Name That Tune:

Content Searching for Music Databases

Final Report

Digital Communications and Signal Processing Systems Design
18-551 Spring 2004
Group 11

Kort Eckman (kort)
Stephen Mangiat (smangiat)

Leo Soong (Isoong)

Table of Contents

Introduction

Project Description

Prior Work

Solution

Why Hum?

What People Do

Pitch Contours & Note Segmentation

Algorithms

Database

Pitch Tracking

Normalization

Uniform Time Warp

Dynamic Time Warp

k-Local Dynamic Time Warp

Scoring
Optimizations

Memory

Speed
Implementation

Overview

Signal Flow

Memory and Speed

Runtimes

Demonstration

Results

Pitch Tracker Results
Single Query Results
Test Set

Test Set Results

What's Good / What's Not
Conclusion

References

Name That Tune - 1

Introduction

Project Description

For our project, we implement a search engine that seattufteggh a database of songs based
on a hummed input. Popular engines such as Google rely on text kparever, if you do not
know any details about the song, you will have a difficult time finding more information
about the song using a text-based search engine. Our systesalow hum the melody of a
song and it will return the highest matched songs. This isragty useful if you have a melody

stuck in your head and you have no idea what it is.

Prior Work

Both pitch tracking and DTW have been used in past 18-551 projects, though no grolgnéa
a “query by humming” project. There is some research curreethyg conducted by Phillips,
although their technology requires an actual sample of the songtatmhed [7]. Other groups
have recently published papers concerning query by humming. The tshajse note

segmentation, however Zhu and Shasha have used a method that does Wé¢ [adsed our

method on this general idea, though we did not follow their method dkplias their paper

mostly discussed how to improve performance and speed.

Solution

We solved this problem using existing pitch tracking algorithortsainslate the input hum into a
series of pitches. From there we create a continuous pitch wsctemoving any values where
the pitch was unable to be determined. This includes empty sounds, rvaltleireg was being
hummed. We then normalize this pitch vector to help eliminate eramsed by the user being
in a different key. This new vector is then compared against every in our database. The
database was pre-processed and also follows the format of therpitked input. This means

that each entry does not have an empty note and the pitches of each entry areatbrmali

Name That Tune - 2

For comparing the series of pitches from the hum with the datavasgecided to use a DTW
(Dynamic Time Warp) algorithm. We hoped to eliminate err@wssed by changing tempos

with the dynamic time warp.

Why Hum?

Humming is a natural input for a music search system. Fregusimiply hearing a portion of a
song on the radio is enough to get the melody stuck in your he#te rHdio DJ didn’t mention

either the title of the song or the artist, you will be &iss to identify the tune using traditional

text based search techniques unless you can remember a good portion of the lyrics.

So, what is a good way to input a melody into a search endgdre?could potentially sing the
song. However, one can hum a song without having to recall thes.lyrin addition,
instrumental music, which makes up a large portion of the classtalbg, is by nature lyric
free. One could potentially play the song on a piano or violin. Howevekeupllaying a
musical instrument, most people can hum without any special trainiigile whistling could

also be used to input a melody, humming comes more easily to most people.

A hum signal is also a good input for signal processing and pitckirica The hard consonant
sounds, which correspond to bursts of white noise, present in both sindisgeech are largely
absent from a hum signal. Also, great care must be exercisatwhistling into a microphone.

Whistling directly into a microphone will create wind noise that will disttlae pitch tracker.

We found that humming with an open mouth worked better than humming withea chasith.
This is probably due to a louder signal reaching the microphone, themphyving the signal to
noise ratio in a busy lab. This would likely prove useful in néalsituations as well, such as a

loud music store.

Name That Tune - 3

What People Do

Not all users of a query by humming system will be trainedess1 Even if they are, it is very
hard to hum the melody perfectly. Humming perfectly can be defase having the correct
absolute pitch (in the right key), relative pitches (intervalshpt® and rhythm. Very few users
will be able to hum exactly in key with the database entrieselEx estimate as few as 1/10,000
people have “perfect pitch” [5], or the ability to identify a pitcithaut any frame of reference.
Errors in rhythm are also extremely common, as it is unlitedyuser will bother to tap his or
her foot or listen to a metronome while humming. On the other hand, nsany, even with no
musical training, will be able to hum the intervals reasonably. i@bbal tempo, which can
easily be accounted for, is of little interest. The real degifiéature of any melody is the relative
pitches. In equal tempered tuning any melody can be played in ewewyitkeut any real loss
(aside from personal taste). Because of the use of normalizattbdynamic time warping, the
features of a melody have essentially been narrowed down twegéch. If the user can hum
these intervals reasonably well, as is common, then the systebewible to correctly identify

the melody.

