

Car Eye for the Drunk Guy
Final Report

By

Esteban Bowles-Martinez (estebanb@andrew.cmu.edu)
Michael Mishkin (mmishkin@andrew.cmu.edu)

Tim Kral (tkral@andrew.cmu.edu)

Of

Carnegie Mellon University
Department of Electrical and Computer Engineering

Digital Communications and Signal Processing Systems Design
18-551 Spring 2004 Group 4

18-551 Group #4 2
Final Report Car Eye for the Drunk Guy

Table of Contents

1. Introduction

1.1. The Problem

1.2. Previous Work

2. Data Collection/Test Set

3. Video Preprocessing

3.1. Isolating Individual Frames

3.2. Reducing the Frame Rate/Down Sampling

3.3. Image Cropping

3.4. Gray Scaling

3.5. Debugging

4. Algorithm/EVM Processing

4.1. Filtering/Thresholding

4.2. Noise Reduction

4.3. Hough Transform

4.3.1. Line Parameterization

4.3.2. Determining the Best Line

4.3.3. Optimizations and Assumptions

4.3.4. Other Possible Methods

4.4. Lane Change Detection

5. Video Postprocessing

6. Synchronization of EVM and PC

7. Speed and Memory

18-551 Group #4 3
Final Report Car Eye for the Drunk Guy

8. Results

8.1. Successes

8.2. Failures

9. Discussion and Conclusion

9.1. Future Improvements

10. References

18-551 Group #4 4
Final Report Car Eye for the Drunk Guy

1. Introduction
Every year, thousands of accidents are caused by drunk, sleepy, or elderly drivers

who don’t realize when their car is drifting out of their lane. Car Eye for the Drunk Guy

is a system intended to help these drivers to realize when they are driving out of their lane

with a warning indicator similar to the rumble strip on the side of many high-ways.

1.1 The Problem
The goal of the project is to analyze video from a car-mounted camera to

determine if the car is driving safely. Our software package reads in these videos and

maps out the road on each frame. The map keeps track of the location of road lines and

determines whether these lines are being crossed. In order to make this determination our

project must first locate these lines and then parameterize them so that their location can

be analyzed. If these lines are within a certain range then a lane change has been detected

and the driver is alerted.

1.2 Previous Work
No work has previously been done in 18-551 along these lines however CMU has

been working with the National Automated Highway System for 20 years on developing

autonomous driving systems in a project called Navlab which are the autonomous cars,

vans, and busses that were designed by Carnegie Mellon students. There were a few

projects done in the robotics department using Navlab that are very similar to ours1,2 in

that they focus on mapping the road and locating lines on the road. These projects both

use algorithms and technologies which are based on a generalized Hough Transform as

ours is. Another focus of these projects tracking of vehicles on the road with a 2d bound

box located with a Kalman filter. One of these projects2 implements a robust road

follower called RALPH which keeps track of the edge of the road and a center line for

guidance in the vehicle’s steering. RALPH resamples a trapezoidal shape from the road

in order to eliminate perspective then uses template based matching techniques to find

parallel features. This process is essentially a more specific form of a Hough Transform

with a very specific template for the road.

 A major difference between our project and these projects is that ours is done

using the C67 which is not on board the car so our video feeds were recorded prior to

18-551 Group #4 5
Final Report Car Eye for the Drunk Guy

their processing. As a consequence, the processing can not be done in real time and we

could only approach our goal of modeling real time processing.

2. Data Collection/Test Set
We performed our own video collection by recording video from a moving

vehicle while it traveled down a highway in clear weather conditions. The camera used

was a Logitech QuickCam® Pro 4000 USB 2.0 digital video camera which was a

relatively cheap option (approximately $75.00 on http://www.amazon.com) and was

praised on numerous web sites for producing high quality video even in poor lighting

conditions. The camera was mounted just above the center of the windshield of a Toyota

Camry (approximately 1.75 meters off the ground) and at an angle of approximately 20

degrees from the horizontal. Several one- to two-minute videos were recorded on

Interstate 376 outside the city of Pittsburgh to accommodate different driving situations:

changing lanes, driving around a curve, passing other vehicles, tailgating and

combinations of these. The same situations were also recorded on video at night on the

same stretch of road.

