printfs removed 
 

• Code in fast RAM 
• With paging from 

SDRAM 
• Printfs removed 
• Loop unrolling 

• File (-o3) 

# of Cycles 
 

Encode: 
707,814,175 

Decode: 
194,134,264 

Encode: 
361,601,969 

Decode: 
98,981,571 

Encode: 
244,450,121 

Decode: 
59,356,437 

Time (seconds) 
 

Encode: 
28.313s 
Decode: 
7.765s 

Encode: 
14.464s 
Decode: 
3.959s 

Encode: 
9.778s 

Decode: 
2.374s 

Frame Processing 
Rate 

(frames/s) 
 

Encode: 
~ 6 frames/s 

Decode: 
~ 22 frames/s 

Encode: 
~ 12 frames/s 

Decode: 
~ 43 frames/s 

Encode: 
~ 17 frames/s 

Decode: 
~ 73 frames/s 

 
 
EVM Speed Improvement 
As you can see from the above tables, 
 
• moving from SBSRAM_PROG to ONCHIP_PROG  

– Encode: 6 frames/s to 12 frames/s 
• 2X speed improvement 

– Decode: 22 frames/s to 45 frames/s 
• 2X speed improvement 

• -o1 to -o3 with loop unrolling 
– Encode: 12 frames/s to 17 frames/s 

• ~1.5X speed improvement 
– Decode: 45 frames/s to 73 frames/s 

• ~1.6X speed improvement 
• Overall improvement 

– Encode: ~2.8X 
– Decode: ~3.3X 

 
Meeting Vocoder Real-Time Requirement 
 The real time requirement for the vocoder is roughly 10 to 15ms to encode a 
frame of speech (decoding takes about 5ms per frame). As can be seen from the table 
above, the time it takes to encode a frame before any optimization methods is roughly 
167ms. In the end after all the optimizations have been done, the encoding time for a 
frame is reduced significantly to about 60ms. Therefore there is a 100ms improvement, 
yielding roughly a 64% speed improvement from the initial setup on the EVM. 
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Demonstration and test data 
 

The demonstration system consists of three somewhat distinct portions: the 
graphical user interface, the EVM side speech vocoder and error correction processing, 
and the PC side wireless simulation. The GUI was written in using Microsoft Foundation 
Class in Visual C++, and serves mainly as ‘glue’ to connect the primary system 
components together. The GUI additionally manages the HPI transfers that move audio 
data to and from the PC, as well as serving as a driver program for the PC side wireless 
simulation. The GUI presents the user with a variety of specifiable options: the number of 
users in the system, the user whose transmission is to be listened for, transmission delays 
for broadcasting users, the amount of noise to be added to the communication channel, 
the type or spread spectrum encoding to be used, and the type of modulation. Once the 
user has selected the desired options and specified appropriate input (16 bit pulse code 
modulation encoded audio file) they simply press the “communicate” button and the PC 
and EVM cards handle the rest.  
 In general the demo simulates the full functionality of our system, and is intended 
as a test-bench for users who want to determine which type of CDMA communication is 
best for their potential application. The demo gives the user the ability to specify a valid 
input vector, run it through a simulated sub-optimal (with the degree of sub-optimality 
controlled by said user) communications medium and then listen to what our system 
would have played back had the transmission actually occurred. In addition, the user is 
given the ability to specify multiple parameters, which should accurately model the 
operation environment of their system.   
 The wireless simulation provided by the GUI consists of several phases. First, the 
GUI determines the various parameters selected by the user and prepares to process the 
voice transmission accordingly. Next, each user specified input file is run through the 
EVM encoder, which runs the CS-ACELP encoder, encrypts the encoded data, and adds 
error correction. The transmittable data is then passed back to the PC, where it is 
modulated, spread and then written to disk. If the user has specified any noise or delay, 
they are added to the transmittable files at this point. Then, the files are “interfered” 
(really the data contained within the files is simply added together). At this point, the 
encoded signal represents the actual transmission that a receiver would see. The signal is 
then despread and demodulated according to the listener that the user specified. We then 
decrypt the data and run the checksum, replacing bad packets and then pass the data to 
the EVM. We finally decode the CS-ACELP packets. When all packets are processed, we 
return the decoded PCM audio to the PC via an HPI transfer, where it is recorded to disk.  

