
18-551 Digital Communications and Signal Processing Systems Design

��������	
��
���
	������

Group 12: Ammar El Seed, Girish Jattani, Mona Zhe

1. Introduction

In the music, theatre, and film industries, getting the right shot is everything.

Specifically, adjusting cameras to keep the singer/actor in the right view can make or

break the experience. For a cameraman at a concert, it is a difficult task to operate the

lift that moves him around in the set whilst trying to track the target person.

1.1 The Problem

Our goal, therefore, is to design an autonomous system to identify and track a person,

so that a camera with many degrees of freedom can always orient itself towards the

face of the person. The applications of this system extend throughout society- we could

use it to film a live concert or theatre production without the need of a cameraman, for

surveillance, or tracking specific players at sporting events. For such a system to have

this capability, we outline the following tasks:

1) Recognize the presence of an object in a confined area

2) Distinguish an object as human or nonhuman

3) Decide the direction of the movement of that person (for example

approaching / going away / left / right).

1.2 The Solution

We propose a silhouette-based body-shape recognition algorithm1 that takes in an input

frame and compares it to a background frame. One of the advantages of this method is

that it implicitly looks for the macroscopic features that classify a silhouette as a human.

To give a brief overview of our system, the input and background frame are first

converted from RGB to grayscale (color is not needed). The frames are then

differenced and the resulting image is thresholded to give rise to a binary image. This

binary image then undergoes morphological filtering, blob coloring and if any blobs of

interest are found, the regions of interest undergo statistical analysis.

1 Based on Kuno and Watanabe’s Automated Detection of Human for Visual Surveillance System

We implemented the blob detection, the morphological filtering and the human

recognition algorithms on the DSP board leaving only preprocessing stages such as

downsampling the high resolution BMP files to the PC. In the next section, we will go

over in more detail the overview of the system.

1.3 Prior Work

Human detection has been for a long time a research interest to many academics.

Some used silhouette-based methods to recognize humans, others used skin-color to

find humans and still others studied the gait cycle of walking humans. In terms of

previous 551 projects, only one project (Spring 2002 – Face Detection for Surveillance)

is somewhat related. Even then, the similarities are superficial; that project involved

detecting human faces in static pictures using a skin-color method. Unlike our project, it

did not deal with video and it was never fully ported to the EVM. Thus our project is

unique in that it is (we think) the first time that a human detection algorithm is

implemented in hardware.

1.4 Constraints

We set constraints on our project to make it more feasible for us to finish it in the limited

time that we have. These constraints revolve around the assumptions that we made.

These assumptions include:

a) Environment does not change much, with minimal light variation.

- This assumption is vital to the functioning of background subtraction,

i.e. the frame differencing mentioned earlier will fail if the background

changes dramatically. The same holds for lighting- if illumination

changes then the amount of noise in the background subtraction will

increase as well

b) Camera remains stationary – this is just specific to our project

implementation.

c) Sufficient lighting available in the scene and a considerable difference in

contrast between the background and any moving foreground entities

(including humans)

2. System Overview

Our system can be broken up into 3 separate stages:

1) Online processing on the PC side

2) Online processing on the EVM side

3) Display of results graphically into a GUI

STAGE 1: Online processing on the PC side

The PC takes in as input the current frame and the background frame. It then does the

following:

1) Downsampling – the initial resolution of the images is much higher than what we

require so we decided to reduce the sizes of the images before further

processing.

2) Background subtraction – differencing between current frame and background

frame

3) Thresholding for binarization

STAGE 2: Online processing on the EVM side

The EVM takes in the binary image and does the following:

1) Performs morphological filtering (dilation followed by erosion)

2) Blob Coloring (i.e. the EVM finds all the blobs in the frame)

3) Silhouette Analysis (Used to determine if the blob in question is human or not)

4) Send bounding box coordinates of each blob found to PC

STAGE 3: Display of results graphically into a GUI

The PC takes in the bounding box coordinates and the respective (colored) bmp file as

input, it then displays the bmp file but superimposed on it are the circumscribing

rectangles around all the blobs found previously.