Pitch Contours & Note Segmentation

Most of the pre-existing query by humming systems use pibctioars whereby the user’'s
humming is converted into a series of discrete notes from whichott®ur is then extracted.
The contour information is represented by an alphabet of letté¢tgof up, “D” for down, “S”

for same as previous, “u” slightly higher, “U” significantlygher, etc. The contour database
entries consist of similar strings formed from the same alphalie edit distance between a

pitch contour query and a database entry constitutes their matching score.

One problem with the contour method is that contour information alone uéficrent to
distinguish the entries in a large database [6]. Moreover, fii@ully of segmenting hum input
into discrete notes limits the precision of a contour systemprégent, there is no good note
segmentation algorithm. Thus, the precision of a contour method depends upadesuate

preprocessing stage [5].

Name That Tune - 4

Our approach does not rely upon pitch contours and involves no note segmentatiohindvis
accomplished with time warping techniques. It should be noted th#tteevarping search is
more computational expensive than the string matching techniques useccamtivgr method.
On the other hand, it offers the possibility of greater precisione cbsts of a search can be

reduced using DTW indexing schemes [5].

Name That Tune - 5

Algorithms

Database:

The “Name that Tune” system allows the user to search a detalbanelodies. A significant
issue in query by humming searching is that there can be nmégpye melodies in a single song.
There are two solutions to this problem. The first requires scarthioggh the entire song,
essentially comparing the query against all sections of a-stimg verses, choruses, bridge, etc.
This provides a complete solution for searching a song databasdebuintime of such an
approach increases dramatically. The second approach, the one wehbaee, involves
comparing the query to recognizable “snippets” of a song'sdagelFor example, if the user is
searching for Beethoven’s “Symphony No. 57, it is very liketatthe or she will hum the
opening eight notes that have made it famous. If this snippet isl stotiee database, the query
can be matched to the entire entry at once, reducing runtime. Qfecthe drawback of this
method is that the user must hum something similar to whairesdstWhat if the user happened
to hear a later movement of the symphony, and was wondering wlas® This is a likely
situation, as the other sections are less recognizable dwBee's Fifth. The solution to this is
to store multiple snippets for a single song. Zhu and Shasha ditbthiseir database. They
stored 20 snippets of 50 different Beatles songs, amounting to 1000 daatreese Depending
on the song, there may need to be more or less snippets. Although 1080 ss@ms very large

for only 50 songs, this database method is still Song Title

more scalable then the method that stores [the v
_ _ Beet hoven - Synphony No.5
entire song. Entries are small and DTW can|bg <€——— NumNotes

tot00 <€— Tempo

. 0 55 ¢ Timestamp, NoteVal
complete song scanning. For our database,|weg 55

performed on snippets quickly in comparison

used 42 recognizable snippets from 42 differerf
songs. We chose not to store multiple snippets024 53

for each song because the process is the samei%:gg gg

matching a query to snippets from differentt408 50

songs. As far as the computer is concernec,za048 0 < Terminating Time

Name That Tune - 6

shippet is a snippet. More searchable songs also made for a more interesting dem

Our database is comprised of text files for each entry. Tlegsdiles are read and processed by
the PC on startup. Each file is very small and contains all necessary imbornide total size of
the database is 5.8 kB. For 42 songs, this makes the averagaznaymoximately 140 bytes.
The first line of the text file is the song nhame and itst@composer. This info is returned to the
user. Next is the total number of notes stored. The next vathe fiie is the MIDI tempo of the
melody. Initially, we planned on comparing the length of the quetlie length of the database
entry. If these lengths were very different, then we could assumhentry was not hummed and
return without performing DTW. We decided not to do this methodlesiied the user. A very
fast melody could then be hummed more slowly and still result in a corregdt.n&e rest of the
entry files are the actual MIDI notes associated with @aelody. The notes are paired with a
timestamp, indicating the start of the note. Rest informatiotsised, so each note essentially
extends to the next without overlapping. A note with a value of 0 conseguatitates the end

of the last note.

