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Project Overview 
 
Problem 
 

Have you ever tried to play a musical instrument, but found that it was too hard 
for you?  Surely it would be easier if you didn’t have to use a complex, unintuitive 
instrument.  One way around this would be to have an instrument that could synthesize 
notes from your own voice.  Everyone can sing, hum, or whistle, but these types of 
sounds are somewhat limited.  A device that could synthesize complex instruments based 
on human music could attract a variety of listeners, as well as musicians who wouldn’t 
otherwise be heard on traditional instruments. 

 

 
 
 

Solution 
 
  We proposed to develop a DSP software package that allows a user to synthesize 
music based on vocal input.  This way, the user can hum into a microphone and have a 
selectable synthesized output based on the intensity and pitch of their voice.  This 
package consists of pitch detection software and subtractive synthesis software.  While 
individually these are widely available, and many algorithms exist for each, the pairing of 
the two into a music generation system is a novel concept.  We are not aware of any 
existing commercial application of this nature. 
 

PC: User Interface 
 
 
 
EVM: Processing 

Input: Microphone 

Output: Speaker 
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What We’ll Do 

 
 
 
 There are two main components to this project: the input portion and the output 
portion.  For input, we have a microphone, which is mono, 16 bit sampled at 16 KHz.  
This input is analyzed for pitch, volume, and intonation, and then these parameters are 
passed on to the output module.  The output module is a traditional subtractive synthesis 
model software synthesizer.  Initially, we implemented a very simple subtractive 
synthesis model, and a very simple input model that only gives the pitch of the 
fundamental frequency of the voice, and detects when to cut off the synthesis (volume 
drops below a certain threshold).  
 
 
 
 

 
 
 
 
 
 
 

ADC Input 

DAC Output 

Input Buffer 

Pitch Detection 

Subtractive Synthesis 

Output Buffer 
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Pitch Detection (Fundamental Frequency Estimation) 
 
 

 
 

 
The first step is to get the right pitch. To do this several algorithms [1] were 

available. Some of them used time domain techniques (such as FFT) [2] and others work 
in time domain (and will use zero crossing…). 

In the past years both techniques have been used. However frequency domain 
pitch detection seems to be less reliable and hard to implement on EVM. Also several 
projects involved musical instruments.  Ours will use human voice, so this should also 
simplify the problem. 

We have found several different algorithms, after testing them in MATLAB and 
in C, we decided that autocorrelation was the most accurate and the most efficient.  Thus 
our pitch detection algorithm is based on autocorrelation. 

 

 
Subtractive synthesis 
 
 Subtractive synthesis is a very well established method for generating realistic-
sounding instrumental sounds.  It is very robust in its range of possible pitches, durations, 
and volumes that it can produce.  It is one of the oldest synthesis methods.  While modern 
technology had introduced new types of synthesis such as FM synthesis, Wavetable 
synthesis, and even experimental synthesis methods such as grain synthesis and 
mathematical modeling synthesis, many commercial products are still based upon tried 
and true subtractive synthesis methods. 
  
How It Works 
  
 The main components of subtractive synthesis are the initial waveform, the filter, 
and the envelope. 
  

Pitch 
Detection 

Time Domain 
 

Frequency 
Domain 

Will use Fourier 
Transform. (see 
Short Time Fourier 
Transform and 
Discrete Wavelet 
Transform 

Will focus on zero 
finding or 
maximums in signal.  



 5 

The initial waveform is generally a harmonically rich, easily generated waveform.  
Traditionally, the triangle wave, sawtooth wave, and square wave (or impulse train) are 
used.  Sine waves are of little use for reasons that will become apparent.  In the early 
days, these waveforms were generated with analog circuitry.  In our project, the 
waveforms are created by equations in C code.  Unfortunately, the entire purpose of these 
waveforms is that they contain lots of harmonics, which can cause aliasing problems if 
ignored.  Normally when, say, a square wave is sampled, there will be an LPF in front of 
any analog to digital converter to filter out any frequencies higher than can be accurately 
sampled.  If a square wave were created in the EVM’s RAM using a simple function, it 
would be a perfect square wave sampled without any filtering.  At low frequencies this is 
less noticeable, but aliasing can become more apparent.  For this reason, bandlimited 
waveforms need to be generated, which is somewhat more complicated, but still not 
terribly computationally intensive. 
  
The next step in the synthesis process is the filter.  Generally this is a low-pass filter of 
some type that cuts out the higher order harmonics in the original signal.  How many and 
to what extent they are diminished determines the quality of the sound that is created.  
The filter doesn’t have to be LPF, but can instead be some type of notch, band-pass, or 
HPF to achieve interesting results.  Generally, though, when trying to simulate real-world 
instruments, the filters are mostly LPF.  In our project, this stage of the synthesis is 
implemented by an IIR filer function. 
  