After recording, our test set consisted of 24 daytime videos and 16 nighttime

videos. However, the nighttime videos proved to be worthless because of the low amount

of light provided by the headlights of the vehicle. It was impossible to see road and lane

lines 5 feet beyond the front of the vehicle and this would have made it very difficult to

process these videos and find such lines in the road. Thus we discarded the 16 nighttime

videos and had the test set stand at 24 daytime videos.

3. Video Preprocessing
 The original recorded video, which is stored in AVI file format, is 320 by 240

pixels, 24-bit color and runs at a speed of 30 frames per second. Preprocessing this video

on the PC is necessary for two reasons. One, the video needs to be broken up into

individual frames so that the EVM can effectively process one frame of the video at a

time and return its results. Second, we realized that processing such a large amount of

data (~415 Megabytes for a one minute video) would render the system incredibly slow

and thus preprocessing is needed to cut down on the amount of data being sent to the

EVM for processing.

18-551 Group #4 6
Final Report Car Eye for the Drunk Guy

With these two reasons in mind, the video preprocessing takes an AVI video and

splices it into individual frames. After getting a frame, the PC code takes several steps to

reduce the amount of data actually sent to the EVM which includes reducing the frame

rate, cropping out areas of the frame that are not needed and reducing the bit depth. In

the end the individual frames that are sent to the EVM are 120 pixels high by 320 pixels

wide with 8 bits per pixel. The video processing follows the steps shown below:

3.1 Isolating Individual Frames
 The AVI files are broken up into individual frames using the AVIFile interface

that comes with Microsoft Visual C++ 6.0. Using this code required that vfw.h be

included as a header and that the static library vfw32.lib be included in the project. The

process required several steps. First the AVI library is initialized with a call to the

AVIFileInit() function and immediately after this an AVIStream is opened from the

target file using the AVIStreamOpenFromFile(...) function. Now the length of

the video (in number of frames) can be determined by the AVIStreamLength(...)

function. Running a loop from the first frame to the final frame, the PC code opens a

frame stream with the AVIStreamGetFrameOpen(...) function, gets the next

frame with the AVIStreamGetFrame(...) function and releases the frame stream

with the AVIStreamGetFrameClose(...) function. Information on all of these

functions and more can be found on the MSDN web site at

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/multimed/htm/_win32_multimedia_functions.asp. Code for this process looks similar

to the following:

#include <vfw.h>

Original AVI
Video

RAW Pixel
Data

Down Sampled
Frame Rate

Image Cropping

Gray Scaling To EVM

18-551 Group #4 7
Final Report Car Eye for the Drunk Guy

PAVISTREAM pavi; /* AVIStream pointer */
PGETFRAME pgf; /* Frame Stream pointer */
LPBITMAPINFOHEADER lpbi; /* Bitmap Header Info pointer */
LPSTR pixelData; /* Pointer to actual pixel data */

/* Initialize AVI library */
AVIFileInit();

/* Open AVIStream from target AVI file
 pavi - AVIStream pointer into which stream info is read
 filename - Name of target AVI
 streamtype - Type of stream to be processed (in this case
 streamtypeVIDEO processes a video stream)
 lparam - 0 here indicates that this is the first call to
 this function*/
 mode - The mode under which this AVI should be opened
 handler - NULL here indicates that the registry will
 choose the defauilt handler */
if(!AVIStreamOpenFromFile(&pavi, FileName, streamtypeVIDEO,
 0, OF_READ, NULL))
{
error...
}

Loop i = 0 through AVIStreamLength(pavi)
 /* Open the frame stream
 pavi - AVIStream pointer initialized by

AVIStreamOpenFromFile
 LpbiWanted - NULL here indicates that the system

 Uses the default format */
if(!(pgf = AVIStreamGetFrameOpen(pavi, NULL)))
{
error......