The database entries were created using MIDI notation sofagamell as MIDI conversion
Matlab code [1]. MIDI files contain information we did not need, suckedscity, instrument
information, and note off timestamps. We therefore used the Mabldé t© strip away this
information and produce a text file containing the notes and their “noteiraeStamps. The
MIDI notation software Sibelius was first used to deleteladrds, accompaniment, and backing
tracks, and to extract the melody snippet. About half of our datatesereated from scratch.
The other half used MIDI files from SAIL that were procesasddescribed above [2]. Song

names and the rest of the information were then inserted at the top of each file.

Itsy Bitsy Spider Maria George Gershwin - Rhapsiodglue
Tchaikovsky - 1812 Overture Take Me Out to the gathe Elgar - Pomp and Circumstance
Mary had a Little Lamb Twinkle Twinkle Little Star Scott Joplin - The Entertainer

Oh Suzanna Wedding March John Williams - Indianzedo

It's a Small World Beethoven - Symphony No.5 Johili&khs - Imperial March
James Bond Theme Beethoven - Symphony No.9 Nina RGbdfather Love Theme
United States National Anthem Duke Ellington - T#ke A Train Nino Rota - Godfather Theme
Happy Birthday Thelonious Monk - '‘Round Midnight kéot - Marriage of Figaro
Offenbach - Can-Can Strauss - Zapf Zarathrusta hBgeh - Fur Elise

The Beatles - Hey Jude Wagner - Flight of the Viadls/ Mussorgsky - Pictures at an Exhibition
If You're Happy and You Know It Bach - Toccata &gue John Williams - E.T. Theme
Jingle Bells John Williams - Superman Mozart - Bfieine Nachtmusik
London Bridge John Williams - Star Wars John Wiitig- Close Encounters
Londonderry Aire Bill Conti - Rocky Vangelis - Chais of Fire

Name That Tune - 7

Pitch Tracking

There are many different methods for tracking the pitch of ssdmglidio, each of which could
have been employed for our project. Zhu and Shasha tested diffiezdmids when applied to
humming and ultimately chose a modified version of the classic pitabker using
Autocorrelation. We therefore decided to go the same route, and¢herpcking algorithm we
used is based on a Fast Autocorrelation Matlab script writterGaseth Middleton [3].
Autocorrelation is an intuitive form of pitch tracking because a pea&kergy will occur when
shifting by the fundamental period of the input. The frequency can then be caldyatwiding
the sampling rate by the number of shifts. The pitch correspondsidétean equal tempered
tuning. These are found by converting into MIDI values using P = 6&*led(frequency/440).
Concert pitch, or A= 440Hz, has a MIDI value of 69. The input to our system is humming, so
the fundamental frequency is limited to a few octaves. Unlesgpara singer is using the
system, this frequency will be under 1kH. The formants of the human voice witlaalse peaks
to occur at higher harmonics. This effect varies if the useosth is closed or if different vowel
sounds are used. The vowel “ah”, which is very easy for the thrqabtluce, has less high
formants than many other vowels, such as “ee”. Therefore, as discussedweflmend that the
best pitch tracker results were produced from inputs using thest@hid. For the purposes of
our project, we could have probably used a sampling rate of 22kHz evilbesgood results. We
chose to use a sampling rate of 44.1kHz for the highest amount od@gcctihis increased the
pitch tracking runtime, but because the hum input is limited tavaséeonds, this was not an

issue.

The pitch tracking is performed on windows of 1000 samples, which corresjgoabsut 23 ms
of sound. This is more than sufficient because it is unlikely taewil hum a note for less than
23 ms. Actually, windows of 1400 samples are used to provide the valuesrifelation when
shifting. To increase speed, these windows are first copied tohipn RAM using DMA
transfers. The difference between the start of each windowynop jsize, is set to half the
window size or 500. This increases the continuity between all oftideked pitches.

Consequently, the resultant pitch track vector is of size inputSize/500.