The third portion of the synthesis is the gain envelope.  The envelope determines the 
volume of the signal, depending on the time passed and user input.  It is generally 
organized in to four sections – attack, decay, sustain, and release.  The attack section is 
the initial rise in volume from zero to the peak volume of the signal, which occurs when 
the note is first sounded.  Decay is the tapering off of the attack portion, settling into a 
less loud state.  Sustain is the longest state, which can be held indefinitely in some cases, 
of a moderate volume.  Release is the final dropping off of the volume to zero.  Once the 
envelope is done, the other steps can stop computing the waveform. 
  
We decided on subtractive synthesis because it is a well established synthesis method, 
and can take up very little processing power.  This allows the C67 DSP to be free for the 
pitch detection portion of our project, which is more computationally intensive, despite 
the fact that it will be dealing with data at a lower sampling rate.  Also, the small memory 
requirements of the subtractive synthesis methods will possibly allow it to run with the 
internal EVM ram, making it faster still. 

 
Putting It Together 
 
 Once we had the two portions of our code working, stitching them together 
shouldn’t be too difficult.  The pitch, duration, and volume data generated by the pitch 
detection module passes this data off to the synthesis module. 
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Week 
 

Tasks 
 

Who 
 

2/24-3/02 Wrote Report 
Found Algorithms : 

- Pitch detection 
- Subtractive synth. 

 

 
 

Brian, Yves 
Tadge 

3/03-3/09 
 

Tested different algorithms for pitch 
detection in Matlab. 

Subtractive synthesis in C, using PC 
sound card. 

Brian, Yves 
 

Tadge 

3/10-3/16 
 

(same)  

3/17-3/23 
 

17: Oral Update 
Implementation on EVM: 

- Pitch detection 
- Subtractive synth. 

 

 
 

Brian, Yves 
Tadge 

3/24-3/30 
 

  

3/31-4/6 
 

Link pitch detection and subtractive 
synth. 

All 

4/7-4/13 
 

  

4/14-4/20 
 

Debugging 
 

TBD 

4/21-4/27 
 

Optimizing  

4/28-5/4 
 

28: Demo 
 

 

5/5 
 

Report Due 
 

 

 
 
Speed Issues 
 
 Initially we had planned for a fully real-time implementation of our program.  We 
assumed that the C67 DSP would be more than powerful enough to do some 
autocorrelation, some filtering, and the MCBSP I/O.  Ultimately, it seemed that without 
optimization, it would not be possible to have acceptable sound quality in real time. 
 Optimization, unfortunately, created more problems than it solved.  We first got 
most of the algorithms working properly, then changed the compiler settings to optimize.  
The pitch tracking lost all accuracy, and the synthesis stopped working.  It took us a 
while to confirm that it was in fact the optimizing compiler that was having this effect.  
The ability to graph contents of the EVM’s RAM while running was an invaluable one.  
Using the graph functions, we could pinpoint where the data fell apart.  The input data 
from the microphone ADC worked under all optimization settings.  The data of the 
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autocorrelation output, however, looks completely different once optimization is turned 
on.  Here are examples of a normal, working autocorrelation, and an autocorrelation 
output that has been mangled by the optimization.  (These are autocorrelations of the 
same input waveform): 
 

 
Figure 1:  Normal Autocorrelation 

 

 
Figure 2: Autocorrelation with optimization 
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We tried to revise the autocorrelation algorithm, but seeing as it worked perfectly without 
optimization, it was difficult to find any problems with it.  We tried a different method 
using FFTs to perform the autocorrelation, but that still gave incorrect output once the 
optimization was used. 
  
We put the autocorrelation on the back burner, and did performance tests of everything 
else at given optimization levels.  With optimization on, the EMV was capable of 
generating real time continuous signals for synthesis output.  With the lower optimization 
levels that allowed to the autocorrelation to function, however, there were audible breaks 
in the output waveform.  While these sometimes were not readily apparent on an 
oscilloscope reading, they could easily be heard as unwanted high frequency components 
of an otherwise low frequency signal.   
  
Our compromise was then to move from a fully real-time implementation to a partially 
real time implementation.  We accepted audio input from the microphone in real time, 
autocorrelated, did the pitch detection algorithm, and saved the value obtained in an 
array. 
 
Once we detected that the user had stopped giving input, which was triggered by a few 
frames of relative quiet, we stopped the input and autocorrelation / pitch detection steps, 
and rendered the audio.  This was the non-real time step, where the program read through 
the saved pitch values and synthesized notes for them.  The synthesized notes were stored 
in a large buffer in the EVM’s off-chip RAM.  Once the synthesis was complete, this 
stored waveform was sent out to the codec.  Nothing else was running while the output 
buffer was being played, which ensured that the output waveform was clean and 
continuous. 
 