The following is a flowchart summarizing the above:

Downsampling of image

Background subtraction

Thresholding (to get binary
image)

Display results in GUI
(humans circumscribed by
white bounding boxes
whereas non-human blobs
circumscribed by black
bounding boxes)

PREPROCESSING

Morphological Filtering
(dilation followed by
erosion)

Blob Coloring

Silhouette Analysis

Send bounding boxes
coordinates and
direction of human back
to PC

PC SIDE EVM SIDE

In the next section we will discuss our MATLAB implementation of our project and the

results we got out of using this implementation on frames taken from the MOBO

Database.

3. MATLAB Implementation

MATLAB proved very helpful when it came to simulating our project. Many of the

functions that we were to later implement for our project were already provided, for

example, imdilate() and imerode() performed dilation and erosion respectively.

MATLAB also proved a good test bed for trying different structural elements to come up

with better silhouettes.

We wrote a function that called on provided routines to first read in the input and

background frames, then to perform conversion to grayscale followed by what Kuno and

Watanabe called the extraction function. The extraction function is used to aid in

determining the threshold value for binarization. This is especially important if the

brightness changes due to the moving foreground object (i.e. new object in scene) are

small.

After that, we carry out the morphological filtering using a tall and thin structural element

on the output binary image. In order to find the desirable silhouette, we call on bwlabel

and use the heuristic that if any humans are present, then chances are the human(s)

are the largest blobs.

Now that we have the desired blob, we can carry out silhouette analysis on it. In the

next section, we will go into depth what silhouette analysis exactly entails and we will

also look into the results of running our MATLAB implementation on the

MOBODatabase.

3.1 Statistical Analysis

Assuming that we have a silhouette circumscribed by a bounding box, we can start to carry out

statistical analysis. This is done by first dividing the bounding box enclosing the silhouette

vertically into three equal segments, segment A – head, B – torso and C for the legs. The

projection histogram of each segment then undergoes statistical analysis. The projection

histogram is defined as a vector with length equal to that of the number of columns in the

bounding box; each element in the vector is the sum of all white pixels in the respective column.

The following is a graphic example:

According to the Watanabe paper, the following quantities need to be extracted from the

projection histograms (note that this method only uses information from one frame):

I – Mean of each segment

The mean is defined here (as it is in the Watanabe paper) as the centroid of the projection

histogram for a single segment. This value represents exactly where the white pixels are in the

highest concentration along the horizontal axis. That is, the mean represents roughly where,

relative to the left and right boundaries of the bounding box, are the white pixels mostly

The top diagram is an example of a silhouette of a person walking left

across the frame.

Note that the projection histogram for segment C (the bottom one) has

two heaps. This directly corresponds to the two legs. Similar remarks

can be made about the head and torso sections. Also note that the

heaps in both the head and torso segments are distributed mostly

halfway between the two vertical edges of the bounding box.

The above observation will prove critical in determining whether or not

the silhouette is human, as will be discussed in the next section.

concentrated. The mean takes on values between 0 and 1, where 0 represents the extreme left

(i.e. all the white pixels are on the leftmost column) and 1 represents the extreme right.

The formula for the mean is given by the following equation:

itePixelsSumTotalWh

xelsNumWhitePiNumIndex
mean

� ×
=

where NumIndex indicates the column number, NumWhitePixels represents the total number of

white pixels in that column and SumTotalWhitePixels is the summation of all the white pixels in the

projection histogram of that particular segment.

This number is then further normalized to the width of the bounding box. In other words, the mean

is further divided by the number of columns in the bounding box. The reason why we need to

normalize this mean value is to account for different sized bounding boxes, depending on how

close the person is to the camera the size of the bounding box will get wider as the person

approaches and vice versa.

The following shows an example of a projection histogram extracted from section B of one

silhouette with the mean (before normalizing it) indicated by a solid line:

In other words the center of mass lies somewhere around index number 140. Hence half of the

white pixels in this segment are on either side of the 140th column.

II – Comparison of the standard deviations of the segments

According to the Watanabe paper, the differences of the standard deviation between the

projection histogram of segment A and segment B, and differences of the standard deviation

between the projection histograms of segments B and C reflect the general form of humans.

The standard deviation per segment is calculated using the following formula:

itePixelsSumTotalWh

xelsNumWhitePiNumIndexmean
std � ×−

=
)()(2

where mean refers to the quantity given by the first formula (i.e. before being normalized).

