
 
 
 
 
 
 
 
 
 
 
 
 

MOZART: Making Orchestra Zippy; 
Automatic Reliable Transcription 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Group 6 
David Berol (dberol@andrew.cmu.edu) 

Scott Storck (sstorck@ece.cmu.edu) 
Michael Wenske (mwenske@ece.cmu.edu) 

 
 
 
 

18-551 Digital Communications and Signal Processing Design 
Spring 2004 



 2

Table of Contents 
 
Introduction………………………………….……………………………………….… 3 
 
The Solution………………………………….………………………………………… 5 
 On-line Processing…………………….……………………………………….. 5 
 Off-line Processing…………………….………………………………………. 9 
 
What We Did…………………………………………………………………………... 12 
 System Overview………………………………………………………………. 12 
 Memory Usage…………………………………………………………………. 12 
 Performance……………………………………………………………………. 13 
 Available Software……………………………………………………………...13 
 
Results and Analysis…………….……………………………………………………... 15 
 ODFT…………….…………………………………………………….............. 15 
 Range and Resolution…………….……………………………………………. 16 
 Final Demo…………….……………………………………………………......17 
 
Conclusion……………………………………………………………………………... 20 
 
References……………………………………………………………………………… 21 



 3

Introduction 
 
 Music is an integral part of human culture. Knowledge of music was taught first 
by training and memorization, and then, around 1300, through a crude form of text.  Over 
time, the art of notating music has evolved to the current form of sheet music.  This 
physical form of music makes it possible to teach and reproduce any composition in a 
standardized format.  
 

To read sheet music requires considerable skill, but transcription or the act of 
listening to music and writing down its notation, is an even more difficult challenge.  
Manually constructing musical notation from an auditory piece of music is laborious and 
time consuming.  It would save composers significant time and money if a computer 
could do this automatically.  However, it is difficult for a computer to do this as well.  
Currently there is no robust, completely accurate product available, making it a hot topic 
of research. 

 
This task is made considerably more difficult when a composition contains 

multiple notes, possibly from multiple instruments, being played simultaneously.  This is 
called polyphonic sound.  While the few available commercial automated transcription 
products perform reasonably well on monophonic sound, they all produce very poor 
results for polyphonic. Despite the current inability to perfectly transcribe music with a 
computer, new algorithms are making automatic transcription considerably more reliable.  
Advances in digital signal and general purpose processors have made it possible for these 
increasingly complex algorithms to be implemented. 
 

Reliable polyphonic transcription will open up a world of possibilities in many 
different fields: 
 

Musicians 
• Learn to play a piece despite only having an audio recording of it. 
• Quickly create sheet music by simply performing a piece, even if they do 

not know how to write sheet music. 
 

Music education 
• Allow students to easily study the structure of any composition. 
• Help a student evaluate the accuracy of their performance by enabling a 

computer to automatically compare their performance with the sheet music. 
 

Musical databases 
• Storing music in notation form vastly reduces the space required. 
• Easily search within a piece of music for a given melody or other 

characteristic. 
 

Manual transcription 
• Give a human transcriber a good head start towards producing perfect sheet 

music, vastly reducing the time and expense required. 
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 Past 551 projects dealing with transcription did not attempt to handle polyphonic 
music, and were only moderately successful with monophonic.  A spring 2000 group 
implemented a time-domain approach using wavelet filters and zero-crossings to 
determine note frequencies.  The spring 1998 group used a discrete wavelet transform 
(DWT) frequency domain approach.  In spring 1997, another group used the short time 
Fourier transform (STFT) frequency domain approach.  In addition to their constriction to 
monophonic sound, these projects required pauses between each note and input signals 
with unrealistically low noise.  Pitch detection remained poor despite these limitations. 
 