Our theory for why the output became choppy is that the interrupts were not being 
serviced properly.  When the synthesis and output were occurring in real-time, it seemed 
that the interrupts were either not being called as often as they should, or that they were 
being called and the program didn’t have the resources to move the data into the codec 
output registers. 
  
  
Profiling 
 
 As we found in the earlier labs, the profiling function of the EVM software was 
not as robust and one might have hoped.  Trying to profile more than one function at a 
time wouldn't work, but more importantly, the profiler seemed to slow the execution of 
the code so drastically that some functions would never complete in a reasonable amount 
of time.  Enabling optimization seemed to alleviate this problem somewhat.  We couldn't 
use optimization, however, and so the profiler couldn't generate useful data. 
When profiling the peak detection, autocorrelation, or synthesis functions, the EMV 
never completed a single iteration of the function, even after as much as 5 minutes of 
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waiting.  The elapsed cycles would slowly tick upwards, but at nowhere near the 
supposed clock rate of 166MHz. 
 
 So, as many other groups did in the lab, we resorted to a much less exact, but 
functional profiling system: the stopwatch.  We had code to do autocorrelations and peak 
detections, and would time how long different numbers of them took.  In the end, it 
seemed that we got about 5 peak detection cycles per second.  This wasn't quite fast 
enough for very quickly changing notes to be synthesized, but it could track notes held a 
bit longer quite well. 
 

 
 
Description of Algorithms 
 
Autocorrelation and Pitch Detection 
 
The Autocorrelation and Pitch Detection portion of our project works as follows: 
 

1.) Autocorrelate the input (work) buffer. 
2.) Use peak detection to find the number of peaks and the index of the last found 

peak. 
3.) Calculate the frequency using the values in step 2. 
4.) Assign the frequency to be the closest musical frequency to the detected 

frequency. 
 
 
 
 
 
 
Autocorrelation 
 
Our autocorrelation algorithm is very similar to what we did for Homework 1.  
Autocorrelation involves correlating a signal with itself.  When this is done with a 
periodic signal, such as human humming, the result is a waveform with many peaks. 
From this waveform we can detect the pitch of in input signal.  
 
 

Autocorrelation Peak Detection Frequency 
Calculation 

Frequency 
Assignment 
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Our input array, work[] is always of size 512, so the output array, corr, is always twice as 
long, or 1024.  The algorithm consists mainly of 2 double for loops.  The outer loop 
cycles through the corr array from k=0 to k=512.  Then in the inner loop, which goes 
from 0 to k, we multiply the appropriate indices of work together and accumulate them in 
the corr index k.   
 
 for (k = 0; k<BUFFER_LEN; k++) { 
        corr[k] = 0; 
        blk=BUFFER_LEN-k; 
        for (m=0; m<k+1; m++) { 
              corr[k] += work[m] * work[blk+m-1]; 
              } 
  } 
 
For example, when k=3, we multiply work[3], work[2], work[1], and work[0] with 
work[511], work[510], work[509], and work[508] respectively.  The sum of all these 
products is then stored in corr[3].  The second double for loop is essentially the same as 
the first, except this time k moves through corr from 512 to 1023.   
 
As we tested our peak detection and autocorrelation algorithms, we noticed that we 
would sometimes get a frequency and an output sound with no intentional sound going 
into the microphone.  To correct this problem, we placed a power check at the beginning 
of our autocorrelation function.  We obtained a value for the power in the signal by 
adding up all the values in the work array and dividing by 1,000,000.  To stop the 
program from outputting unwanted sound, we only did autocorr if the power was above 
7500.  Creating this threshold stopped the program from outputting random sounds from 
random noise as input. 
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Peak Detection 
 
We used Group 9 – 2000 's peak detection algorithm as a model for ours.  There are four 
conditions under which we check for a peak. 
 
The first condition is that delta1, difference between the current index of corr and 
previous index of corr, is greater than zero. 
 

delta1 = corr[k] – corr[k-1] 
The second condition is that delta2, the difference between the next index of corr and the 
current index of corr, is less than zero. 
 

delta2 = corr[k+1] - corr[k] 
 
            corr 
                           delta1 
 
 
 
 
 
 
                                                                                k 
 
 
 
 
 
 
        delta2 
 
 
 
 
The third condition is that the value of the potential peak must be at least 80% of the 
value of the first peak.  This is to ensure that peaks are not detected from imperfections in 
the corr array. 
 
The fourth condition, which will be explained later, is that we have counted less than 6 
peaks so far.   
 