 }

 /* Get the next frame
 pfg - Pointer to frame stream initialized by
 AVIStreamGetFrameOpen
 FrameNumber - The number of the frame that is to be
 Retrieved */

lpbi = (LPBITMAPINFOHEADER)AVIStreamGetFrame(pgf, i);

/* The pixel data is contained in memory right after
 the bitmap header info. So we can point to the
 pixel data by jumping forward the size of the
 bitmap header info structure. */
pixelData = (LPSTR)(*lpbi) + *(LPDWORD)(*lpbi);

...process pixel data...

/* Close the frame stream */
AVIStreamGetFrameClose(pgf);

18-551 Group #4 8
Final Report Car Eye for the Drunk Guy

EndLoop

/* Release the AVIStream */
AVIStreamRelease(pavi);
/* Close the AVI library */
AVIFileExit();

Notice that after the loop finishes that the code must release the AVIStream pointer using

the AVIStreamRelease(...) function and must close the AVI library using the

AVIFileExit(...) function. Also notice that after the call to

AVIStreamGetFrame(...) that the actual pixel data is stored right the bitmap

header info structure in memory. Thus the code points to this data by skipped over the

size of this structure in memory. Once this is done, the pixel data can be manipulated

and/or processed. It is at this point that we begin to cut back on the amount of data sent

to the EVM.

3.2 Reducing the Frame Rate/Down Sampling
 The usefulness of Car Eye for the Drunk Guy depends heavily on the driver’s

reaction time. Processing video at the original rate of 30 frames per second assumes that

the driver can react in 1/30th of a second, which is much quicker than anyone can be

expected to react. In talking with Carlos Reverte of the Carneige Mellon Robotics

Institute, we learned that 10 frames per second is more suited for a reasonable driver

reaction time. Thus we chose 10 frames per second as our target down sampled rate.

Within the PC code, down sampling takes place by isolating every third frame. In terms

of the code above, this means that the loop takes steps of three instead of one.

 After looking at the output videos at 10 frames per second we saw that the frame

rate was still faster than what one would be able to react to in traffic, so we decided that

an even lower frame rate would be sufficient. Through experimentation, it was found

that at 6 frames per second, the delay between frames is sufficiently noticeable that

drivers would be able to begin to react in the time between frames. At 6 frames per

second, the PC only sends every fifth frame to the EVM for processing.

3.3 Image Cropping
 The height and angle of the camera on the car was engineered such that the car’s

hood is just below the bottom of the image frame. This maximizes the visible area of the

18-551 Group #4 9
Final Report Car Eye for the Drunk Guy

road, giving more useful data with which to work. Still, the top half of the video is above

the horizon and since we are only interested in the part of the image that contains road,

we crop out the top half of the image before sending it to the EVM.

 Such cropping serves two purposes. The first is that it makes the Hough

transform on the EVM more accurate by eliminating signs, buildings, trees, sky and other

objects which could be falsely identified as possible road lines. The second is that it

halves the amount of data needed to be stored on the EVM thus saving memory.

 Perhaps the greatest thing about image cropping is that it actually reduces the

amount of processing done by the PC. Image cropping takes place at the same time as

gray scaling, which is discussed in the next subsection. In order to gray scale a new array

of pixel data is created which stores gray data pixel by pixel. The loop that does this

processing only runs through half of the image which effectively chops the image in half

by only storing half of the image data in the new array.

3.4 Gray Scaling
 When the project was started, the idea to gray scale seemed obvious because it

would save memory on the EVM. The original 24-bit images take up three times as

much memory as 8-bit grayscale. The original gray scaling algorithm called for

averaging the values of each color channel. Later we realized that everything in the road

is gray, therefore each channel would have essentially the same value. Using this fact,

we decided that we could simply take one of the color channels from the original image

and use it as our grayscale. We chose the blue channel because yellow shows up

brightest in this channel, so yellow road lines will have a higher contrast against the road

surface. Below is an example of an individual AVI frame before and after preprocessing:

18-551 Group #4 10
Final Report Car Eye for the Drunk Guy

3.5 Debugging
 While debugging the preprocessing code, it was useful to save the individual AVI

frames as bitmaps to disk in order to view them and make sure that the code was working

properly. This also turned out to be useful in debugging the EVM code because we could

load an individual frame from disk and test it instead of processing an entire video worth

of frames. C code that saved bitmaps to disk was found at Jeff Heaton’s web site,

http://www.jeffheaton.com/source/sbitmap.c.