The vast majority of musical pieces contain polyphonic sound.  The difficulty in 
transcribing it lies in correctly identifying the various simultaneous frequencies (notes) in 
the music signal.  Since there are multiple frequencies present at any given time, a strictly 
time domain analysis, as done in the 2000 project, simply cannot be used.  A frequency 
domain approach must be used.  When a real instrument plays a given note, it actually 
produces many other “harmonic” (false) notes whose frequency is some integer multiple 
of the real note’s.  As a result, the greatest challenge is determining the frequencies that 
are the actual notes and discarding all of the others.  Polyphonic music makes this task 
significantly harder because some of the real notes may happen to have the same 
fundamental frequency as a false note.  Polyphonic sound can occur in several ways: 

• One instrument, several notes at one time, i.e. piano chords. 
• Multiple instruments, one note each, i.e. flute duet. 
• Multiple instruments, each playing multiple notes, piano and guitar chords. 

 
Our goal was to create polyphonic capable music transcription software, and it 

was achieved in two stages.  First, we implemented monophonic transcription of real 
instrumental sounds without the aid of delays between the musical notes.  After that, we 
extended the program to do polyphonic transcription with accuracy comparable to (or 
better than) available commercial products.  A method involving many new algorithms, 
presented by Luis Martins and Anibal Ferreira at the Audio Engineering Society’s 112th 
Convention and described in detail in Martins’ MSc thesis, was used to make this success 
possible. 
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The Solution 
 
 We found an algorithm by Luis Martins and Anibal Ferreira presented at the 
Audio Engineering Society 112th Convention in May of 2002 [1] that should allow us to 
meet our aforementioned goals.  Martins and Ferreira describe a frequency domain 
approach that has been successful for monophonic transcription and worked reasonably 
well with polyphonic transcription.   
 
 The Martins and Ferreira method is divided into two phases:  on-line processing 
and off-line processing.  The purpose of the on-line processing stage is to identify 
musical notes.  The off-line processing stage then takes these results and fine-tunes them, 
eliminating false notes and breaking apart notes that were falsely combined.  We will 
give a brief overview of the concepts and goals of these two pieces of the algorithm. 
 
 
On-line Processing 
 
 The on-line processing stage is broken down into three sub-stages: frequency 
analysis, harmonic analysis and harmonic structure tracking. 

 
Fig. 1: On-line processing flow 

 
 In the frequency analysis portion of the algorithm, we divide the input signal up 
into N-point discrete samples referred to as frames.  In the case of the Martins and 
Ferreira paper this size was 1024.  Each frame is constructed so that it will overlap with 
the previous frame by fifty percent.  Identification of the frequencies present in each 
frame is then obtained by an N-length sine window and N-point Odd Discrete Fourier 
Transform (ODFT) as outlined in [2].  This process should identify all the frequencies of 
each note present in a given frame. 
 
 An increased frequency resolution beyond that of a normal STFT is essential to 
correctly identify the notes present in each frame.  The ODFT combined with 
interpolation of partial frequencies accomplishes this.  The ODFT begins by taking an 
input frame with 50% overlap from the previous frame and multiplying it by a sine 
window: 

 
Eq. 1: Sine Window function 

 

Frequency  
Analysis 

Harmonic  
Analysis 

Harmonic 
Structure Tracking 

Music 
In MIDI
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Fig. 2: Sine Window impulse response 

 
A complex phasor is then multiplied by each of these values and this data is sent into an 
FFT.  The Magnitude of the FFT is then taken: 

 
Fig. 3: ODFT flow 

 
 The harmonic analysis portion of the algorithm analyzes each frame and attempts 
to find harmonic structure among the frequencies present.  It does this through an 
iterative process of identifying peaks in the |ODFT| output and looking for integer 
relations between them.  Spectral peaks are identified by iterating through the |ODFT| 
output and looking at the current value, the previous value, and the next value.  If the 
current data point is greater than the previous value by some threshold and lower than the 
next value by some threshold, a spectral peak has been found. The fundamental 
frequency of each harmonic is determined by looking at the ODFT output frequency and 
its corresponding fractional frequency (interpolated from values to the left and right of 
the peak).  Each fractional frequency is calculated by taking advantage of the sine 
windowing done in the ODFT.  The fundamental frequency in each frame is identified by 
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Fig. 6: Trajectory data structure 

the ODFT output plus the fractional frequency identified multiplied by 2PI divided by the 
ODFT size.  The fractional frequencies are identified as follows: 

 
Fig. 4: Frequency interpolation function 

 
where each Xo is a point from the ODFT output.  Intuitively a higher fractional frequency 
is generated if the relative weighting between the next value of the ODFT and the 
previous value of the ODFT is high, and a smaller fractional frequency is generated if the 
ratio is low.   