If all of these conditions are satisfied, then the algorithm is close to detecting a peak.  
Since we are not dealing with a perfect autocorrelation signal, it is necessary to examine 
the values around the current index.  The function checks from 9 samples back to 14 
samples forward to search for the maximum value.  When the maximum value is found, 
the index of that value is stored and the number of peaks detected is increased. 
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int swit = 1; 
for(n = -9; n < 14; n++){ 

          if(corr[k+l] > corr[k]) 
           swit = 0; 
          if(swit){ 
           if(first == -1) 
           first = k; 
          } 
                     } 
       peakIndex = k; 
         peakCounter++; 
 
 
After we have detected a peak and stored its index, we can then calculate the frequency 
of the signal.  The formula we used is 
 

index

peaksf
f s ×

=  

 
Where f is the fundamental frequency, fs is the sampling rate, peaks is the number of 
peaks counted, and index is the index of the last detected peak. 

 
We found that the more peaks we counted, the more accurate this equation became.  
Since every signal we were working with would have at least 6 peaks, that is how many 
peaks we chose to count. 
 
Once these two algorithms have been performed, we have now detected the fundamental 
frequency of our input signal.  While testing these algorithms however, we found that we 
were accurate within 1.5% of the frequency of the input signal.   

Error = f(Frequency)
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The detected frequency would change within these few Hertz and produce a change in 
output while the input voice remained constant.  To correct this problem, we added a few 
lines of code that would assign the detected frequency to be the frequency to be the value 
of the nearest musical pitch. 
 
To do this, we created an array, notes, of 36 musical frequencies from 65.406 Hz to 
493.883 Hz.  We then searched through this array until we found the first value that was 
greater than our detected value.  Let notes[k] equal this value.   
 
If the difference between notes[k] and the detected frequency was greater than the 
difference between the detected frequency and notes[k-1], then the detected frequency 
was assigned to be notes[k-1].  Otherwise it was assigned to be notes[k]. 
 
We now pass this frequency on to the synthesis portion of our project. 
 
 
 
Pitch Stabilization 
 
1) We scan the frequency array and if we have the following case: 
 

100Hz 200Hz 100Hz   
 
The middle frequency will be changed to 100Hz, resulting in a more stable pitch. 
 

if(abs(farray[i-1]-farray[i+1])<1) // comparison between floats 
   farray[i]=farray[i+1]; 
 

This modification will change the values in farray in figure A to those shown in figure B. 

 
   Fig. A 

 

farray[i] 

i 
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   Fig. B 
 
 

2) If we have 3 different frequencies in a row, 100Hz 200Hz 300Hz we will change this 
to 100 Hz 300 Hz 300 Hz 
if((abs(farray[i-1]-farray[i+1])>1 )&& (abs(farray[i-1]-farray[i])>1) &&(abs(farray[i]-
farray[i+1])>1)){ 
   farray[i]=farray[i+1]; 
 
 

 
 

farray[i] 

i 

farray[i] 

i 



 15 

 
 
 
 

 
 
 
These two algorithms take care of problems we had when the pitch changed within a 
frame.  
 

Synthesis: 
 
Intruduction 
 
In order for our project to be complete we have to get some sound out of the EVM. The 
way we do it is called subtractive synthesis. 
 Some of the implementation methods and specifics came form the freely available 
CSound Porject [3]. 
This is done in three parts: 

1) generate the right waveform at the detected frequency. 
2) low pass  
3) envelopes. 

 
 
 

 
 
 

farray[i] 

i 

Get waveform Low pass Envelopes 
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In the next lines I will explain each of these stages 
 
1) Get waveform 
 
Generating the waveform is pretty easy, the user has the choice between 4( sine, square, 
triangle, sawtooth). 
 
The sinewave is generated the following way: 
 
bigarray[y_index] = (short)(10000 * sinf(2*3.14159* y_index * 
farray[frame]/OUTPUT_RATE)); 
 
Where bigarray is the output array (mallocated before), farray[frame] is the corrected 
frequency for the given time window and y_index gets incremented for each sample. 
Notice that this has to be casted into a short. 
To generate the 3 remaining waveforms the idea is the same, so I will just explain the 
triangle wave. 
 
if( (y_index % (int)(16000/farray[frame])) < (8000/farray[frame]) ) 
    bigarray[y_index] = 10000; 
    else 
    bigarray[y_index] = -10000; 
 
(int)(16000/farray[frame])) is the number of samples in one period. 
So y_index % (int)(16000/farray[frame] will go to zero each period. 
(8000/farray[frame] is half the period. 
So what the if statement does is simply switching between -10000 and 10000 each half 
period. 
 
