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The voice of mankind has from time to time
been controversial while at other times has
been a source of inspiration.
--Vern Grenade

1. Introduction

The movie, computing, and toy industries rely heavily on novel ways to draw
customers to their business. Innovations in voice technology, particularly in voice
conversion, have the potential to lead to the development of unique products and
services. Voice conversion could be used to preserve the original actor’s voice when
dubbing a movie. It could be useful for text-to-speech personification, where the email
you receive is read back in the sender’s voice. Plus it could be used for speaker
normalization for speech recognition system, allowing all input voice to be converted to a
voice that the recognition system is designed to handle. In addition, voice conversion
done in real-time could be used in karaoke applications, where you can sing and sound
like your favorite star. Furthermore, it could be used to create “spy toys” that allow users
to mask and record their voice so they can trick their friend’s over the phone. In all, a
voice conversion system could offer benefits to big businesses in terms of increased
profits, and to customers in terms of the availability of innovative and fun applications.

In our project we introduce a beneficial and efficient process of converting the
voice properties of a source speaker to that of a target speaker. The essential speech
properties considered in this process include the fundamental pitch and the formant
frequencies of both speakers. Our goal is to implement a system that is text-independent.
Thus, the user can say any sentence and the output will sound as if the target speaker had
said it.
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2. Our Approach

In our quest to achieve our expectation of a high quality voice conversion system
we spent a great deal of time doing research. Initially, research centered on gathering
information about speech projects that were previously done in 551. We were able to
learn about the widely used techniques of speech synthesis including the use of LPC and
PARCOR coefficients. Also, we learned about how theses techniques assumed that
speech production was modeled as an excitation signal being feed into a vocal tract filter.
In addition, we learned about the difficulties that previous groups faced in terms of
finding C-code, getting detailed description of algorithms, finishing all aspect of their
project on time, and achieving high quality speech output.

We then sought to find a proposed voice conversion technique that produced high
quality speech results and utilized widely used techniques and speech modeling schemes.
We found a 1997 publication by L. Arslan and D. Talkin entitled Voice Conversion by
Codebook Mapping of Line Spectral Frequencies and Excitation Spectrum [1]. In this
document they proposed creating codebooks of line spectral frequencies (LSF) and the
residual (excitation) signal of source and target speakers that could then be converted
from one speaker to the next. We felt that this technique was unique from previous
projects but more importantly promised high quality speech results. Finally, after some
deliberations we decided to implement this voice conversion system.

3. Prior Projects

Three groups did voice conversion in 18-551 (2 groups in 1999 and 1 in 2001).
Their algorithms were basically based on the modification of the LPC coefficients or the
PARCOR coefficients and the excitation pitch.

First, they divided the input signal into frames (about 20 ms) and found the LPC
or PARCOR coefficients in each frame. They then determined if the current frame was a
voiced sound or an unvoiced sound. For voiced sounds, a pitch detection algorithm was
used to determine the pitch of the portion of the speech. The voice conversion was then
performed based on a Cumulative Density Function (CDF), which is described in [4].
The LPC or PARCOR coefficients were replaced by the corresponding target
coefficients. The speech was finally re-synthesized using the new coefficients and an
impulse train with the target pitch for voiced sounds or white noise for unvoiced sounds
as excitation. Figure 1 illustrates the final stage of their conversion process.
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Figure 1: Simplified model for speech conversion

Previous groups reported that the quality of the re-synthesized speech was poor
and contained cracks and pops. In addition, the output speech was not always intelligible.

One cause of their results might be the fact that they used LPC coefficients for the
voice conversion. Indeed, LPC coefficients are very sensitive. Relatively small changes
in the representation of the LPC coefficients result in a “large” change in the pole
locations of the vocal tract filter model. This can lead to an unstable filter.

In order to solve this problem we decided to use Line Spectral Frequencies (LSF),
which are a different way to represent formant frequencies. LSF are always stable and
have advantages such as good interpolation properties and distortion independence
properties. More information about LSF are given in [5] and [6].
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4. Our Algorithm

As mentioned earlier, our system consists of two parts: A training part and a
conversion part. Both parts process speech signals sampled at 16 kHz and 16 bits per
sample. Speech is pre-emphasized, decomposed into frames of 256 samples (16 ms),
windowed and processed frame by frame. We decided to use 14th order LSF analysis.