4. Algorithm/EVM Processing
 After an individual frame is preprocessed, the gray scaled pixel data is sent to the

EVM for processing. EVM processing is completed in four steps: filtering/thresholding,

noise reduction, Hough Transform and lane change detection as illustrated below:

18-551 Group #4 11
Final Report Car Eye for the Drunk Guy

4.1 Filtering/Thresholding
 One very important thing that our program takes into consideration when

identifying lines is contrast between the road and the lines painted on it. When we started

the project, we knew we would have to deal with the problem of shadows in the road.

Our program assumes that the brightest things on the road are the lines.

Our first approach to addressing this was to find the mean brightness of the

image, and adjust the brightness of every pixel so that every frame, regardless of the

presence of shadows, would have the same mean brightness. This uniform brightness

across frames is necessary because we need to use the same threshold values in every

frame. We then black out any pixels that are less bright than our threshold value, which

we determined through experimentation. The results of this method are usually very

good, even in images with many patchy shadows from trees directly over the road.

However, it fails when an entire road line is completely in shadow and the rest of the

image is shadow-free. We decided to go with another approach.

We came up with our second approach when we noticed one frame with a car’s

shadow completely covering a road line. The line was not detected because the

brightness of the whole region in the shadow was below the threshold value. We needed

an approach that looks at contrast between nearby pixels to find bright areas instead of

contrast between a pixel and the average brightness of the image.

Our program uses a more localized approach to determining which portions of the

road are the lines. It looks for changes in pixel brightness along each horizontal row. A

[1, 0, -1] filter is used along with a threshold to find when a significant change in

brightness has occurred. Through experimentation, we found that a change in brightness

of 10 levels out of 256 is significant. If this change in brightness is found, the next

Gray Scaled RAW
Data From PC

Filter &
Threshold

Hough
Transform

Lane Change
Detection

Back To PC

Noise
Reduction

18-551 Group #4 12
Final Report Car Eye for the Drunk Guy

twenty pixels are examined to find if the row has darkened again. If such a decrease is

found then this segment of the row is considered to be a possible line and is marked as

white in the output image. This same procedure is applied to every row in the input

image until a black and white output image is generated which consists of white pixels

wherever potential lines are detected. Essentially, the filter looks for regions of

brightness less than 20 pixels wide. This keeps wide bright areas, such as white cars,

from being detected as possible road lines.

4.2 Noise Reduction
The resulting image contains the correct road lines, but there is also noise

scattered about from a few areas of the road that also happened to fit our road line criteria

of bright and narrow. Because our filter only scans horizontally, the noise tends to be

white horizontal lines one pixel tall. These lines are removed by a [1; 2; 1] vertical blur

filter, which takes out any white pixels with black pixels above and below them. The

resulting image is a much cleaner representation of where the road lines are expected to

be. It is now ready to be passed into the Hough transform for parameterization of the

detected lines.

4.3 Hough Transform
 Parameterization of the lines is done with a Hough transform, which we use for

detecting straight lines in an image. Typically, the input to the Hough transform is a

binary black and white edge-detected image, however, this is not the best input for our

18-551 Group #4 13
Final Report Car Eye for the Drunk Guy

application. Since the road lines themselves are detected rather than the edges of objects,

the image passed to the Hough transform is likely a fairly clean image in which the road

lines are white pixels and everything else as black pixels.

 The Hough transform scans through the image looking for white pixels. When it

finds one, it plots a curve in the Hough space representing all of the lines that could

possibly pass through the image. This process is called accumulation.

4.3.1 Line Parameterization
 There are a few ways that the road lines can be parameterized. Any equation for a

line can be parameterized by setting the constants in the equation as parameters.