Name That Tune - 8

The pitch tracker does make some assumptions about the pitch in omEnetse its speed. If
the maximum amplitude of a window is very small, or less than di0#te maximum amplitude
of the entire input, then the tracker assumes there is no pitchricked. The frequency is then
set to O to indicate this. The frequency is also set to zettweifundamental frequency of a
window can simply not be determined. This happens when the peakafttdo®rrelation is less
than a certain threshold. It is also important to note that thesdu6s are removed from the
pitch track vector before being converted to note values. If thedrey of the previous window
is known (nonzero), then autocorrelation is performed with a range tf betiveen 20 less and
20 more than the shift of the previous window. In terms of pitch, tiiger&orresponds to a
different number of semitones depending on the octave. The bound=willthe range of 3 to
10 semitones. Consequently, if there is a very quick leap in piteltegrtaan this range then the
pitch tracker will not be searching for the correct pitckhim next window. This will then cause
the autocorrelation peak to be less than the threshold, resultinffaquency for the window
equal to zero. If the frequency of the previous window is in fact, zeen the autocorrelation is
performed with a range of shifts from 10 to 800. This correspondsrémaeihcy range of 55Hz
to 4kHz and a pitch range of approximately equal to that of aregmano keyboard. This is

plenty of range, considering the only input is humming.

As previously stated, the zeros present in the pitch tracker output arescerivire specifically,

they are changed to the last known pitch. This is not a problens amdact beneficial, because
our algorithms do not rely on note segmentation and rest informatioain,Age results of note
segmentation algorithms are unpredictable and have impaired pastbguenynming systems.
The zeros at the start of the pitch track vector are deletedit®the user has not yet started to

hum.

Normalization

Matching the hummed melody to the database entry corrediifigult if the user hummed an
octave higher or lower or if the user hummed in a different K&y, normalizing the pitches is
key to solving this problem. To normalize, we take the time-weaigmean of the pitch tracked
sample. This means that the longer notes are given more weighththghorter notes. The

Name That Tune - 9

time-weighted mean is subtracted from each element of thetpittked sample. Each database

entry is also normalized in this way.

Uniform Time Warp

Each database entry is different in its duration and number of.n&@e, we take the database
entry and stretch each note, so that it matches the length ofdharpcked hum. Each database
entry becomes matched in terms of length. This helps elintimatiactor of global tempo. The
user can hum the melody for ten seconds or he/she can hum thenstodg twice as fast for
five seconds. Either way, the scores will be adjusted uniformlydaations in the overall

tempo of the hum.

Dynamic Time Warp

The dynamic time warp then finds the shortest ‘distance’ bettireepitch tracked query in note
space and a database entry. The Uniform Time Warp leaves ¢taosvef the same length to be
compared, the hummed query and the database entry. From this, wenpbncsilculate the

amount of error from one element to the next, with the following equation:

i<L

Z (Query, — Dbentry,)? where L is the number of pitch tracked values

i=0
However, this comparison will not be done correctly if the usetsconsistent with his/her
rhythm. So, if the user speeds up or slows down the tempo as he/shdhainwes from the
guery will not be compared with the correct notes from the databntry. For example, if the
user holds the first note too long (in comparison to the length of thg)gtler end of that note
may be compared with the second note in the database entry.

But we wanted to have some allowance for the error of the ussthmn. So we used the
dynamic time warp to accommodate these errors. The dynan@anarp uses a distance matrix
(D-matrix). We chose to build a distance matrix where eaemesit is calculated by the

following equation:

D, ; = (query — DEntry,)* +1

Name That Tune - 10

We add the one to each element to incur a smadllpefor deviations in local tempo. The DTW

allows variations from a straight path and altérs D-matrix by iterating over the following

equation:

Di,j :Min(Di—l,j—l’Di,j—l’Di—:Lj)+Di,j 10 i

The result of the match of the query with the das&b -

entry is located in the top right corner of the Btnix. ¢

The implicit path of the notes that gets comparsec
illustrated with the graph to the right. This luadiy

minimizes the distance between the notes from

[= T VS S S

hummed query with the notes from the database .er

—

We originally used Matlab code by Dan Ellis i
perform DTW [4].

t0 12 3 4 5 6 7 8 9 101

Although we can perform a dynamic time warp ondagbase entry that has not been uniformly
time warped, this will create a bias toward shodi@abase entries. Smaller database entries will
have less numbers to add for the result. So, ti®rm time warp eliminates this bias and

corrects the scores.