2) Filtering  
 
Filtering, first we hade implemented a low pass filter using IIR (matlab), later one we 
simply used the algorithm from lab 1. 
bigarray[k] += (bigarray[k-1] >> 3) + (bigarray[k-2] >> 3) + (bigarray[k-3] >> 3) + 
(bigarray[k-4] >> 3) 
 
3) Envelopes  
 
The tricky part of our code are the ADSR envolopes. 
We made the following assumptions: 
 
The attack phase is 100ms (1600 samples @ 16kHz) 
The decay phase is 25ms 
And the release phase is also 100ms. 
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Now I will briefly explain how “attack” works, the other phases use the same ideas. 
 
if(((y_index%8192) < 1600)&&(farray[frame]!=farray[frame-1])) 
   
 bigarray[y_index]=(short)((2.0*(float)bigarray[y_index]*(y_index%8192))/1600.) 
 
the “if” statement will check if the given part of the output sample is in “attack”, if yes 
we simply adjust the amplitude according to his position ( we use a straight line starting 
at 0 and with a slope of 2). 
 
Release will be exactly the same except for that the straight line will have a different 
equation. 
 
Of course we have a release phase only if the next frequency window is different, so we 
add the following condition: &&(farray[frame]!=farray[frame+1]) 
 
 
Synthesis Conclusion: 
 
We found lot’s of papers describing subtractive synthesis, however they only give the 
general idea. Getting the actual numbers used to get a “real” sound out of the EVM were 
quite impossible to find. However each individual part of the synthesis algorithm works. 
It’s not Mozart but it sounds like humming. 

Amplitude 

Samples 

6592 1600 2000 

10000 

D S R A 
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/**************************************************************** 
 * 18-551 Group 9:sing synth                         * 
 * echo.c                                    * 
 * Authors:(tpd,bgj,ystautte@andrew.cmu.edu                     * 
 ****************************************************************/ 
  
#include <stdio.h> 
#include <stdlib.h> 
#include <mcbsp.h>              /* mcbsp devlib */ 
#include <common.h> 
#include <mcbspdrv.h>           /* mcbsp driver */ 
#include <board.h>              /* EVM library */ 
#include <codec.h>              /* codec library */ 
#include <mathf.h>              /* math library */ 
#include <intr.h>               /* interrupt library */ 
#include <linkage.h> 
#include <string.h> 
#include <timer.h> 
#include <pci.h> 
 
#define pi 3.14159 
#define BUFFER_LEN 512 
#define OUTPUT_RATE 16000 
#define FILT_ORDER 5 
 
short *bigarray; 
float work2[BUFFER_LEN]; 
int rindex=0;                   /* Index for receive ISR */ 
unsigned long xindex=0;                   /* Index for transmission ISR 
*/ 
int buffer[BUFFER_LEN*2]; 
float work[BUFFER_LEN];       /* Memory buffer for samples */ 
unsigned long y_index=0; 
int silent_frames,i; 
short fsmodf; 
int frame = 0; 
int final_frame; 
char buffer_sel = 0; 
char synth_go =0; 
char playing = 0; 
float corr[(2*BUFFER_LEN)-1]; 
int max; 
int frequency; 
int prevfreq; 
int cur_cycle=0; 
float farray[500]; 
float power=0.; 
float first = -1; 
int ii; 
int type = 2; 
float peakCounter = 0; 
float peakIndex; 
float delta1, delta2; 
float notes[36]= {1, 69.296, 73.416, 77.782, 82.407, 87.307, 
  92.499, 97.999, 103.826, 110.000, 116.541, 123.471, 
  130.813, 138.591, 146.832, 155.563, 164.814, 174.614, 
  184.997, 195.998, 207.652, 220.000, 233.082, 246.942,     
  261.626, 277.183, 293.665, 311.127, 329.628, 349.228, 
  369.994, 391.995, 415.305, 440.000, 466.164, 493.883};//natural notes 
 
 
unsigned int f; 
unsigned int message=0; 
int blk; 
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//autocor actually does autocorr, peak detection and frequency 
correction 
void autocorr() 
{  
 
 int k, l; 
  
 power = 0; 
 for(k=0; k<BUFFER_LEN; k++) 
 { 
  work2[k] = work[k]; 
 } 
 
 for(k=0; k<BUFFER_LEN; k++) 
 { 
  power += abs(work2[k]) / 1000000; // power gives an 
indication of how strong the imput is 
 } 
 
  
 if(power>100000) 
 { 
 
  //autocorrelation 
  for(k=0; k<BUFFER_LEN; k++)  
  { 
      corr[k] = 0;  
         for (l=0; l<k+1; l++)  
         { 
             corr[k] += work2[l] * work2[BUFFER_LEN-k+l-1]; 
             