Probably the best-known linear equation is slope-intercept form in which a line is

described by the equation y = m*x + b. If a Hough plane were to be drawn for a line in

this form then the two axes of the coordinate system would represent the variables m and

b such that every point in the Hough plane represents a different line in the x-y plane.

The coordinate system used for our Hough plane is based on the polar equation for a line,

r = x*cos(theta) + y*sin(theta). This equation describes a line at a distance of r from the

origin, oriented at an angle theta as shown below. This coordinate system is better for

finding lines at evenly spaced angles, whereas the slope-intercept method would be less

effective as lines approach a vertical slope of infinity.

4.3.2 Determining the Best Line
 When the accumulator is passed a set of coordinates describing a point in the x-y

plane of the road image, the accumulator plots a point in the Hough plane for each angle

of line that could possibly pass through that point. The accumulator is run on every white

pixel in the line-detected image so that once accumulation is completed, any points in the

Hough plane with values greater than a threshold value are considered good

approximations of the road lines. As the accumulated Hough plane is being searched for

18-551 Group #4 14
Final Report Car Eye for the Drunk Guy

maximums, the current maximums are stored in a linked list and any points above a

relatively low threshold are compared to the current maximums such that in the end the

linked list contains two nodes, one for the strongest line on each side of the image. These

are the lines we use to represent the road lines in the final image.

4.3.3 Optimizations and Assumptions
 We know that we are looking for one road line on each side of the lane, so we

split the image and look at each half independently. This ensures that noise from one

side of the image won’t affect line detection on the other side. It also allows us to reduce

the number of angles our accumulator looks at.

 We also consider the angles that road lines can have when viewed from the

camera’s perspective. Points on the left half of the images are only accumulated for

angles between 25 and 90 degrees and angles on the right half are only accumulated

between 90 and 155 degrees. Angles from 0 to 25 and from 155 to 180 never need to be

accumulated since these angles are too sharp to be road lines. Narrowing down the

angles in our search increases our program’s efficiency, this way CPU cycles are not

wasted on angles that we are not interested in.

 One additional optimization that we tried out was to only accumulate the bottom

portion of the image. This approach assumed that the lines near the bottom of the image

were so much more prominent than those at the top of the image that we should only

search for lines going through the bottom of the image. Once lines are detected in that

portion, we checked the rest of the image for points along those lines. Although this

would use fewer cycles, it turned out to be much less accurate in most cases. Since the

road lines are often dotted lines, there was not always enough of the line in the bottom

portion of the image to get a high enough Hough value to indicate a road line. We

decided to sacrifice efficiency for accuracy and stick with an exhaustive search of the

Hough plane.

4.3.4 Other Possible Methods
 There happens to be another way to accumulate for the Hough transform. Our

method goes to each pixel and checks every possible angle through that pixel. Another

way to do this is to project lines at every angle across the image. The difference between

18-551 Group #4 15
Final Report Car Eye for the Drunk Guy

the two methods is that they go at the problem from different direction. Our method goes

through the image pixel-by-pixel only accumulating for white pixels thus only

accumulating where accumulation is necessary. The other method goes through the

Hough space angle-by-angle looking at each possible line and finding a total for the

number of white pixels along that line in the original image. With this second method

many false lines will be searched and although the search will be in constant time it is

still less efficient than our method. Because our images have large regions of 0 pixels,

this method would require many unnecessary calculations. Additionally, our line-finding

filters do a good job of eliminating parts of the image that are not road lines, so most of

the pixels that the accumulator looks at give us useful information about where the lines

are. The projected angle method would be more suitable if we wanted to find lines in a

more randomly drawn image.

4.4 Lane Change Detection
 Since the Hough transform traces out the lines of a lane, it is easy to determine

when the car is changing lanes. Due to the perspective of the camera, when the car is

centered in the lane the road lines appear to lie at the two bottom corners of the image

and converge at the center of the top of the image. As the car leaves the center of the

lane, one of the lines will become more and more vertical and the bottom of it will move

towards the center of the image. Thus a lane change is detected when the bottom of a

line intersects the bottom of an image between the 80th and 240th pixels. When this

occurs, a rectangle appears in the upper left corner of the image to show the user that a

lane change is detected.