 
Fig. 5: Frequency interpolation example situations 

 
Integer analysis performed on the fundamental frequencies identified by this 

process results in harmonic structures being identified encompassing some of the higher 
frequency peaks to the right of the fundamental, which are called the partial frequencies.  
Each harmonic structure in a frame returns the fundamental frequency and a power value 
for that harmonic.  
 
 The next step is to track the harmonic structures over time in an attempt to 
identify notes.  The harmonic structures are tracked by the formation and tracking of 
“trajectories”.  Each trajectory is comprised of a start frame, stop frame, vector of 
fundamental frequencies, vector of 
power, and interpolation vector.  
There are two lists of trajectories: 
the first contains the candidate 
trajectories and the second, the 
validated trajectories.  In every 
frame, we take all of the harmonic 
structures that are found and append 
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them to a candidate trajectory and if no candidate trajectory is found, a new one is 
created.  Assignment of a harmonic structure to a candidate trajectory is based on the 
fundamental frequency of the structure.  If the fundamental frequency of a harmonic 
structure falls within some error range of the fundamental frequency of a candidate 
trajectory, the harmonic structure is appended to that candidate trajectory by adjusting the 
stop frame and adding the fundamental frequency and power value of the harmonic 
structure to the frequency and power vectors in the candidate trajectory.  If a harmonic 
structure matching a candidate trajectory cannot be found in a given frame, the candidate 
trajectory ends and becomes validated.  However, if the candidate trajectory is smaller 
than the smallest possible note length (user defined), it is thrown out.  Additionally, it is 
possible, in a real music sample, for a harmonic structure to be absent from a frame that it 
should be in.  This can lead to the premature termination of candidate trajectories.  To 
correct for this, candidate trajectories are not ended until a minimum pause length 
(absence of that fundamental frequency) has been exceeded.  When such a gap occurs, 
the missing frames are added to the interpolated list of the trajectory and are used in off-
line processing. 

 
Fig. 7: Harmonic structure tracking 

 
 At this point in the algorithm, we have a list of notes that we believe are present in 
each frame grouped together into trajectories.  From these trajectories, it is relatively easy 
to infer which notes are present, their length and location in time, and their relative 
loudness.  Just from this information we are be able to obtain reasonable results for a 
monophonic input.  However, for polyphonic sound, there will be false notes that need to 
be eliminated by further processing of the data. 
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Off-line Processing: 
 
 The off-line (post) processing consists of three sub-stages: transient detection, 
trajectory on-set time adjust, and trajectory clustering and pruning.   
 

 
Fig. 8: On-line and Off-line (Post) processing flow 

 
 The off-line processing portion of the algorithm operates over the entire input 
signal in the time domain.  The first stage of this process is transience detection.  This 
procedure makes an attempt to identify the onset of musical notes through energy 
analysis.  The first step in this process is applying a high pass filter to the input data.  The 
coefficients we used for this filter are the same as given in [2]. The summation of the 
filtered data over each frame is then taken.  Analysis is then performed on the summation 
of a frame and its previous frame.  If it meets the criteria below, a spectral peak is 
identified: 

 

 
(Where f is the filtered input data, ns is the number of frames, and N is the ODFT size) 

 
Eq. 2, 3: Transient detection functions 

 
 

Once the transience is established, we are able to adjust the validated trajectories.  
A few cases can result from this: the onset (start times) of the trajectories can be moved 
forwards or backwards to bring them in line with the transient if it is within a certain 
tolerance.  It is also possible to break a validated trajectory into separate notes, if they 
would be of valid duration, when a transient coincides with interpolated frames.   
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Fig. 10: Time clusters 

 
 Fig. 9: Trajectory on-set adjust and splitting 

 
 
 

The next step 
in the algorithm is to 
organize the 
trajectories into time 
clusters.  The time 
clusters are formed by 
identifying the 
longest trajectories 
and then grouping 
shorter trajectories 
that occur simultaneously with them into the same cluster (see picture to right).  This is 
done by analyzing the start and stop times of each trajectory and dynamically keeping 
track of the longest trajectory in each cluster.  A small tolerance of overlap is granted for 
beginning and ending time clusters.  Also, an improvement we made over the original 
Ferreira algorithm was to add an extra criteria for putting short (probably false) 
trajectories into surrounding time clusters in certain cases so that they would not falsely 
generate their own time cluster (in which case their elimination would be impossible). 
 