4.1 Training Part

In the training part, we build codebooks containing the 14 LSF and the glottal
excitation spectrum (256 samples) for each phoneme. There are approximately 40
phonemes in the English language (around 50 with the closures of the phonemes). The
idea is that we can map phonemes one to one from a source speaker to a target speaker if
we want to convert one voice to another. The training part was implemented in
MATLAB.

4.1.1 Overview
In order to extract a given phoneme from speech, we use training sentences whose

phonetic transcription is already known. Dynamic Time Warping (DTW) is used to make
the phoneme extraction as precise as possible. Average LSF and the excitation spectrum
are determined for each phoneme. Ten phonetically rich sentences are used for the
training part providing 52 different phonemes. The codebooks are finally written to disk
in a format suitable for processing by the EVM.

4.1.2 The TIMIT Database
In [2], Arslan used Sentence Hidden Markov Models (Sentence HMMs) to detect

phonemes in a recording in order to build the codebooks. We learned from previous 551
projects that phoneme detection was too complicated, and came up with a different
approach: If we had a “reference voice”, whose speech had already been phonetically
segmented, we could time-align the same speech from any other voice to the reference,
and thus obtain a phonetic segmentation of any other voice.

We talked about our idea to Prof. Stern. He thought it was a good idea, and told us
about the TIMIT (TI and MIT) database, which contains speech from over 400 different
speakers along with the phonetic segmentation. For each speaker, there are ten
phonetically diverse sentences available, so almost all phonemes are represented.
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4.1.3 Dynamic Time Warping (DTW)
During the training part, the speaker is asked to pronounce the training sentences

at the same rate as the reference voice from TIMIT. This is made easier by playing the
reference recording simultaneously as the speech is recorded. However, it is nearly
impossible for a person to pronounce all the phonemes in a sentence at the same time
than the reference. This is why we use Dynamic Time Warping (DTW) to time-align the
person’s speech to the reference recording.

The basic concept of DTW is to create a grid with the reference and the input
speech on the X- and Y-axis respectively. Each cell in this grid contains the “distance”
between the two corresponding speech frames. The goal is to find the path from the first
to the last frame with the lowest cumulative distance. This path corresponds to the best
alignment between reference and input.

Figure 2: Dynamic Time Warping

There are many variants of DTW, the main difference being how the algorithm
deals with frames that have to be combined together or stretched. We used the MATLAB
implementation on [7] by Dan Ellis of Columbia University. This algorithm either
combines or stretches a series of frames, but does not interpolate between adjacent frames
to recover a “missing” frame like the “C” in the above figure.
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We tried different methods for computing the distance between frames and for
combining or stretching frames. We found that the distance measure proposed in [1]
introduced the fewest distortions while still providing a good alignment. To combine
frames, e.g. the “S” in the above figure, we simply keep the first frame of the series and
discard the other frames. Similarly, to stretch frames, the last frame of the series is
repeated until the same length as in the reference is reached.

We tested a more sophisticated approach which takes the average of frames to be
combined, but didn’t notice any improvement in quality.

4.1.4 Extraction of LSF and Excitation Spectrum
Now that the input speech has been time-aligned to the TIMIT reference, we can

use the phonetic segmentation provided on the TIMIT CD to locate the desired
phonemes. We wrote a C program to convert the TIMIT phonetic transcription to a list
indicating which phoneme occurs during which frames:

10 10 14
12 13 6
15 23 21
25 32 17
34 37 33
39 49 47
51 52 34
56 62 44
64 70 37
72 74 34
76 76 10
79 80 42
82 85 8
87 93 41
95 95 32
97 100 28
102 102 14
104 109 2
111 114 46
116 117 34
119 129 8
131 132 46

0 2200 h#
2200 2730 dh
2730 3560 ax
3560 6030 f
6030 8371 el
8371 9705 m
9705 12783 uw
12783 13560 n
13560 13730 tcl
13730 14044 t
14044 15900 sh
15900 17981 ow
17981 19007 n
19007 19655 bcl
19655 19920 b
19920 20733 r
20733 22009 ay
22009 23965 q
23965 24480 l
24480 25605 iy
25605 26342 dh
26342 28073 ae
28073 29360 tcl
29360 30179 n
30179 33160 ay
33160 33795 tcl
33795 38240 h#

Figure 3: “The full moon shone brightly that night” (“h#” represents silence)