5. Video Postprocessing
 After a frame is processed, the EVM draws the two best lines for either side of the

lane and a possible warning square in white on a black background. Below are two

images which show the two cases returned by the EVM:

18-551 Group #4 16
Final Report Car Eye for the Drunk Guy

Centered in lane

Changing Lanes

This simple image is then sent back to the PC for postprocessing. Before a frame is gray

scaled during preprocessing, its color data is saved in a buffer to await Hough lines from

the EVM. Once these lines are returned to the PC, they are placed over the saved color

data to produced a new video frame with Hough Transform lines. This is done by ORing

the Hough Lines with the blue channel of the original color data. In this way all data that

appears in the black regions of the Hough Lines will pass through unchanged while the

white lines will appear as blue lines in the color image.

The PC code then uses the CAviFile class obtained from

http://www.codeproject.com/bitmap/createmovie.asp to string the new frames together

and create a new AVI file that can be viewed by the user. CAviFile has an extremely

simple interface that has only two methods: a constructor and an append frame function

making it easy to create new AVI files from bitmaps.

6. Synchronization of EVM and PC
One of the most difficult steps involved in designing fully functional code is

synchronization of communications between the EVM and the PC. Essentially, the job of

the PC through each iteration of operation is to find the next frame from the video and

send it to the EVM. The EVM then processes the frame and returns an image containing

only the road lines and possibly the warning indicator. While the EVM is calculating this

image, the PC is preparing to transfer the next frame to the EVM. Once the EVM is done

18-551 Group #4 17
Final Report Car Eye for the Drunk Guy

processing, the image that it returns is received by the PC and immediately the EVM is

sent the next frame. The PC then inserts the returned road line image into the previous

frame of the video and inserts this frame into the output video. The PC then moves on to

finding the next frame of the input image. Throughout this process, the PC sends and

receives images from the EVM using HPI transfers while PCI transfers are used on the

EVM side.

7. Speed and Memory
Our program requires approximately six seconds and up to 400 million cycles to

process some of the more complex frames. 300 million of these cycles are spent in the

accumulation phase of calculating the Hough transform. Most of our attempts to improve

efficiency in the Hough transform were merely ways of calling the accumulator fewer

times but since in doing this accuracy was sacrificed, we decided to do exhaustively

accumulate all points that are potential lines. The accumulation process was improved

slightly in that the range of angles that was accumulated was roughly halved but this step

still seems to take an exorbitant amount of time.

One of our methods for improving efficiency was switching the memory locations

of certain variables from SDRAM to SBSRAM since SBSRAM is significantly faster. In

order to do this we had to eliminate variables such that all of the malloced data would fit

on SBSRAM which has a smaller memory size than SDRAM. With these variables gone

we had to shuffle data back and forth between the remaining variables which turns out to

work rather well since at any given time there is only one input image and one output

image.

8. Results

8.1 Successes
Our program is able to find the lane boundary lines in almost every case. Several

things that we were concerned about early on in the project ended up working out fine.

These include issues with shadows, road curves, traffic, and road surface imperfections.

Because of the dynamic way that our program handles shadows and contrast, it is

able to find the lines even when it is difficult to see the lines with human eyes. As long

as the road lines are identified correctly, it is easy to determine when the car is out of its

18-551 Group #4 18
Final Report Car Eye for the Drunk Guy

lane, since this condition depends on the angle of the line as found in the Hough

transform.

Another concern when we began this project was how it would handle curves in

the road. This turned out not to be an issue, since the curves in the freeway are very

gradual so they still appear straight enough for the Hough transform to find them without

difficulty. There is no noticeable difference in how well our program identifies lane

changes when the car is changing lanes while the road curves.

Since we deal with real driving conditions, we have to deal with traffic. Since our

program only looks for narrow, bright objects when looking for road lines, most cars do

not affect our program’s effectiveness. Occasionally part of a white or shiny car will be

identified as a possible line, but usually the actual lines are more prominent in the Hough

transform. Another issue with traffic is cars blocking the road lines. For a car to take up

enough area in the image to have the possibility of blocking road lines, we have to

tailgate it extremely closely. Still, it would need to be changing lanes in front of us to

completely block one of the road lines. Such a situation is very rare in real driving.