NumIndex, NumWhitePixels and SumTotalWhitePixels are as defined above.

The standard deviation shows the relative distribution of the white pixels around the mean value,

as the following diagram shows:

The two lines to the left and right of the mean represent the lines x = mean - std and x = mean +

std.

Now once these calculations are done for each segment, the difference is taken between stdA

(standard deviation of segment A) and stdB. The difference between stdB and stdC is also

calculated.

III – Aspect Ratio

The aspect ratio is calculated by dividing the number of rows in the circumscribing bounding box

by the number of its columns. This number will roughly reflect the height to width ratio of the

silhouette:

In the next section we will go over training the algorithm and will show how the results we got

affected which quantities we ended up using to carry out human detection.

For upright walking humans, we

expected the aspect ratio to vary

over a restricted range.

H
E
I
G
H
T

WIDTH

3.2 Database Analysis of training set

For our training set, we used a subset of the huge MOBODatabase; we used frames of three

different people, in 6 different poses each, with 300 or more frames per pose. So that amounted to

a bit more than 5000 frames. Here are a few examples:

In order to go through each frame in one batch automatically we wrote a MATLAB M-file that loops

through all the images in the batch calling the function described earlier in this section. The

values for all the aforementioned quantities were stored in long arrays.

Here are the results we accumulated 2:

2 Note: each figure represents results accumulated across all the people, across all the different
poses

Results for Aspect Ratio:

This next figure represents the numbers we got for aspect ratio:

Analysis of Results

The average value of aspect ratio = 2.9004

 with standard deviation (MATLAB defined standard deviation; not the above) = 0.6557

As anticipated the aspect ratio varied within a constrained range with most of the values lying only

.6557 away from the mean. We thus concluded to use aspect ratio as a rough criterion for human

detection.

Results when comparing the standard deviations of the different segments:

The following figure shows the results we got when we calculated the differences between the

variances3 of the two top segments:

Analysis of Results

Studying these results, we realized that not only do these values oscillate considerably over

different people and poses, but they also oscillate uncontrollably over one person, over one pose!

That was a clear indication that this differencing will not serve us well as a good biometric. We

thus decided to not use it.

3 We ran into problems trying to plot the small values of standard deviation. So we decided to
use variance (standard deviation) ^ 2 instead.

Results from the Mean values of each segment:

The following figure shows us the values we got for the means of all three segments:

Results Analysis

On average, the mean for each segment was around 0.5, that is, the number of white pixels

were distributed almost evenly across the middle of each segment. Since these values were

independent of pose or person, we found these mean values to be good metrics for human

detection.

In the next section we will discuss how we ported our code to C and more importantly to the

EVM. We will also highlight the changes that had to be made for our project to work on the

EVM.

4.1 Algorithmic Motivations and Implementation Decisions

The Watanabe paper is extensively utilized as a guide throughout the implementation of the

project. However, our implementations on the EVM deviate from those outlined in the paper

and are derived, instead, from our own Matlab training set (the Mobo database) results. In

general, we found that the details presented in the paper were not sufficient to form a

concrete basis for grey scaling/image thresholding, morphological processing (dilation and

erosion), and blob coloring. In order to resolve these issues with the paper, we decided to

create a testing program that would allow us to test and observe single frame results based

on varying thresholds for each respective function. Once these values were determined, we

could then shift our efforts to examining multiple successive frames. Therefore, the overall

algorithm for human detection and motion tracking was conceived from scratch.

Figure: Results of a database image undergoing background subtraction.

(Clockwise from top left: the grayscale background, the grayscaled scene to be

analyzed, the output of background subtraction)

Morphological Processing

Simply processing the frame difference between the background and the current frame

would be a quick way to figure out where objects occur in the foreground, however blob

coloring results would be horrendous because the images are still highly segmented

and jagged. Initial image subtraction results from our test program verified these

assertions as they contained significant noise in the form of the background interfering

with the foreground color. Take for example the sample run from our training set on the

previous page- note that the monitor in the background creates a large hole in the

center of the man’s stomach. Similarly, if the man were in a different position relative to

the monitor, he may even be segmented in two different blobs. We would therefore

need an additional level of processing which would remove the variability caused by

similarities in the background color and the foreground color.