On the left, the TIMIT transcription indicates the first and the last sample in the
recording for a given phoneme. On the right, this information has been converted to show
the number of the first and the last frame(s) containing phoneme number n, where n is
determined with the lookup table below:
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1 aa 14 dh 27 ix 40 pcl
2 ae 15 dx 28 iy 41 q
3 ah 16 eh 29 jh 42 r
4 ao 17 el 30 k 43 s
5 aw 18 epi 31 kcl 44 sh
6 ax 19 er 32 l 45 t
7 axr 20 ey 33 m 46 tcl
8 ay 21 f 34 n 47 uw
9 b 22 g 35 ng 48 ux
10 bcl 23 gcl 36 nx 49 v
11 ch 24 hh 37 ow 50 w
12 d 25 hv 38 oy 51 y
13 dcl 26 ih 39 p 52 z

Figure 4: Phonemes in TIMIT and corresponding phoneme number

Some phonemes are left out during the conversion to the frame-list format,
because we only consider phonemes with duration of at least one frame (256 samples).
Also, most phonemes don’t start or end at multiples of 256; thus we only keep phonemes
that last at least during two consecutive multiples of 256. In other words, if a phoneme
starts at sample 226 and ends at sample 502, we will not consider it. If it ends at sample
522 (or more than 512), we will keep it. The reason for this is that DTW works on a
frame-by-frame basis, so phonemes cannot be reliably extracted unless we use the same
frame division as for DTW.

Now that we know the frames of interest, we add the LSF to the corresponding
phoneme vector in the LSF codebook, and increment a counter that keeps track of how
many LSF sets have been summed together for each phoneme. Once the training part is
completed, each vector is divided by the corresponding counter in order to obtain an
average LSF set per phoneme.

For the excitation codebook, we wanted to avoid the opening and closing parts of
phonemes, during which the glottal excitation can vary greatly. Thus we decided to
extract only one frame of excitation signal per phoneme. We first determined manually
the longest duration of all 52 phonemes across all ten sentences. We then selected one
frame in the middle of the longest duration for each phoneme to extract the excitation.

Subjective listening tests showed that this combination (average of different
frames for the LSF, one frame for the excitation) gave the best results in the conversion
part.
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4.1.5 Summary
The following flowchart shows the implementation of the training part in

MATLAB:

Record Speech at 16 kHz

Compute LSFs and excitation
for each speech frame (16 ms)

Time-align to TIMIT
reference using DTW

Play time-aligned speech

Is the speech too
distorted after DTW?

yes

Store LSFs and excitation
spectra for each phoneme

in codebooks

no

Pre-emphasize, apply Ham-
ming window for each frame

Figure 5: Flowchart of the training part

This is repeated for all ten training sentences. The LSF and excitation spectrum
codebooks are then written to disk. The imaginary and complex parts of the excitation
spectra are separated by spaces for compliance with the real-complex interleaved format
of the TI IFFT function.
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4.2 Conversion Part

4.2.1 Overview
In the conversion part, the LSF of the input speech signal are computed frame-by-

frame and approximated by a weighted combination of LSF vectors from the source LSF
codebook. Using these same weights the target LSF and excitation are estimated. The
output speech is obtained by filtering the target excitation with the vocal tract generated
with the target LSF.

4.2.2 Pre-emphasis
First of all, the input signal is pre-emphasized with the filter 195.01)( −−= zzP .

The goal of the pre-emphasis filter is to amplify the higher frequencies in order to flatten
the spectrum. This leads to a better result for the calculation of the LPC coefficients.

4.2.3 Windowing
The output of the pre-emphasis filter is then multiplied by a Hamming window

function given by:









−

−= i
n

iw
1

2
cos46.054.0)(

π for 2550 ≤≤ i

The beginning and end of each frame are tapered to zero. This reduces
discontinuities (sudden onset or offset) resulting in smoother transitions of the signal
from frame to frame.

4.2.4 Input LPC and LSF
Next, 14 LPC coefficients are estimated. The LPC coefficients are obtained by

minimizing the sum of the squared components of the error e(n) between the original
speech signal s(n) and the estimated speech signal.

∑
=

−−=
14

1

)()()(
k

k knsansne

The most efficient algorithm for computing the LPC coefficients is the Levinson-
Durbin algorithm. It first performs an autocorrelation of the input signal and then uses a
recursion algorithm to inverse a Toeplitz matrix in order to get a unique set of LPC
coefficients. This matrix inversion has a complexity of )( 2pO  (where p is the predictor
order) vs. 