11 k-Local Dynamic Time Warp

1 The dynamic time warp allows a tremendous amount

of freedom for variations in tempo. So, in effaatiser

can hum the first note for five seconds and thé aés

6 the melody phrase in the next second. Realisyicall

this will not happen too often, and we can restitet

* time warping range by applying a constraint, suwdt t

the compared elements must be within 40 elements

from the diagonal. The shaded region to the left

0 illustrates the allowed area for the dynamic timerpv

101 2 3 4 5 6 7 8 9@ 10 11

Name That Tune - 11

to follow. This basically restricts the user torhere consistent with his/her tempo. So although
the user can hold a few notes too long or too shevshe cannot completely change tempo. If
the user does, his/lher hummed notes will not mptoperly in the DTW with the notes in the
database entry.

Scoring

The results from the comparisons of the query w#tbh database entry are then used to calculate
a score of how well each match was. The numbezlehents in the pitch tracked vector is
divided by the result of the Dynamic Time Warp andltiplied by 100, giving a result between
0% and 100%. If the user hums a database entty peitfect tempo and pitch, the Dynamic
Time Warp will generate a result that is equallte humber of elements in the pitch tracked

vector,L. The pitch tracked vector should then be exattiy same as the database entry.

Remember that the D-matrix is initially set B ; = (query - DEntryj)2 + , sb in this case the

distance matrix is filled with ones along the diaglo So iterating over the Dynamic Time Warp
would result in a shortest path along the diagombkre ; = i+ 1. Since the matrix IsbyL,

the DTW feature result is. So the score in this case would be 100%. Orother hand, a
badly hummed query would have a very large resathfthe Dynamic Time Warp, due to the
error between the hummed notes and the databas® motvhich case, the score would be closer

to 0%. Typically, a decent hum will score anywhleeéwveen 40% and 80%.

Name That Tune - 12

Optimizations

Memory

The large hum query (sampled at 44.1 KHz) is staneéDRAM. This provides the space for a
10 second sample. Windows of 2,800 bytes from shraple are copied into on-chip memory
using a DMA transfer, before we perform any calsates on them. This allows each memory

access to take only one cycle rather than 15 cydMdso, the entire DTW is performed on chip.

Instead of calculating the D-matrix completely, generate one row at a time, including the
calculations for the DTW. This reduces the nuntfeglements from fito 2 n. This allowed

us to keep everything for the DTW on-chip.

Speed

The Matlab pitch track code we found relied on tilog point arithmetic. This performed poorly
on the EVM. It was possible to convert the pitchick code into integer arithmetic without
losing precision. Before we did any optimizatioagypical pitch track of the input query would
take several minutes. After all optimizations, thetime of the pitch track improved by roughly

a factor of 10, meaning it would take a matteremfads to finish computing.

The DTW was also written in fixed point and useldéal dynamic time warping, which reduced
the order of the DTW from Ofhto O(n). Although this can potentially change tresulting

scores returned from the DTW, in some ways it cdd accuracy to the matched songs.
Although the DTW may have been clearer using reécoysdoing so would have been much

slower.

Name That Tune - 13

Implementation

EVM N
.................. A :........I........: \
Humming " : SDRAM : : On Chip : \‘
o : : : |
| 1
—p Hum : 1Database
Lo Database 4 T Hp PC
b —»} Result Vector L >
s : I Result
: : 1 Pitch Track }« 1
: : I
o : Temp Window |
1 o
. % :
| 1
| 1
| 1
: > DTW « !
| 1
| 1
|
| Pitch tracking Using :
: Ly Temp Windows and ¢—— I
I DMA Transfers !
l\ |]
/
\ /
N\ /
N\ 4
~ ”

L e e e e e e e e e

Overview

We used the Texas Instruments TMS320C6701 Evaludiodule, or EVM, to implement our
system. The EVM is our back-end system that ddetha work and calculations for our
algorithms. The PC handles the front-end of ostesy and the interface for the user.