As with any morphological processing, great care must be taken to choose the right

structuring element. A significant performance tradeoff occurs with a more complex

and/or larger structuring element versus a smaller and/or lesser complex one. A bad

structuring element may also enhance noise to the point where it could affect results by

causing false positives. Another factor we considered in the design of the element was

the aspect ratio data, which approximated that the lowest possible ratio of height to

width (on average) for a human was 2.2. Therefore, modeling a structuring element

along these parameters would assist in recreating the overall human structure.

Combining this reasoning with our previous logic, we settled on a 9x9 pixel grid, where

the middle four columns were ‘on’, yielding an element with a height to width ratio of

(9 / 4) = 2.25, just barely over our analysis’ recommendation.

The actual implementation of the dilation and erosion filters- searching for the maximum

and minimum pixels that surround a given pixel and reside in the structural element is a

very costly implementation. The code will always execute the inner most loops.

However, the dilation can be interpreted in a manner that avoids executing the inner

most loops only when absolutely necessary. Our dilation algorithm takes every on pixel

in the image and superimposes the structuring element around it. Thus, when a pixel is

off, there is no need to iterate through the structuring element to find the maximum

value. If a pixel is on, then the maximum value at any points which correspond to

neighbors (as specified by the structuring element) will be turned on at some point.

Otherwise, if a pixel is off, it cannot possibly contribute to the maximum value to pixels

that are its neighbors as defined by the structuring element. In terms of loop structure,

the inner loops never occur if a pixel is off. Similarly for the erosion, there is no need to

search for a pixel’s neighbors if it is off already, the most that can happen to it is that it is

turned off again.

Figure: Results of dilation, erosion on a binary image, with the 4x9 structuring element.
(Clockwise from top left: original binary image, dilation result, and erosion result)

Blob Coloring
Now that the image had some consistent structures in it- e.g. ‘blobs’, the next step in the

processing of this image was to come up with an efficient method of labeling these

clusters of pixels. Each of these blobs could then be evaluated as a potential candidate

for a human by our statistical analyzer. Standard blob coloring algorithms involve run

length encoding or recursive region growing. Our blob coloring works as follows:

Sum up the number of on pixels for each column and store them in an array called

colSum. So colSum[w] corresponds to the number of on-pixels in column w.

1) Traverse through the colSum vector. If an entry (colSum[w]) has enough on-

pixels, meaning that it exceeds our threshold for a column sum, then we store the

column number w as the start of a possible blob (call it wStart). Once we

encounter a colSum[w] less than the threshold, then we store the index number

w as end of the blob (call it wEnd). If the difference between wEnd and wStart is

below our defined width threshold, we consider it to be too skinny and we then

discard that blob. Otherwise, we store its starting point and endpoint in an array

of possible blobs that we want to examine (i.e. carry out silhouette analysis) later

on.

2) We repeat the steps above until we reach the end of colSum.

3) We come back, this time, examining the horizontal threshold. Also, we only sum

up as far as the starting point and the endpoint of the blob stored earlier on from

the column analysis. If the resulting blob is thick enough, we box it up, and send

its coordinates to segmentation analysis for it to determine if the blob in question

is human or nonhuman.

Motion Analysis

Now that we have found a human, we will try to track the movements of the human

across sequential frames. We felt that focusing on the relative motion of the center of

the bounding box across multiple frames will give us the results we needed. In order to

figure out whether or not a person is moving across the frame (i.e. left or right), we

compare the x-coordinate of the center of the bounding box in the previous frame with

the x-coordinate of the current frame. If the difference is greater than a certain

threshold, we then use the sign of the difference to figure out whether the person moved

to the left or to the right. If however the subtraction gave rise to a number that is smaller

in magnitude than the threshold, then we compare the y-coordinate values of the two

centers (i.e. the center of the bounding box in the previous frame and the center of the

bounding box in the current frame). We used the heuristic that if the person is

approaching, then the y-coordinate of the center of the bounding box in the current

frame will be greater than the y-coordinate of the center of the bounding box in the

previous frame. Likewise, if the person is moving away from the camera, then the y-

coordinate of the center of the bounding box will decrease between the previous and

the current frame.