€ 

O(p3) for standard Gaussian inversion. The LPC coefficients are then
converted to line spectral frequencies.

We found C-codes for the Levinson-Durbin algorithm and the conversion from
LPC to LSF in [8].
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4.2.5 Weights Estimate
The input LSF vector w is then approximated by a linear combination of the LSF

vectors Si of the source codebook. The advantage of using a linear combination is that we
can also estimate phonemes that are not in the codebooks. The method used for
estimating the weights vi for the combination is given in [1]:

“Line spectral frequencies vector w is compared with each LSF centroid, Si, in the
source codebook and the distance, di, corresponding to each phoneme is calculated. The
distance calculation is based on a perceptual criterion where closely spaced line spectral
frequencies, which are likely to correspond to formant locations, are assigned higher
weights (…).

( )11 ,minarg
1

+− −−
=

kkkk
k wwww
h for k = 1, 2, …, 14

∑
=

−=
14

1k
ikkki Swhd for i = 1, 2, …, 52

∑
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−

−

= 52

1l

d

d

i
l

i

e

e
v

γ

γ

for i = 1, 2, …, 52

(…) where the value of γ for each frame is found by an incremental search with the
criterion of minimizing the perceptual weighted distance between the approximated LSF
vector and the original LSF vector.”

In [2], L. Arslan reported that the value of γ varies from 0.2 to 2. In order to
simplify the algorithm, we used a constant value for γ. After several tests, we concluded
that γ = 2 gives the best approximation of the input LSF vector.

4.2.6 Target LSF and LPC
Since the codebooks are created in the same conditions and with the same

sentences for every speaker, the ith phoneme in the source codebook should correspond
exactly to the ith phoneme in the target codebook for the conversion.

Therefore, the weights are applied to the LSF vectors Ti of the target codebook in
order to obtain the corresponding target LSF vector wt of the current speech frame.

€ 

wt = viTi
i=1

52

∑

The target LSF are then converted to LPC coefficients using the C-code found in [8].
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4.2.7 Target Vocal Tract
The vocal tract of the target speaker can now be modeled using the estimated

target LPC coefficients. The exact form of the vocal tract used by the author is a mystery.
In [1], the vocal tract filter is expressed as

β

ω∑ =

−−
= 14

1
1

1

k

jk
k

t
ea

V

where β is an undefined variable. In [2], the vocal tract filter is modeled as

∑ =
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= 14

1
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k
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t
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whereas in [3] it is defined as
2
1

14

1
1
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None of these expressions looks like the standard form of the vocal tract that we
can find in speech processing books. After many tests, we figured out, helped by Evandro
Gouvea, that the human ear is insensitive to the phase of the vocal tract. Consequently, it
makes no difference to use the magnitude of the filter or to keep complex results.
However, the purpose of the exponent is still unknown. Finally, in order to save memory
(array of absolute values instead of complex numbers) and computation time, we adopted
the form proposed in [2].

4.2.8 Target excitation
In [1], an overall filter )(ωH , which is a weighted combination of excitation

codeword filters, is constructed using the set of weights computed for the LSF:
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where )(ωtiU and )(ωsiU  denote the average magnitude spectra of the target and source
excitation respectively for the ith phoneme. The target excitation spectrum )(ωtG  is then
obtained by applying the filter to the DFT of the input speaker excitation )(ngs :

{ })()()( ngDFTHG st ωω =
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Following the method described above, we obtained an excitation spectrum
containing unexpected peaks caused by some very small values in the denominator of the
filter. In order to remove these peaks, we added a constant value of about 0.1 first to
every value and then only to the values below a certain threshold. The output became
much smoother but still sounded like the source voice. We finally noticed that by adding
a constant to every value, the filter was close to 1. Consequently, the output was
constructed with the excitation of the input and the target vocal tract.

We then asked Prof. Stern, other CMU faculty members and graduate students to
verify the method used to obtain the excitation filter and for any advice that would
improve our sound quality. Prof. Stern recommended the use of cepstral coefficients. The
cepstral coefficients c(n) of a signal s(n) are defined as:

)))(((log)( nsfftifftnc =

The number of coefficients used for the calculations determines the smoothness of the
output. By using only the twelve first coefficients, the excitation filter becomes:

)))()((exp()( 12,12,

52

1

ncncfftvH s
i

t
i

i
i −=∑

=

ω

where t
ic 12,  and s

ic 12, are the twelve first cepstral coefficients of the ith phoneme excitation
of the target and the source speaker respectively, padded with zeros. With this filter, the
output speech was smoother but still had the same unknown voice no matter the source
and target speaker. The pitch was unchanged. Even by increasing the number of cepstral
coefficients used, the quality of the output did not improve.