The roads in the Pittsburgh area are in horrible condition. We originally thought

that road surface imperfections such as potholes, oil marks, and road repair lines would

be difficult to deal with. However, these all show up as darker areas of the road, so when

our line-finding filter scans the rows, they are always below the brightness threshold.

Basically they are treated the same way as shadows.

8.2 Failures
While our program usually finds the road lines accurately, it does make

occasional mistakes. Sometimes our program will choose one of the lane boundary lines

for another lane or the edge of the road as the best line. This can be solved by comparing

the location of the current lines to the locations of the previous frame’s lines and

requiring that the current line is close to the previous line. Also there are some errors

where a line at a completely wrong angle is identified as a road line. This can be solved

by requiring that the current line’s angle has not changed very much since the previous

frame. By requiring these two conditions our program will almost never identify the

wrong line.

18-551 Group #4 19
Final Report Car Eye for the Drunk Guy

Another type of failure is when the program does not find any lines that are strong

enough to be identified as road lines. This is usually because the paint has faded so much

that the line has all but vanished, or because the line has been covered by black road

repair marks. When there is no significant dark-to-light contrast where the line should

be, our program will not find a line. The only way to address this is to reduce the line-

finding filter’s threshold, which will reduce our program’s accuracy in finding real lines.

9. Conclusion
We are pleased with the results of our project. It works superbly in nearly every

situation. Sometimes it sees the lines even better than a human driver. However, we are

disappointed with our program’s speed. It takes a very long time to process each frame.

It would be useless in an application that requires real-time performance. It would be

interesting to see this run on faster hardware with more memory. It would also be

interesting to see this system integrated into a real car driven by real drunk drivers.

9.1 Future Improvements
 There are several ways our program could be improved if only we had more time.

One way is to change how we generate our grayscale images. For our grayscaling, we

only take one color channel into account. It may be possible to get better contrast by

mixing the channels with different levels of each color to find the mix that brings out the

most contrast between the road and the lines. Another possible way to improve the speed

of our program would be to use a sine look-up table instead of doing trig calculations

from within the accumulator for example which is called sometimes thousands of times

for a frame. This would save a huge amount of processing time because we could simply

perform the trig calculations once when we first start our program then refer to the results

when we need them without having to recalculate the values.

18-551 Group #4 20
Final Report Car Eye for the Drunk Guy

10. References
1) F. Dellaert and C. Thorpe, “Robust car tracking using Kalman filtering and Bayesian
templates," in Proceedings of SPIE: Intelligent Transportation Systems, vol. 3207,
October 1997.

2) F. Dellaert, D. Pomerleau and C. Thorpe, “Model-Based Car Tracking Integrated with
a Road-Follower," International Conference on Robotics and Automation, May 1998.

Both of these references were useful in terms of general knowledge about current

ongoing research about automated driving systems. Neither provided any information on

Hough Transforms or the other algorithms used in this system. Furthermore, both

focused on the issue of car tracking while road and lane detection were more of a side

note.

3) AVIFile Interface, http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/multimed/htm/_win32_multimedia_functions.asp

This web site provides extensive information about the AVIFile interface and its

functions. Each function is thoroughly explained with arguments (which themselves are

thoroughly explained), return values and header files. Other places on the MSDN site

also include extremely useful code examples that use the various functions mentioned.

One can also read about these function by looking at the help from Microsoft Visual C++

6.0.

4) Saving bitmaps to disk, http://www.jeffheaton.com/source/sbitmap.c

This web site provides a C file that will save a bitmap to disk. Such code was useful for

debugging the preprocessing code on the PC and the processing code on the EVM.

5) Creating a movie from bitmaps, http://www.codeproject.com/bitmap/createmovie.asp

The Code Project provides a lot of useful information about creating movies from

bitmaps. It gives a detailed description of the code and how to use it and provides links

to download the necessary libraries to get the code working in VC++ 6.0.