Name That Tune - 14

Signal Flow

At the onset of running the system, the PC read<atabase from the hard drive and sends it
along to the EVM, which stores the database on-chifhen the user wishes to begin humming
the melody through the microphone, he/she hitsstfeee bar on the GUI, which then tells the
EVM to begin recording the input from the micropkoand stores it on the off-chip SDRAM.
After the user stops humming, he/she hits the spacagain and waits for the results. The GUI
instructs the EVM to stop recording and to begiocpssing the hummed query. This input hum
is passed to the pitch tracker, which copies wirgloithe hum to the on-chip RAM for quicker
memory accesses during tracking. After trackirgy ghich tracked output is converted to notes,
normalized, and sent to the DTW, where we comgaeitch track with the database entries, all
of which are kept on chip. The results are seokha the PC, where the GUI displays the top

ten matches.

Memory and Speed

Our system requires the following amounts of menwryhe EVM:

Input query: 441 Kbytes (on average of 5 secrombat 44.1 KHz)
Database of 42 songs: 8 Kbytes
Code: 88 Kbytes

We used HPI transfers to send the database anlisrbetween the PC and the EVM. We also
used DMA transfers to transfer blocks of the inquéry from the off-chip SDRAM to the on-

chip RAM, which made memory accesses much quicker.

A 4 second hum input results in a pitch trackimgetiof roughly 4 seconds and a DTW search
time of roughly 1 second for a database of 42 sonigsee DTW was used with k = + 40. The
pitch tracked entries usually have a size betwédhahd 300 data points. So, using this value
for k, the DTW was faster by a factor of 2 to 4.

The pitch tracking is O(n). Therefore, the pitcacker takes 1.4 seconds for each second of

input. The k-local DTW is linear with respect leetsize of the input hum.

Name That Tune - 15

Runtimes
Both the pitch tracker and the dynamic time warpaege profiled using Code Composer. The
runtime of each is dependant on the length of #eended hum sample. If k-local dtw is used,

then both algorithms a@(n). Some sample results are below:

CPU clock speed: 133 MHz
Sampling Rate: 44.1 kHz
Database Size: 42

Pitch tracker:

Hum Query Length: 63,196 samples = 1.433 sec
Fast Autocorrelation = 177,750,091 cycles = 1.3865

DTW:

Query Length: 65,776 samples = 1.4915 sec
DTW for Entire Database = 40,421,097 cycles = .3839
Time/entry = 7.2 msec

Query Length: 121,877 samples = 2.7637 sec
DTW for Entire Database = 95,162,809 cycles = .74&6
Time/entry = 17 msec

Query Length: 208,955 samples = 4.7382 sec
DTW for Entire Database = 166,643,813 cycles =3 &¥c
Time/entry = 29.8 msec

Input Tirme vs DTV Runtime Input Tirme vs Pitch Tracker Runtime

o
mn

08r

[
T

b
m

nar

[5]
T

07

DT Runtime (sec)
Pitch Tracker Runtime (sec)

n
T

06F

IR 3

=
n

04r

[=]

0.3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1.5 2 248 3 358 4 448] 0s 1 1.5 2 25 3 358 4 45 5
Input Time (sec) Input Time (sec)

(=]

Name That Tune - 16

Demonstration

Our demonstration was very straightforward. Welengented a GUI that made our system very
user-friendly. When the user was ready to begmrhing, he/she would hit the space bar to tell
the EVM to begin recording. Once the user wassfiad, he/she hit the space bar again. After
the PC received the results from the EVM, the &pdcores were displayed. We varied the key

and tempo of our hums to demonstrate the robustfess system.

817% Nine Rota = GCodfather Theme

Name That Tune - 17

Results

Pitch Track Results

The outputs of the pitch tracker for two hum quelee shown below, with Beethoven’s 5th on
the left and The National Anthem on the right. Apmom a few spikes, the results of the
Beethoven’'s 5th hum are very accurate. The resoittshe National Anthem, however, show
oscillations around notes. This is a common prolienthe pitch tracker. The notes are doubles
that have been cast to shorts so there is signifioas of accuracy. If the hum is slightly sharp,
then it will register at the correct tone but ifatls below the tone, then it will be rounded down
to the next note. The size of the oscillations rhayeduced by increasing the resolution of the
pitch tracker output. For example, we could tréok pitches using a 24-note per octave equal
tempered scale instead of a 12 note per octave.sddde other inaccuracies in intervals are due
to the user humming, as it is a more difficult saadhum than Beethoven’s 5th. Both of these
hums returned correct matches. Despite the osailabf the pitch tracker, the National Anthem
still scored the highest at 38%.