 Within each time cluster, we find harmonic clusters by grouping the trajectories 
that are separated by octave intervals (power of two multiples).  Once the harmonic 
clusters are defined, we can attempt to eliminate false notes by looking at the power and 
duration of each trajectory.  In each harmonic cluster, we evaluate which trajectory is the 
strongest (based on average power from the power vector, and duration).  We also specify 
the relative weighting between the power and duration considerations in the calculation 
on the strength of a trajectory. We found that much better results were found when we 
considered the power to be relatively more important than the duration. The strongest 
trajectory is accepted as a valid note.  Trajectories that fall within a certain tolerance 
range of the strongest will also be accepted as valid notes, while those that do not fall 
within this range will be eliminated.  This ensures that at least one trajectory will remain 
from each harmonic cluster. 
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Fig. 11: Trajectory pruning 

 
 We then compare the remaining trajectories inside each time cluster, looking for 
weak trajectories that escaped harmonic pruning.  The same elimination procedure (based 
on power and duration) with different thresholds is then applied to the remaining 
trajectories to remove any remaining false notes. 
 
 The result of the off-line processing should be the elimination of false notes while 
maintaining valid notes.  Additionally, trajectory analysis should have increased the 
accuracy of the start and stop times of the individual notes. 
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What We Did 
 
System Overview 
 
 Input to the system is a PCM digital audio file sent from the PC to the EVM over 
HPI one frame at a time.  All online processing steps are then performed on the C67 and 
the results (trajectory structures) are sent back to the PC for the offline processing stages 
of the algorithm. We choose to structure our resources this way because the C67 could 
potentially be used to process the input data in real time from a musical instrument.  The 
offline processing, however, still could not be done in real time because it requires 
information over the entire length of the input.   
 

 
 

Fig. 12: Partitioning of functionality 
 

Memory Usage 
 
 Great care was taken in writing the on-line processing in order to make all of the 
code fit into on-chip program memory and all of the frequently used buffers into on-chip 
data memory.  We had to use the heap (in SDRAM) in order to store our dynamically 
allocated trajectory data structures, but everything else was made to fit into on-chip data. 
 

Memory Usage 
On-Chip Program 44960 bytes (68.6 %) 
On-Chip Data 58856 bytes (89.8 %) 
SDRAM 0 4 MB allocated for heap (100%) 

 
Table 1: Memory usage 
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Performance 
 
 After initially getting the program working on the EVM, its performance was 
reasonable; but not even close to real-time.  We made a series of improvements that 
resulted in the program transcribing pieces in less time than it took to listen to them.  
Although a real-time implementation was not one of our original goals, it appears that our 
project could perform well enough to make this happen. 
 
 The first step we took was to remove all of the ‘printf’ and other ‘stdio’ functions 
from our code.  This made it possible to fit the program itself in on-chip memory.  We 
next instructed the compiler to perform optimizations, including inner loop un-rolling.  
Both of these steps produced improvements, but the execution time, especially for longer 
files was still much worse than real-time. 
 

We next attempted to replace our radix-2 FFT (written in C) with the assembly 
radix-4 FFT from TI.  This was ineffective because we commonly use a frame size of 
2048 (which is not a power of 4).  The radix-4 FFT would require us to use 4096 instead, 
and we simply could not afford to use that much more memory. 

 
Finally, we rewrote many of our functions (ODFT and peak detection) in order to 

make them reuse the same buffer for everything.  This required a little bit of tricky 
coding: even though the input PCM data samples were all shorts (2 bytes), we stored 
them in a long integer (4 byte) array so that we could later treat this same buffer as an 
array of floats (4 bytes).  All of these modifications allowed us to vastly reduce the size 
and amount of global variables and fit everything into on-chip memory (rather than 
having to use DMAs/paging). 