         } 
          if(corr[k]>max) 
                
     } 
      
      
      
  
     for(k=BUFFER_LEN; k<(BUFFER_LEN*2)-1; k++) 
     { 
          corr[k] = 0; 
          for(l=k-BUFFER_LEN+1; l<BUFFER_LEN; l++)  
          {   
                  corr[k] += work2[l] * work2[(BUFFER_LEN-
k)+l-1]; 
           } 
  
          if(corr[k]>max) 
                   
     } 
     
         
       
       
      // peak detection 
      first = -1; 
      peakCounter = 0; 
       
      for(k=520; k< 1000; k++) 
      { 
       delta1 = corr[k] - corr[k-1]; 
       delta2 = corr[k+1] - corr[k]; 
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       // here we check if  
       //1) it is a potential peak 
       //2) it is at least 0.8 times the main peak (middle of 
autocorr (sizeof(autocorr)=1024) 
       //3) it is at most the 6th peak 
       if( ( delta1 >= 0 ) && ( delta2 < 0 ) && (corr[k] > 
corr[512] * 0.8)&&(peakCounter<6) ) 
       { 
        int swit = 1; 
        for(l=-9; l<14; l++) // look around if there is a 
higher point 
        { 
         if(corr[k+l] > corr[k]) 
          swit = 0; 
          
         if(swit) // it is a peak 
         { 
          if(first == -1) 
          first = k; 
           
          
           
           
         } 
         
         
        
        } 
       peakIndex = k; // index of the last peak 
         peakCounter++; // number of peaks 
           
         frequency= (8000.*(peakCounter)/(peakIndex-
512.)); // compute the frequency 
          
       }  
        
        
        
        
      } 
       
       
       
      } 
else{ 
      frequency = 1; // default case 
      } 
       
       
       
      k=0; 
      // natural notes, will simply compare the note to the reference 
array and round up to the closest 
      while(k < 36) 
      { 
       if(frequency > notes[k]) 
       { 
        k++; 
       } 
       else 
       { 
        if( ( notes[k] - frequency ) > (frequency - notes[k-
1]) ) 
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        { 
         frequency = notes[k-1]; 
        } 
        else 
        { 
         frequency = notes[k]; 
        } 
        k=36; 
        } 
      }  
       
       
}    
 
 //low pass filter 
void filter() 
{ 
 int k; 
     
    for(k=1; k<y_index; k++) 
    { 
     bigarray[k] += (bigarray[k-1] >> 3) + (bigarray[k-2] >> 3) + 
(bigarray[k-3] >> 3) + (bigarray[k-4] >> 3); 
    } 
}  
 
 
 
interrupt void rcvISR(void)  
{        
 int q; 
  buffer[rindex++]=MCBSP0_DRR; 
    if (rindex>BUFFER_LEN*2)  
    {     
      for(q=0; q<BUFFER_LEN; q++) 
      { 
       work[q] = (float)buffer[2*q];   
      } 
     rindex=0;         
    }   
} 
               
                        
interrupt void xmitISR(void)  
{  
  /* MCBSP0_DXR is the hardware register for outgoing samples */ 
 if(playing == 1) // variable that is set in main, once the outpub 
buffer is full 
 MCBSP0_DXR = bigarray[xindex++]; 
 else 
 MCBSP0_DXR = 0; 
 
} 
 
 
/**************************************************************** 
 *    Name: main          
  * 
 ****************************************************************/ 
int main(void) { 
  Mcbsp_dev dev;                /* Serial port device */ 
 
  evm_init();                   /* Standard board initialization */ 
  printf("Program Running\n"); 
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  printf("Configuring MCBSP..."); 
  mcbsp_drv_init();             /* Call this before using McBSP 
functions */ 
       
  f = 0;                        
  /* Open serial port */                              
  if (!(dev=mcbsp_open(0))) { 
    return(ERROR); 
  }   
  /* Configure McBSP */ 
  mcbsp_setup(dev);   /* See bottom of this file */                          
  printf("done\n"); 
   
  /******************** configure CODEC **********************/ 
  printf("Configuring codec..."); 
  /* EXIT_ERROR is a macro which jumps to exit_err if the function 
     returns an ERROR */ 
  EXIT_ERROR(codec_init()); 
  codec_change_sample_rate(16000, TRUE); 
  /* A/D 0.0 dB gain, turn off 20dB mic gain, sel (L/R)LINE input */ 
  EXIT_ERROR(codec_adc_control(LEFT,0.0,TRUE,MIC_SEL)); 
  EXIT_ERROR(codec_adc_control(RIGHT,0.0,TRUE,AUX1_SEL)); 
  /* mute (L/R)LINE input to mixer */ 
  EXIT_ERROR(codec_line_in_control(LEFT,MIN_AUX_LINE_GAIN,FALSE)); 
  EXIT_ERROR(codec_line_in_control(RIGHT,MIN_AUX_LINE_GAIN,FALSE)); 
  /* D/A 0.0 dB atten, do not mute DAC outputs */  
  EXIT_ERROR(codec_dac_control(LEFT, 0.0, FALSE)); 
  EXIT_ERROR(codec_dac_control(RIGHT, 0.0, FALSE)); 
  printf("done\n"); 
 