Beethoven's 5th Mormalized Pitch Marmalized Mational Anthem Pitch

- 1 1 1 1 1 1 1 1 L L 1 1
50 a0 100 150 200 280 300 1] 100 200 300 400 500 600

Name That Tune - 18

90

80

70

60

50

40

30

20

10

40

35

30

25

20

15

10

Hum Query: Nino Rota — Godfather Theme

81% Nine Retea = Godfother Theme

Name That Tune - 19

81% Nino 40% Bach - 39% Jingle 29% 23% Maria 23% Bill Conti 23% 22% Mary 21% London 21% Nino
Rota - Toccata & Bells Beethoven - - Rocky Beethoven - had a Little Bridge Rota -

Godfather Fugue Fur Elise Symphony Lamb Godfather
Theme No.5 Love Theme

Hum Query: The U.S. National Anthem

37% United 13% James 12% 12% The 11% 11% Mary 11% Wagner 11% Oh 10% 10% If You're
States Bond Theme Wedding Beatles-Hey Londonderry hadalLitle - Flight of the Suzanna Mussorgsky - Happy and
National March Jude Aire Lamb Valkyries Pictures atan You Know It
Anthem Exhibition

Single Query Results

The results from humminghe U.S National Antherare clearly different from those dfe
Godfather Themeeven though both were successful matches. Eiestop score is 81% for The
Godfather and only 37% for the National Anthem.sT¢ould be due to several reasons. First, the
Godfather Theme has a simpler entry in the databasetes) than the National Anthem (12
notes), so the user has more opportunity to hunobtune in the latter. The National Anthem
also has much larger intervals (max of 8 semitotiee) the snippet for The Godfather theme
(max of 4 semitones). For the amateur singer, targervals are much harder to sing or hum in
this case. Another thing to notice is that with Thedfather results, the second highest score is
approximately half of the highest, whereas in traidhal Anthem results, the second highest
score is a third of the highest. This may be exigdiby the fact that there may be more entries
in the database similar to The Godfather Theme. N&gonal Anthem snippet covers a rather
large range of 16 semitones and for a databada@s$ize, this amounts to it being very unique.

In contrast, The Godfather Theme has a range gf®aemitones.

Test Set

To quantitatively test the system, 10 users sedrthe system fodingle Bells Two of the
subjects were female and eight of the subjects weate. Every subject hummed in a different
key or octave. The subjects also hummed at diftempos. Each subject hummed their own

interpretation oflingle Bellsand interpreted the rhythm of the piece diffengntl

To further evaluate the system, a single user bedrthe system for the following 10 songs.

1812 Overture

The Godfather Theme
Jingle Bells

Happy Birthday
Can-Can

The Superman Theme
The E.T. Theme
Toccata & Fugue

The Rocky Theme
The Marriage of Figaro

Name That Tune - 20

Test Set Results

For the single-user/multi-song study, 8 of the é@rshes resulted in the queried song coming in
first. Toccata & Fuguecame in second rather than first aflde E.T. Themeame in third.
Although these two tests did not return the cortegtmatch, the correct match was very close to
the top, with both scores within 1% of the top scoWith theToccata & Fuguethe highest
scoring song wa®omp & Circumstangeboth of which begin with a high-pitched notes and
drops approximately the same interval to lower h@tt notes. When combined with user
variations, this explains why the scores were smsecland why our system had trouble

distinguishing between the two. For similar reasdhe E.T. Themeame in third.
For the single-song/multi-user study, all 10 seesalesulted in the correct best matchHappy

Birthday. These results demonstrate the inter-user robistfehe system. The system works

well with both male and female users and accomnesddtythmic and pitch variations.

Name That Tune - 21

What's Good / What's Not

Due to note normalization, the system is very rolasnput that is hummed higher or lower
than the actual database entry. For example, @endlary Had A Little Lamb. The user can
hum ‘B AGABBDB or 'ED C D E E FE and it willmatch the database just as well as
humming the actual database entry of ‘A G F G A 'AThe system works even in the presence
of a few sour or wrong notes. However, the systeiass robust when it comes to a user who
erroneously changes key in the middle of a selecti@hankfully, this is much less likely to
happen when humming short snippets. Changing keya dropping pitch or floating higher is

more common when performing longer selections.