Our TA Efstratios recommended that we normalize the excitation to avoid sudden
changes in amplitude from frame to frame. This recommendation led to minimal
improvement in sound quality so we decided to modify the way in which we
“transformed” the source to the target excitation. We did this by representing the target
excitation as a linear combination of the excitation spectra in the target speaker’s
codebook:

∑
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52
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)()(
i

t
iit UvG ωω

The quality of the output speech is poor but at least, it sounds like the target speaker.
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4.2.9 Combined output
The combination of the target excitation and vocal tract can be done in frequency

domain or in time domain.
In frequency domain, we need to compute the vocal tract spectrum from the target

LPC coefficients, then multiply the vocal tract with the excitation spectrum and finally
take the inverse FFT of the result.

In time domain, we first perform the inverse FFT of the target excitation
spectrum. Next, the output signal y(n) is obtained by using the following difference
equation:

∑
=

−+=
14

1

)()()(
k

t
kt knyangny

where gt(n) is the excitation in time domain and t
ka  are the target LPC.

We chose to combine the vocal tract and the excitation in time domain because it
requires less operations and the implementation is much easier and faster. The IFFT was
performed with an optimized TI radix 4 FFT implementation.

4.2.10 De-emphasis
Pre-emphasis is removed from the speech by applying the inverse pre-emphasis

filter:

1
1

95.01
1

−
−

−
=

z
P

Finally, by making the amplitude of the output speech equal to that of the input
speech, we were able to obtain speech quality that was intelligible and could be
recognized as being converted from one speaker to the next.
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4.2.11 Summary
The following flowchart summarizes the conversion process:

        LSF codebooks from source
     and target, excitation spectra
  codebook from target

        Speech to be converted as a
     list of floats obtained with
  SoX, 20 frames per iteration

Get codebooks and speech
to be converted

Pre-emphasize speech,
apply Hamming window

on current frame

Compute LPCs,
convert LPCs to LSFs

Use weights to create
target excitation spectrum,

take IFFT

Generate output speech by
filtering the target excitation

with the target vocal tract

Remove pre-emphasis and
send result to PC

      Store speech, convert back to
    WAVE format using SoX

Determine weights

Use weights to create target
LSFs, convert back to LPCs

to obtain the target vocal tract

Figure 6: Flowchart of the conversion process
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4.3 Attempted Improvements

The output speech from our system had a disappointing sound quality. To correct
this we decided to implement the Gradient Descent and Bandwidth Modification
functions proposed in [1] into the conversion part. However, there was no noticeable
improvement in sound quality so we decided not to include these functions.

On Thursday of the last week we unexpectedly came upon a patent by Arslan and
Talkin describing their voice conversion technique in much more detail. In this document
we noticed an additional part on prosodic transformation that was not included in the 97
publication we had based our project on.  This section was described as being an
important part in allowing the target speaker to match the source speaker’s pitch,
duration, and stress. The algorithm proposed to perform this transformation was called
Pitch-Synchronous Overlap-Add (PSOLA). Our intent was to implement it in MATLAB,
test our system results, and if it improved our sound quality then implement it in C-code.
However, after noticing the complexity of this algorithm, finding no suitable MATLAB
or C-code for this method, and due to time constraints we were unable to implement this
into our voice conversion system.

We did, however, attempt to implement our project in real-time. Our C-code on
the EVM was successfully tailored to allow our conversion process to accept microphone
input and send the converted results directly to line out. This attempt failed because our
conversion process was not fast enough to work with the interrupts. This was due to the
fact that interrupts only worked at level one optimization, which meant that any loop
unrolling and/or pipelining would not be done to speed up our conversion process.

5. Data Flow

On the PC we perform the training part of our voice conversion system while the
entire conversion part is done on the EVM. The codebooks obtained in the training part
are sent to the EVM via an HPI transfer and are stored in the on-chip except for the target
excitation codebook, which is kept in the external memory. The speech to be converted is
recorded at 16 kHz, saved as a .wav file and converted to a list of floats using SoX
(Sound eXchange). This list is divided into chunks of 20 frames, sent to the EVM via an
HPI transfer, and stored in the on-chip memory.