Formats and Conversion

As part of the preprocessing, it was necessary to convert the input video files from the

camera into a series of images. The camera used (Canon Powershot A70) stores

videos in the AVI format, but the C++ image library used could only read in Windows

Bitmaps. To remedy this, we used Adobe Premiere 6 LE, which had the option of

outputting an AVI file to a sequence of Bitmaps. These Bitmaps were then transferred

over onto the PC with the EVM for use during our demonstration.

Adobe Premiere also provided the ability of resampling the video, which was necessary

because the camera's sampling rate was 30 frames a second. In order to provide some

realism and remove unnecessary processing, we decided that 5 frames a second would

be sufficient enough for the motion of a human to be tracked reliably. At the same time,

we would be able to supply near real time results because the delay from processing

would span the gap in frame updates (5 frames/second is equivalent to .2 seconds per

frame).

Optimizations

After identifying which algorithms we would use and testing their correctness, we

needed to optimize the code. We chose to evaluate our optimization on a few different

levels- project/compiler, file, memory, and function. Looking at each in turn allowed us

to systematically improve the performance of the code overall.

At the project level, our initial settings were set to only register level. This level of

optimization only attempts to reuse registers more efficiently. Under Code Composer we

changed the project build options to enable file level optimization ("-O3"), which is the

highest level of compiler optimization. Enabling this level of optimization allows register

level optimizations as well aggressive loop unrolling (to minimize looping/branching

overhead), elimination of global common sub expressions (cutting down on repetitive

calculations), and removal of dead and non-effectual code. As shown in the table,

changing the level of optimization resulted in the most significant performance benefit.

<See figure of overall results below> Another interesting property of the Code

Composer compiler is that the code's execution speed isn't necessarily inversely

proportional to code size, especially at the file optimization level. Thus, the fastest

performing code is also the smallest, which yields the added benefit of assisting in fitting

all of the code onto the EVM's on chip memory. At the memory level, this allows for the

fastest possible instruction fetch times, since the code resides the shortest possible

distance away from the CPU.

Pre and Post Optimization Performance Results

0

10

20

30

40

50

60

M
ill

io
n

s

Function

A
ve

ra
g

e
C

yc
le

 C
o

u
n

t

Before

After

Before 5848940 14893117 343487 3704415 49277556

After 4851183 9538074 40810 343497 27780625

dilate erode
get segment

stats
box it

frame
analysis

Our initial goal was to make the code small enough so that it would fit within the 64-

kilobyte limit of the on chip memory. Therefore, the initial focus was away from

optimizations. However, once the goal of code size was attained, the next step was to

look at the most frequently executed code. We were not surprised to find that our

get_pixel was called the most frequently, because the morphological filtering, segment

analysis, and most importantly, the blob finding algorithm use it extensively. To remedy

this, we decided to force get_pixel to be inlined. Inlining functions in general tends to

increase the overall code size, but because we had ample space left in the on chip code

section, we were able to utilize this. This helped reduce the amount of cycles

tremendously because get_pixel was almost always being called from within a loop.

The next objective was to optimize the higher level and algorithmic approaches in our

code. On a function-by-function basis, a few consistent optimizations were attempted.

The first of which was manually unrolling loops which iterated over the entire image, or

at other known blocks. For example, in our “blob-coloring” function box_it(), the

calculation of column pixel sums was unrolled nine times, and the calculation was

forced to accumulate in three different registers. These two techniques combined were

used again in the dilate_image() and get_seg_stats() functions.

Specifically, for the image dilation, we made use of the fact that the filter was

rectangular, and eliminated unnecessary iterations of the inner loop, and unrolled the

rest out. The filter’s structuring element consists of a rectangle standing up, with four

columns of on pixels. The loop was organized to access the filter in row major order so

that the inner loop could be unrolled to all four of its columns in parallel. Also, repetitive

calculations are forced to temporary variable, which improves the chances of the

compiler assigning a register to it, thus cutting down on the number of memory

accesses.

In terms of the get_seg_stats function, instead of iterating three times in a generic loop

for each segment, we chose to unroll them immediately. The memory access pattern

across the loop body will therefore remain consistent and prevents the pathological

case of memory accesses to each segment where one segment’s data overwrites

another segment’s data in the cache.