In the time domain, the system is very robust tabgl changes in tempo. By matching the
length of each database entry to the pitch tradkpdt, the system is effectively global tempo
invariant. Local variations in tempo are well taka care of with the DTW matching. When
using k-local DTWs the degree of local variatiohaittare acceptable is controlled with k
parameter. In the code we demoed, variations okegbnd are allowed. Of course, this will
potentially raise the scores of any snippet thatéhaimilar series of note intervals. Nonetheless,
since in our approach the distance matrix is coegpatsDj,j = (query — dbEntryUTVMZ + 1,

the cost of extra +1s will cause the entry with terect rhythm to be on top due to its shorter
DTW distance. Which is simply to say that, theathase entry whose note intervals are correct
and whose DTW path most closely follows the diagorfahe distance matrix will be chosen as

the best match.

The main issue with the method implemented in gojegt is that the user must hum an actual
database entry. If the snippet the user is humnsimgt explicitly stored in the database, then
the system will probably not return the correct g@s the best match. For example, our
database entry for Jingle Bells consists of theothelssociated with the phrase “Jingle bells,
Jingle bells, Jingle all the way.” If the userteed hummed the entire chorus, “Jingle bells,
Jingle bells, Jingle all the way, Oh what fun itasride, in a one horse open sleigh,” then the

system is likely to perform poorly.

Name That Tune - 22

In general, if a user cleanly hums a snippet tha&ither a superset as in the example above or a
subset of a database entry, then the matching doorthat database entry will be reduced.
Moreover, the set of all other scores will gengralt be reduced as a whole. Therefore, this will

increase the likelihood of an incorrect best match.

It is our experience that humming an extra notewvorusually will lower the score of the correct
song, but it does not prevent the correct song ftoming in first. However, this may very well
change if more songs are added to the databaserefdle, it is of great importance that all
common phrases for a given song be explicitly stare the database. This will increase
database size and using our search algorithm mdtease search time by a factor equal to the
number of snippets used in each song. For exanipder method takes 1 second to search a
hum query on a database of forty songs with oney gu@r song, then it will take 4 seconds to

search the same database if there are 4 snippieisemtr song.

Conclusion

We have shown that it is feasible to use pitchkireg and DTW to implement a “Query by
Humming” system. Our system was both accuratefastdon the EVM. Using DTW indexing

schemes, it will be possible to create a web-b&Qesry by Humming” search engine. Thus,

the time of the hum is now.

Name That Tune - 23

[1]

[2]

[3]

[4]

[5]

[6]

[7]

References

http://www-mmdb.iai.uni-bonn.de/download/mathtbItools/
This site has a library for Matlab that reads aedegates MIDIs. We modified the
program to generate text files from MIDIs in thenfiat we described earlier.

http://sail.usc.edu/music
Here, we found some sample MIDI files that we useour database.

http://cnx.rice.edu/content/m11716/latest/
Here, there was Matlab code for an autocorrelapioh tracker, which we later
converted to C for this project.

http://labrosa.ee.columbia.edu/matlab/dtw/dp.m
There was Matlab code for Dynamic Time Warping,aihive converted and optimized
in C. The modifications we made to the code aseleed above.

Warping Indexes with Envelope Transforms foreQuby Humming
http://www.cs.nyu.edu/cs/faculty/shasha/papers/himgmdf

Yunyue Zhu, Dennis Shasha

Proc. of SIGMOD, 2003

This paper contained a description of performirggiary by humming using a time-series
approach that did not require note segmentatidrough the ideas of this paper are what
we based our project on, it focused more on efiiciwarping indexes to optimize
performance rather than explaining exactly whay tineve done in the past.

Manipulation of Music For Melody Matching
http://www.acm.org/sigmm/MM98/electronic_proceeagfuitdenbogerd/

Alexandra. L. Uitdenbogerd, Justin Zobel

ACM Multimedia 98 - Electronic Proceedings

This paper illustrates that contour methods cammed large result set even with a short
query hum.

Phillips Electronics

http://www.research.philips.com/InformationCenter/Global/FAesummary.asp?INodeld=986
Audio Fingerprinting

Name That Tune - 24