We analyzed several segments of test data after running them through our system 
and confirmed it’s validity. The following is a small segment of test cases we ran for a 
PN sequences of size 20, 30, and Gold codes of size 31 using both BPSK and QPSK 
(note: noise tests ranged from -8dB to 10dB): 

• One to four users with no noise and no delay 
• One to four users with noise and no delay 
• One to four users with no noise and synchronous delay 
• One to four users with noise and synchronous delay 
• One to four users with no noise and asynchronous delay 
• One to four users with noise and asynchronous delay 
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What we expect to happen when thinking about the communication theory 
outlined earlier is that as we add more users to the channel, Gaussian noise is negligible 
since the interference becomes more powerful. In addition, because the PN sequences 
were not able to handle asynchronous delays as well as the Gold codes, the cross talk 
should show up more between users, which would degrade the quality of each individual 
user. Figure 9.1 shows two input waveforms that were sent through the intercom system. 
They were transmitted asynchronously with 10dB of transmission power using both Gold 
codes and length 30 PN sequences. Figure 9.2 shows the received waveforms when we 
attempted to decode the first file, user 1. Compare the waveforms in figure 9.2 with those 
in 9.1. Notice that the attempt that used Gold codes (first waveform in 9.2) is very similar 
to the original user 1 data. Now refer to the second waveform in figure 9.2. It’s clear that 
the waveform appears to be severely degraded in comparison with the original. In 
addition you can see that parts of user 2’s data have shown up in our decoded user 1 file 
(after the 8000 sample mark). This further illustrates how PN sequences are not always 
ideal for asynchronous communication in comparison to Gold codes because they can 
potentially have high cross correlations that allow cross talk to appear in decoded data.  

 

 
figure 9.1 The original waveforms 
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figure 9.2 Using Gold codes (top) and normal PNs (bottom) 

  
We were able to support all four users transmitting asynchronously in our test data given 
the following constraints: 
 

• PN length 20 using BPSK at a minimum of 3dB transmission power 
• PN length 20 using QPSK at a minimum of 6dB transmission power 
• PN length 30 using BPSK at a minimum of 4dB transmission power 
• PN length 30 using QPSK at a minimum of 6dB transmission power 
• Gold length 31 using BPSK at a minimum of -0.1 dB transmission power 
• Gold length 31 using QPSK at a minimum of 5dB transmission power 

 
Clearly, we need the least amount of power using Gold codes because they 

perform the best in the face of time shifts and use a large spreading factor. Using Gold 
codes with a large spreading factor allowed us to achieve our original project goal of 
transmission below the noise floor but with the added caveat of doing so asynchronously. 
Originally we had only planned on being able to support synchronized users reliably at or 
below the noise floor. Adding Gold codes gave us the extra boost needed to surpass our 
previous project goals. If the system requires more users to be implemented, the 
spreading factor would have to be increased in order to continue operation at the noise 
level.  

 
 



 28 

In order to implement our system in hardware the following minimum bit rates would be 
required: 
 

• Using 20 bit PN sequences, BPSK: 0.473 Mbps; QPSK: 0.945 Mbps 
• Using 30 bit PN sequences, BPSK: 0.709 Mbps; QPSK: 1.417 Mbps  
• Using 31 bit Gold codes, BPSK: 0.732 Mbps; QPSK: 1.464 Mbps 
 

Through all this testing, our model shows the optimum solution to our problem of secure, 
reliable communication would be implementing voice compression, error correction 
(reliability), encryption (security), and CDMA (multi-user) where the transmitter 
implements 31 bit Gold codes(reliability) using BPSK modulation. The simple specs of 
our system would then be antenna gains of approximately 0 dB and a transmission rate of 
732 kbps. 
 
 
Our Conclusion: It’s a success!  
 

In our project, we successfully demonstrated reasonable asynchronous audio 
transmission of a single user in the presence of multiple other asynchronously 
transmitting users and high channel noise, to the point of broadcasting at the noise floor, 
which was far lower than we thought that we could achieve. Thus we accomplished all of 
the goals set forth by our amended project proposal. Indeed, we were actually quite 
pleased with the outcome of the project in terms of both its robustness and its 
customizability; however, it is important to note that, while we have realistically modeled 
a real system, we have not actually implemented a true broadcast system. A future goal 
for our project would be to take the EVM processing stack, which is composed of the 
vocoder, checksum, error correcting codes, and packet interleave, and integrate it with a 
wireless backend to produce an operational intercom working in real time. Primarily, this 
would consist of two phases: first, we would need to develop suitable wireless hardware, 
and second we would need to integrate the EVM card with the wireless hardware, 
probably by using the extra McBSP ports. If we had another semester and RF circuit 
experience, this would be the logical next step in building our product.  

Several facets of our project went well, while we, quite honestly, failed in some 
respects. Our obvious success is that our project was able to handle virtually every test 
case that we tried, beyond of course, broadcasting far beneath the noise floor with several 
users. A byproduct of the project, which ought to be considered a major success, is that 
we learned a great deal about real world communication and embedded DSP 
programming. However, the entire project was not free of problems. We had a lot of 
issues with working as a team, and there were several shouting matches and some pretty 
long nights of work. Additionally, we had some trouble initially selecting a project and 
then, after we had selected a suitable project, actually getting started on it. However, we 
were able to pull together in the end and complete a difficult yet interesting project. To 
improve our cohesiveness, we should have been more accepting of each other's needs and 
skills. We recommend the following to future 551 students: determine your project early 
(making sure that it is within reason), start working early, and work together.  
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