On the EVM side the conversion process is performed one frame at a time until
the entire chunk sent by the PC is processed. The resulting converted speech chunk is
sent back to the PC via an HPI transfer. This process continues until all speech chunks
sent by the PC have been converted. The final converted signal is stored on the PC as a
list of floats. We then use SoX to change from this raw data format to .wav format, which
can be played using Windows Media Player.
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Figure 7: Data Flow between PC and EVM

6. Speed and Memory

The speed of our conversion process is substantially affected by the memory
location of the data being used. On-chip memory allows for access time fifteen times
faster than that of external memory. Nevertheless, we had to place our excitation
codebook on the external memory as a result of its huge size (52 x 256 x sizeof(float))
and access its contents when needed through DMA transfers. The remaining data,
including the 20 speech frames being processed, is stored in the on-chip memory (~62k).
The size of the C-code is 41k and is also stored on the on-chip memory.

We implemented the gradient descent weight update and the bandwidth
modification algorithm. However we noticed that both did not improve the sound quality,
and thus decided to leave them out. This allowed us to fit our code in the on-chip memory
and to reduce the calculations needed to be performed during the conversion process. We
also increased the speed of our conversion process by only using the codebook entries
with the highest weights to compute the target LSF and excitation spectrum. This
optimization alone considerably improved performance:

Before optimization After optimization

2,827,772 cycles per speech frame 1,189,671 cycles per speech frame
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7. Results

To test our system, we created 8 different codebooks, with 4 male and 4 female
voices. We also recorded a different sentence from each speaker that was not represented
in the training part. We then converted those sentences from one speaker to another.

While the output was always intelligible and the voice was clearly different, we
were disappointed by the sound quality. The output sounded rather robotic and noisy,
which was caused by our regenerated excitation signal. If we just change the LSF
coefficients, but keep the original excitation signal, the sound quality is as good as the
original, but the voice doesn’t change in this case. This is because the pitch is determined
by the vocal cords, i.e. the excitation signal. It also shows that the estimation of the target
LSF worked successfully.

The poor quality of the excitation signal is caused by the fact that it is created by
aligning linear combinations of codebooks excitations one after another. This can lead to
sudden differences in amplitude and pitch from frame to frame. The original algorithm
used PSOLA (Pitch-Synchronous Overlap-Add) and energy scaling to adjust pitch and
amplitude respectively. We found that pitch shifting through PSOLA had been a major
part of a 551 project in 1999 [9], and decided not to implement it. However we did adjust
the amplitude of the output to match the amplitude of the input, as suggested by
Efstratios, which improved the quality significantly.

Another reason might be that the original algorithm by Arslan and Talkin used
much more detailed codebooks containing the beginning, middle and closing
characteristics of each phoneme. We were not able to implement this entirely because
TIMIT only makes this distinction for some phonemes (the “cl” suffix means closure, see
appendix).

Subjective listening tests showed that the target speaker could be identified in
most cases despite the unpleasant quality, even by persons outside of our group. In some
male-to-male conversion cases, the target voice wasn’t identifiable. This may be due to
the fact that we not only perceive voice by physical attributes such as pitch and vocal
tract, but also by characteristics like emphases and intonations on certain phonemes,
which our system cannot change. In general, the smaller the differences between source
and target voice, the harder it was to recognize the voice of the output. Cross-gender
conversions worked best due to greater differences in pitch between men and women.

During the lab demo, Prof. Casasent completed the training part and created his
own codebook. The additional sentence we recorded was “18-551 is a cool class”. We
then converted this sentence to a female voice. As expected, the result sounded robotic,
but was very easy to understand. The voice sounded the same as previous conversions
from other speakers to the same target voice, which had been correctly identified by the
target as “That’s me”. This shows that the output voice does not depend on the input.