Finally, the last technique used was the parallelization of calculations. This was realized

in the ‘blob coloring’ function box_it. Recall that box_it functions by initially calculating

every column’s total on pixels, which are then used to find continuous runs of on pixels

horizontally. Dividing the task of summing between three registers allows for

parallelization because previous cycle’s calculations will be relatively independent of the

current calculations. This in turn also takes advantage of the Very Long Instruction

Word architecture that the EVM has adopted because more instructions can be fed into

the EVM’s ALU’s for concurrent processing, which in this case is the accruing of an on

pixel count.

Analysis of Results

To test our human detection algorithms, we chose the following videos for testing

purposes:

The video MechE_lab1 was used, which depicts a person walking from right to left, and

then back. We used it to see verify that our algorithm could detect a human walking

across the camera. The major issue with this video was the noise created by the

reflections in the metal tools hanging on the wall behind the human. We found that

about 72% of the time, it was able to identify and track the human. The most common

cases of false negatives occurred when the person made a large stride in a direction.

This stride caused the bounding box to stretch in width, causing it to almost become a

square (since the height decreases as well). As a result, it fails the aspect ratio test and

the algorithm determines that the blob is non-human. Another interesting complication is

when the person is about to leave the scene, that is, when he is around the edge of the

frame. It is possible for a blob to be found at the edge of a scene (possibly on a human)

and in some rare cases, the aspect ratio falls within the range for humans, and the

mean tests for all three sections pass as well. In these cases, the algorithm will return

that a human blob was identified, even though it does not box up the entire human

figure. Other times, however, it will see that it’s only half of a human figure if it is a

human, so it would output nonhuman because half of the body’s mass is inside the

frame and the rest is outside while the person is walking side to side. In this case, then,

mean test fails, and is usually due to the other leg not being present to balance out

those values in the last segment (the bottom third of the human).

In the video MechE_lab4, the person is still walking across the frame with the same

background. However, this time, he is wearing a very light shirt. In fact, it was so light

that it almost blends in with the grayish background. The result of this, unfortunately,

was not so good, but is expected because the difference between the background and

the foreground falls below the threshold. For this video the success rate was only 43%.

Most of the time, the only part of the body that was detected was the person’s head,

which was relatively darker than the rest of the body. When only the head was detected,

it would immediately fail the aspect ratio metric. In this case, the width of the bounding

box is correct, but our algorithm does not scan all the way down the human if it

encounters a row in the bounding box that is below the threshold. Although stopping the

vertical scanning for blobs can hinder the detection of humans, it can also produce more

accurate silhouettes because it limits out the effects of shadows or other blobs that are

near the human, as is the case in the next video.

In the beginning of MechE_lab6, a person is pushing a stool across the frame, but later

stands up and walks towards the camera. We constructed this odd scenario, because

according to our algorithm, we wanted to check our prediction that it would not identify

the human and the stool as being human together as one blob. Indeed, as we thought, it

did not see the person and the stool as a human. Both the aspect ratio and the means

test failed the required range. However, when the person pushes the stool away and

begins to stand up, the output does indicate that a human is detected, and it also

verifies that the direction of the person is towards the camera.

The last video taken in the Mechanical engineering lab was MechE_lab2. This video

shows someone sweeping the floor with a broom. In this scenario our algorithm is able

to separate the bottom of the broom and the human as two separate blobs, and

identifies each correctly- the man as a human and the broom as a nonhuman. Because

of the nature of the action of sweeping the floor, the bounding boxes vary very widely in

ratio- sometimes the person is standing straight up and at others he bending and

reaching out. Nevertheless, we found a success rate of 87% for this particular test.

Unless the person bends down or reaches for something in an extreme manner, which

severely messes up the aspect ratio, it will generally detect the object as human, even

though he had a broom in his hands. The broom itself does not pass any of the tests, so

it is being correctly classified as a nonhuman as it should be.