 
The speed improvement from this was, as expected, enormous.  The program can 

now read the file, perform both the on-line and off-line processing, and write out a MIDI 
file in less time than it takes to listen to the input file. 
 

 Program execution (s) 
Input Length (s) Before After 

30 382 22
28 348 21
10 74 6

 
Table 2: Run-time performance improvement 

 
 
Available Software 
 
 We were able to obtain the Matlab code from Ferreira and Martins (through email 
correspondence) for their implementation of the algorithm.  The harmonic structure 
detection code from this, however, was a precompiled C file that we could not see the 
source for because they are in the process of developing a commercial product.  We 
generally found the Matlab code to be difficult to read and understand.  Because of this, 
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and the fact that the MSc thesis [2] was quite clear and detailed, we decided to develop 
our own C code without trying to follow the Matlab implementation.  The Matlab 
implementation, though, did prove helpful in giving us something to check our results 
against.  It was particularly useful when evaluating our ODFT results for validity, but 
used little else until the final comparison of MIDI outputs.  Thus, with the exception of 
the FFT code and some of the EVM setup code, every line written is original code 
developed by us, based on our interpretation of [2] and our modifications to it.
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Results and Analysis 
  
ODFT Performance 
 
 The first crucial stage in our project was constructing the ODFT and correctly 
identifying spectral peaks.  We evaluated the results of the ODFT by comparing it with 
Martins’ Matlab implementation of the PCM to MIDI algorithm: 
 

 
Fig. 13: Martins |ODFT| 

 
 

 
Fig. 14: Group 6 |ODFT| 

 
As can be seen from the two graphs above, our |ODFT| output is identical to the Martins 
|ODFT| output.  There arose several complications in developing the ODFT mostly 
resulting from a change in endian notation from the PC to UNIX and Martins’ zero-
padding the PCM input file without noting it in his paper. 
 



 16

 Once the ODFT was verified, the spectral peaks had to be identified.  A 
comparison between the Martins implementation and our implementation was again 
made: 
  

 
Fig. 15: Martins peak detection 

 

 
Fig. 16: Group 6 peak detection 

 
As can be seen from the above graph, our peak detection correctly identifies spectral 
peaks and is very similar to Martins.  Differences in the number of peaks detected can be 
accounted for by adjusting the peak detection threshold.   
 
 
Range and Resolution 
 
 We have used frame/ODFT sizes of 1024 and 2048 while testing the program.  
We switch between the two different sizes due to tradeoffs between time and frequency 
resolution: 
 

N Freq. Res. (Hz) Time Res. (s) 
1024 43.1 0.02 
2048 21.5 0.05 

Table 3: ODFT frame size effects 
 
 With the appropriate frame size selected, the program is capable of resolving 
notes from about 60 Hz (MIDI octave 3) all the way up to about 4 kHz (MIDI octave 8).  
Lower frequency notes are more difficult to detect due to the fact that the differences 
between note frequencies become very small in the low octaves.  Therefore, a frame size 
of at least 2048 is always necessary for notes below about 260 Hz.  For higher frequency 
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notes, fine frequency resolution becomes less important and either frame size can be 
used.  However, on certain files, the program performs better with worse time resolution 
because it will not detect as many false notes, improving the performance of the off-line 
processing.  This behavior varies depending on the idiosyncrasies of the individual file, 
so, if we had trouble getting good results with one frame size, we simply switched to the 
other. 
 
 
Final Demo 
 
 For our final demonstration, we created a graphical user interface program to 
make it easy for a user to execute our program on the EVM and view the transcription 
output.  The program has a simple but very useful interface and was written in Java. 
 

 
 

Fig. 17: MOZART GUI screen shot 
 
 To use the program, the user simply clicks the ‘Input…’ button, and selects a 
PCM file from the file selection dialog box that pops up.  Next, the ‘Output…’ button is 
clicked and a new or existing MIDI file is selected.  Clicking the ‘Transcribe’ button 
starts the C++ program that loads the EVM program and does the actual transcription.  
Once that process terminates, the Java program automatically updates its “piano roll” 
display of the output file’s content.  The piano roll shows pitch on the y-axis and time on 
the x-axis.  The yellow bars represent the transcribed notes in the MIDI file.  The vertical 
black bars denote quarter-note durations, and the horizontal red bars denote octave 
intervals. 
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Input Files 
 
 Single channel (mono) PCM audio files with 16-bit resolution and a 44.1 kHz 
sampling rate were used as input.  These are essentially the same as a WAV audio file, 
but with the descriptive headers removed from the front of the file, so that it just contains 
the raw sampled data. 
 