We also converted a female voice to Prof. Casasent’s voice. Here the source
sentence was “551 is a really great class” (note the difference with the previous sentence
;-) ). Again, the result was perfectly understandable; the voice was definitely male and
could be identified as Prof. Casasent’s voice.
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8. Conclusion
This project made us learn a lot about speech modeling, synthesis and

modification. We got hands-on experience with standard algorithms such as Linear
Predictive Coding and Dynamic Time Warping, and got an insight into current research
by talking to faculty members and reading research papers. We gained a solid knowledge
of DSP programming and improved our familiarity with MATLAB. Last but not least, we
learned to remain cautious when reading research papers…

While our system might not be useable for most of the applications we mentioned,
it certainly worked for one application: Having fun!
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Appendix
File: phoncode.doc, updated 10/12/90

This file contains a table of all the phonemic and phonetic symbols used in
the TIMIT lexicon and in the phonetic transcriptions.  These include the
stress markers {1,2} found only in the lexicon and the following symbols which
occur only in the transcriptions:

1) the closure intervals of stops which are distinguished from the stop
   release.  The closure symbols for the stops b,d,g,p,t,k are
   bcl,dcl,gcl,pcl,tck,kcl, respectively.  The closure portions of jh
   and ch, are dcl and tcl.

2) allophones that do not occur in the lexicon.  The use of a given
   allophone may be dependent on the speaker, dialect, speaking rate,
   and phonemic context, among other factors.  Since the use of these
   allophones is difficult to predict, they have not been used in the
   phonemic transcriptions in the lexicon.

  - flap dx,  such as in words "muddy" or "dirty"

  - nasal flap nx, as in "winner"

  - glottal stop q, which may be an allophone of t, or may mark an initial
    vowel or a vowel-vowel boundary

  - voiced-h hv, a voiced allophone of h, typically found intervocalically

  - fronted-u ux, allophone of uw, typically found in alveolar context

  - devoiced-schwa ax-h, very short, devoiced vowel, typically occurring
    for reduced vowels surrounded by voiceless consonants

3) other symbols include two types of silence; pau, marking a pause, and
   epi, denoting epenthetic silence which is often found between a fricative
   and a semivowel or nasal, as in "slow", and h#, used to mark the silence
   and/or non-speech events found at the beginning and end of the signal.

 
                                       POSSIBLE PHONETIC
                SYMBOL    EXAMPLE WORD   TRANSCRIPTION
                ------    ------------   -------------
  Stops:
                  b          bee           BCL B iy
                  d          day           DCL D ey
                  g          gay           GCL G ey
                  p          pea           PCL P iy
                  t          tea           TCL T iy
                  k          key           KCL K iy
                  dx         muddy, dirty  m ah DX iy, dcl d er DX iy
                  q          bat           bcl b ae Q

  Affricates:
                  jh         joke          DCL JH ow kcl k
                  ch         choke         TCL CH ow kcl k
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Fricatives:
                  s          sea           S iy
                  sh         she           SH iy
                  z          zone          Z ow n
                  zh         azure         ae ZH er
                  f          fin           F ih n
                  th         thin          TH ih n
                  v          van           V ae n
                  dh         then          DH e n

  Nasals:
                  m          mom           M aa M
                  n          noon          N uw N
                  ng         sing          s ih NG
                  em         bottom        b aa tcl t EM
                  en         button        b ah q EN
                  eng        washington    w aa sh ENG tcl t ax n
                  nx         winner        w ih NX axr

  Semivowels and
  Glides:
                  l          lay           L ey
                  r          ray           R ey
                  w          way           W ey
                  y          yacht         Y aa tcl t
                  hh         hay           HH ey
                  hv         ahead         ax HV eh dcl d
                  el         bottle        bcl b aa tcl t EL

  Vowels:
                  iy         beet          bcl b IY tcl t
                  ih         bit           bcl b IH tcl t
                  eh         bet           bcl b EH tcl t
                  ey         bait          bcl b EY tcl t
                  ae         bat           bcl b AE tcl t
                  aa         bott          bcl b AA tcl t
                  aw         bout          bcl b AW tcl t
                  ay         bite          bcl b AY tcl t
                  ah         but           bcl b AH tcl t
                  ao         bought        bcl b AO tcl t
                  oy         boy           bcl b OY
                  ow         boat          bcl b OW tcl t
                  uh         book          bcl b UH kcl k
                  uw         boot          bcl b UW tcl t
                  ux         toot          tcl t UX tcl t
                  er         bird          bcl b ER dcl d
                  ax         about         AX bcl b aw tcl t
                  ix         debit         dcl d eh bcl b IX tcl t
                  axr        butter        bcl b ah dx AXR
                  ax-h       suspect       s AX-H s pcl p eh kcl k tcl t

  Others:
                SYMBOL    DESCRIPTION
                ------    -----------
                  pau     pause
                  epi     epenthetic silence
                  h#      begin/end marker (non-speech events)
                  1       primary stress marker
                  2       secondary stress marker