Another interesting video, called Steps, was taken in front of HH. Here we tested out a

scene in which more than one person is present. Another intriguiging aspect of this film,

was that this scene was outdoors in daylight- a highly variable environment. At the point

of peak activity in the film, there are 5 people in the scene. Over time, person A walks

obliquely in front of the camera back and forth. For most of the time, it can accurately

identify the human. Person G also walks about in front of the camera. Here the success

rate is 75%. However, a brick wall takes up some room in front of the camera. So when

G walks up too close to the wall, his leg disappears underneath that wall and his aspect

ratio is thrown off, which immediately comes back as nonhuman. However, once he

gets to a point where enough of his legs show from behind the wall, we are able to

correctly classify him as human. Person S wears a striped shirt, but is wearing a jacket

and a pair of pants that have almost exactly the same color as the background. For the

time that is a part of the scene, he does get identified as being an object, but not as a

human. It is not until he moves close to the camera that the system can classify him as

human. Finally, there are two other people very close together in the background who

exit Hammerschlag’s front entrance (which also changes the background scene for a

few frames). When they first appear, the system is able to detect them as objects, but

cannot identify them asbe human. After approximately 6 frames, the two gets boxed

together as one, because they are about 20 to 30 feet away from the camera and are at

a higher elevation (near the top of the stairs). These results are expected because they

reside in the same columns as the doors swinging shut behind them. As stated before

this does represent a change in the background and causes the probability that those

columns are examined for blobs to increase.

In the Ammar video, a person is walking straight up to the camera, turns and then walks

away. Here, the success rate is 89%. Here the threshold that is used to determine if a

pixel is on or off (so that the image from background subtraction can be converted to a

binary image) gets lowered to 15. This is because the contrast between the background

the new scenes is smaller. This shouldn’t be too big of a deal, because we could write a

program that analyzes the best threshold given a scene and its original background.

The results, however, does show that the algorithm can handle someone who is

approaching or leaving the camera.

In the Box video, there is a moving box that is pushed by a person whom does not show

up in the video. This is used to prove that if there is nonhuman object present in a

scene, the system can accurately identify it as nonhuman. We have a 100% success

rate for this video.

Finally, in the Mona_Smirk video, there is someone who is initially moving across the

camera, but then starts approaching. Even though the system can lose track of where

the human is in some frames, it does, overall, conclude that the human is moving

across and then approaching the camera.

So overall, to conclude the most common problems we had in identifying human were

the following:

1) If the figure has a small contrast in respect to the background, the system will

not accurately define the object as human

2) If the figure gets cut off, the system will not see it as human.

3) If the person is in a pose such that it fails the range of the aspect ratio, the

system will obviously not see it as human.

In summary the results over these videos can be summarized as follows (we omitted

the video with the chair since we didn’t know whether the human and chair should

desirably be classified as a human or nonhuman):

MechE
Lab1

Ammar MechE
Lab4

MechE
Lab2

Steps

False Negatives

False Positives
True Negatives

True Positives

0

2

4

6

8

10

12

14

16

18

20

Number of Blobs

Movie Name

Human Detection Results

GUI (Demonstration System)

For our demo, we used Visual C++ to create a user-friendly GUI that using a drop-down
box enables the user to pick the movie to be analyzed. After highlighting one of the
selections, the user presses the “play” key. This loads the relevant .bmp files (already
extracted from the AVI). Once the loading is done, and after the user clicks OK on a
couple more message boxes the modified .bmps will then be displayed as shown below:

 white boxes – indicate that the circumscribed silhouette is that of a human
 black boxes - indicate that the object detected is not human

Acknowledgements

We would like to thank Prof. Casasent for his valuable feedback, that made things flow
much more smoothly. We would also like to thank Ralph Gross for generously sharing
his MOBODatabase with us.

References

Algorithm References

Automated Detection of Human for Visual Surveillance System

Authors: Kuno, Watanabe, Shimosakoda and Nagakawa
-1996 IEEE Proceedings of ICPR ‘96

Silhouette-based Human Identification from Body Shape and Gait

Authors: R. Gross, R. Collins and J. Shi
- Int’l Conference on Face and Gesture, October 2002

MATLAB References

http://www.mathworks.com/company/events/archived_webinars.jsp

We found the above website very helpful as it showed us how to carry out different
types of morphological processing on images using MATLAB. We adapted our solution
to closely recreate the results of such morphological processing.

C References

Code for GUI (Visual C++)

All of the following are links to websites that have sample code

http://www.coding-zone.co.uk/cpp/articles/140101imgproc.shtml
http://www.codeguru.com/Cpp/G-M/bitmap/displayingandsizing/article/php/c4905
http://forums.devshed.com/archive/t-74626