  /**************** setup interrupt routines *******************/ 
  printf("Initializing interrupts..."); 
  intr_init();                
  /* Hook up serial transmit interrupt to CPU Interrupt 14 */ 
  intr_map(CPU_INT14,ISN_XINT0); 
  INTR_CLR_FLAG(CPU_INT14);     /* Clear any old interrupts */ 
  intr_hook(xmitISR,CPU_INT14); /* Hook our own xmitISR into chain for 
14 */ 
  /* Repeat the same process for the receive interrupt */ 
  intr_map(CPU_INT15,ISN_RINT0); 
  INTR_CLR_FLAG(CPU_INT15); 
  intr_hook(rcvISR,CPU_INT15); 
  /* Enable all necessary interrupts */ 
  INTR_ENABLE(CPU_INT_NMI);     /* Non-maskable interrupt */ 
  INTR_ENABLE(CPU_INT14); 
  INTR_ENABLE(CPU_INT15); 
  INTR_GLOBAL_ENABLE();         /* Controls whether ANY interrupts 
function */ 
  printf("done\n"); 
 
  /******************* Turn on the serial port ***********************/ 
  MCBSP_ENABLE(dev->port,MCBSP_RX|MCBSP_TX); 
   
  /* At this point, the program leaves main and enters an infinite 
   *  idle loop.  Interrupts continue to function */ 
  
     
  bigarray = (short *)malloc(500*1024*sizeof(short)); //output array 
  if(bigarray==NULL)  
  { 
    printf("Couldn't allocate memory...\n"); 
    exit(1); 
  }    
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  playing = 0;    
 
 
  while (1) 
  { 
   printf("waiting stage\n"); 
 while(! (power>100000 && (frequency <400) && (frequency >80) ) ) 
 { 
  autocorr(); // waiting for some singing 
   
 } 
 
 printf("Recording stage\n"); 
  
 silent_frames = 0;  
  
 while( frame < 500  && silent_frames < 2) 
 { 
  autocorr(); 
   
  farray[frame] = frequency; // we store the frequency  
  frame++;//and jump to the next frame 
   
  if (!(power>100000 && (frequency <400) && (frequency >80) ) 
) 
  { 
   silent_frames++; 
  } 
  else 
  {  
   silent_frames = 0;//reset silent frame if we hear 
singing again 
  } 
 } 
  
 final_frame = frame-2; // we don t want to play the two silent 
frames 
  
 // modification to get a better stability,if in the frequency 
array we have the following sequence: 
 // 100Hz 200Hz 100Hz we will change it to: 100Hz 100Hz 100Hz 
 for( i=1; i<frame; i++){ 
  if(abs(farray[i-1]-farray[i+1])<1) 
   farray[i]=farray[i+1]; 
 } 
  
 //other modification, 100Hz 200Hz 300Hz => 100Hz 300Hz 300Hz 
 for(i=1; i<frame; i++){ 
  if((abs(farray[i-1]-farray[i+1])>1 )&& (abs(farray[i-1]-
farray[i])>1) &&(abs(farray[i]-farray[i+1])>1)){ 
   farray[i]=farray[i+1]; 
  }  
 } 
  
  
 printf("Rendering stage, %d frames\n", final_frame); 
 for(frame = 0; frame < final_frame; frame++) 
 { 
  for(y_index = 8192*frame; y_index < ((8192 * frame)+ 8192); 
y_index++) 
  { 
   
   if(type == 1) 
   {// sinewave 
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    bigarray[y_index] = (short)(10000 * 
sinf(2*3.14159* y_index * farray[frame]/OUTPUT_RATE)); 
   } 
    
   if(type == 2)  
   {//square 
    if( (y_index % (int)(16000/farray[frame])) < 
(8000/farray[frame]) ) 
    bigarray[y_index] = 10000; 
    else 
    bigarray[y_index] = -10000; 
   } 
    
   if(type == 3) 
   {//triangle 
    if( (y_index % (int)(16000/farray[frame])) < 
(8000/farray[frame]) ) 
    bigarray[y_index] = -1000 +  
(y_index%16000/farray[frame]) * (20000/(8000/farray[frame])); 
    else 
    bigarray[y_index] = 1000 - 
(y_index%16000/farray[frame]) * (8000/farray[frame]); 
     