 We tested recordings produced by a fairly high-quality wavetable synthesis of 
original MIDI files.  This made it easy to compare the “before” and “after” piano rolls to 
determine the accuracy of our program.  Wavetable synthesis uses samples of real 
instruments to accurately reproduce their harmonic, resonant, and noise characteristics.  
Instruments tested included grand piano, flute, organ, recorder, and violin.  The program 
does not try to determine what kind of instrument it is transcribing, and seems to 
generally perform well regardless of what instrument we selected. 
 
Monophonic Sound 
 
 Our project performs extremely well (sometimes perfectly) on monophonic 
sound.  Because we know up-front that only one note will be played at a time, the 
program can be instructed to detect more false notes in order to make certain that all the 
real notes are found.  During post-processing, it is quite easy to determine which one note 
is the real one.  However, the program most often did not detect any false notes at all in 
monophonic files and the trajectory pruning during off-line processing was unnecessary. 
 

 
Fig. 18: Original Chromatic scale 

 

 
Fig. 19: Transcribed Chromatic scale (no errors) 
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Polyphonic Sound 
 
 While the project could not achieve the same level of accuracy for polyphonic 
music, it does do a very good job transcribing it as well.  Selections that do not have a 
wide octave range perform best, but the program has handled pieces spanning three 
octaves and with multiple tempo changes with very reasonable results.  The off-line 
processing, especially the trajectory cluster and pruning, make this degree of success 
possible. 
 

 
Fig. 20: Original arpeggio 

 

 
Fig. 21: Transcribed arpeggio (one missing split, no pitch errors) 

 

 
Fig. 22: Original “Family Guy” theme 

 

 
Fig. 22: Transcribed “Family Guy” theme 

 

Should have been split 
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 The most noticeable difference between the original and transcribed versions of 
the “Family Guy” theme are the missing trajectories that would represent some of the 
lower notes in a few of the chords.  Generally speaking, lower notes are harder to detect 
because they require a higher frequency resolution.  This can result in them not being 
detected during on-line processing, or, more likely, being mistaken for false notes and 
pruned during off-line processing due to the presence of more easily detected (and 
therefore more powerful) notes in the same harmonic/time cluster.  Additional tweaking 
of the pruning settings may have made a better result possible, but it is not always 
practical to do this level of tuning for such a large input file, especially when the overall 
result is still quite good.  Unfortunately, program settings that work perfectly for one part 
of a song may produce undesirable results in a different part. 
 
 
 
Conclusions 
 
 The program is highly configurable, which is both a blessing and a curse.  We 
have empirically developed a few sets of configuration parameters that work well for 
certain types of files, but the program will often require tuning by the user if it is to 
perform optimally.  Fortunately, simply telling the program: 1. Whether the input is mono 
or polyphonic, 2. What the high and low octaves are, and 3. Whether a 1024 or 2048 
frame size should be used, is more than enough to make it perform very well on any input 
file. 
 
 One limitation that would be easy to address given additional time would be the 
way in which trajectory data is returned to the PC from the EVM.  Currently, the 
validated trajectories are stored on the EVM until on-line processing is complete.  It 
would make more sense to transfer these back incrementally in order to prevent the heap 
from completely filling up during the processing of very large files. 
 
 Overall, we are extremely pleased with the performance of the project.  We set 
out with the goal of transcribing polyphonic music produced by realistic instruments and 
without any gaps between the notes.  Our program accepts realistic input files, processes 
them very quickly (faster than it takes to play them), and produces output that is much 
better than the two commercial transcription products that we tested.  The program can 
often produce flawless transcriptions of monophonic audio files, and does a reasonably 
good job even on complicated polyphonic pieces.  Even on music files where the piano 
roll shows many errors, the re-synthesized output MIDI usually sounds quite close to the 
original input, which means that it could be very useful in assisting a human doing a 
manual transcription. 
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