   } 
 
   if(type == 4) 
   {//sawtooth 
    bigarray[y_index] = -10000 + 
(y_index%(int)(16000/farray[frame]))*(16000/farray[frame]); 
   } 
 
    
    
  } 
 } 
 
 filter(); //we LPF the whole array 
  
 //envelope 
 for(frame = 0; frame < final_frame; frame++) 
 { 
  for(y_index = 8192*frame; y_index < ((8192 * frame)+ 8192); 
y_index++) 
  {//attack 
   // the first condition sets the timing 
   // the second checks if the frequency in this fram is 
different (no attack otherwise) 
   if(((y_index%8192) < 
1600)&&(farray[frame]!=farray[frame-1])) 
   
 bigarray[y_index]=(short)((2.0*(float)bigarray[y_index]*(y_index%8
192))/1600.); 
   
  //decay 
   if(((y_index%8192) >= 1600 )&&(y_index < 2000) && 
(farray[frame]!=farray[frame-1])) 
   
 bigarray[y_index]=(short)((float)bigarray[y_index]*(6.-
((float)(y_index%8192))*(0.0025))); 
  //sustain is the default case, so there is nothing to change 
   
  //release  
   if(((y_index%8192) > 
6592)&&(farray[frame]!=farray[frame+1])) 
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 bigarray[y_index]=(short)((float)bigarray[y_index]*(5.-
((float)(y_index%8192))*0.00061)); 
  } 
   
 }  
 
 
 printf("Playing stage\n"); 
 playing = 1; 
 while(xindex < y_index) 
 {} 
 printf("Done, reset\n"); 
  
 playing = 0; 
 xindex =0; 
 y_index =0; 
 frame = 0; 
  
  }         
  exit_err:   
  return(ERROR); 
} 
 
 
/**************************************************************** 
 *    Name: mcbspSetup 
 *  Inputs: Mcbsp_dev 
 *  Output: none 
 * Purpose: McBSP stands for Multi-Channel Buffered Serial Port.   
 *  It is build onto the C67 processor itself, and is how the  
 *  codec communicates with the processor.  This function sets  
 *  up the serial port for communication with the codec, and  
 *  should never need to be modified. 
 ****************************************************************/                   
int mcbsp_setup(Mcbsp_dev dev) { 
  /* Structure with all configuration parameters for serial port */ 
  Mcbsp_config mcbspConfig;      
  memset(&mcbspConfig,0,sizeof(mcbspConfig)); /* Initialize everything 
to 0 */ 
 
  mcbspConfig.loopback              = FALSE; 
  mcbspConfig.tx.update             = TRUE; 
  mcbspConfig.tx.clock_polarity     = CLKX_POL_RISING; 
  mcbspConfig.tx.frame_sync_polarity= FSYNC_POL_HIGH;  
  mcbspConfig.tx.clock_mode         = CLK_MODE_EXT; 
  mcbspConfig.tx.frame_sync_mode    = FSYNC_MODE_EXT; 
  mcbspConfig.tx.phase_mode         = SINGLE_PHASE; 
  mcbspConfig.tx.frame_length1      = 0; 
  mcbspConfig.tx.word_length1       = WORD_LENGTH_32; 
  mcbspConfig.tx.frame_ignore       = FRAME_IGNORE; 
  mcbspConfig.tx.data_delay         = DATA_DELAY0; 
 
  mcbspConfig.rx.update             = TRUE;             
  mcbspConfig.rx.clock_polarity     = CLKR_POL_FALLING; 
  mcbspConfig.rx.frame_sync_polarity= FSYNC_POL_HIGH; 
  mcbspConfig.rx.clock_mode         = CLK_MODE_EXT; 
  mcbspConfig.rx.frame_sync_mode    = FSYNC_MODE_EXT; 
  mcbspConfig.rx.phase_mode         = SINGLE_PHASE; 
  mcbspConfig.rx.frame_length1      = 0; 
  mcbspConfig.rx.word_length1       = WORD_LENGTH_32; 
  mcbspConfig.rx.frame_ignore       = FRAME_IGNORE; 
  mcbspConfig.rx.data_delay         = DATA_DELAY0; 
   



 26 

  /* Pass entire structure to mcbsp_config, a library function which 
   *  sets registers according to the contents of the structure */ 
  if(mcbsp_config(dev,&mcbspConfig) != OK) { 
    printf("Couldn't configure McBSP device %i\n", dev); 
    return(ERROR); 
  }   
  return(OK); 
} 
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