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1.0 INTRODUCTION 
 

Most commercial Optical Character Recognition products claim to have exceptional 

accuracy while retaining the format of the document.  They also have many other options 

such as spell checking and PDF conversion.  However, these OCR systems require a 

great deal of memory and processing power and as such are not suitable for embedded 

applications, which have minimal resources.  Embedded OCR systems currently on the 

market such as those found in PDAs only work in real- time, often by implementing 

stroke-based or velocity-based recognition. The purpose of our project was to create a 

low memory non-real-time OCR system that could be embedded in a scanner or other 

device. 

 
2.0 PRIOR 551 WORK 
 

In Spring 2002, Group 8 did a similar passive OCR project called “Automatic Machine 

Reading of Text”. Their primary recognition algorithm used Fourier Descriptors. The 

system had several problems, including inability to distinguish between rotationally 

similar letters and letters with a vertical axis of symmetry. They also had significant 

problems segmenting and detecting spaces in the input. Our segmentation, space 

detection and recognition algorithms are all different. In addition, our system also 

implements capital letter detection and context recognition, neither of which was present 

in the project in Spring 2002. 

 
3. ALGORITHMS 
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There are five commands that can be given to the system: 

• Reset system and delete current training set 

• Take a bitmap and add it to the lowercase training set 

• Take a bitmap and add it to the uppercase training set 

• Take a bitmap and do OCR without space detection and context processing (this is referred to as 

simple OCR). 

• Take a bitmap and do OCR with space detection and context processing (this is referred to as full 

OCR). 

The algorithm the system uses varies with the command, but in most cases the algorithms 

are very similar. The bitmaps need to be formatted a specific way for each of the 

commands: 

• For a lowercase training set, the bitmap must be the letters ‘a’-‘z’ in alphabetical order 

• For an uppercase training set, the bitmap must be the letters ‘A’-‘Z’ in alphabetical order 

• For simple OCR, the bitmap can be any string of letters 

• For full OCR, the bitmap can be a word or several words separated by spaces  

• For all commands, the bitmap needs to: 

o Be 8-bit grayscale 

o Consist of black letters on a white background 

o Consist of one line of text  

o Have one-pixel (minimum) spacing in-between all letters 

o Have all letters in a generally horizontal fashion (no letters on their sides) 

See figures 3.1, 3.2 and 3.3 for details. 

 

 

Figure 3.1 – A valid lowercase training set 
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Figure 3.2 – A valid uppercase training set 

 

Figure 3.3 – A valid bitmap for OCR 

 

Note figures 3.1, 3.2 and 3.3 all represent valid inputs for simple OCR. Only figure 3.3 is 

a valid input for OCR – the others would produce bizarre results if space detection and 

context processing were done on them since “abcdefghijklmnopqrstuvwxyz” is not a 

valid English word. 

 

3.1 PC Algorithms 

 

The PC does very little in our implementation. The PC is in an endless loop as follows: 

1. Wait for a command 

2. Transmit command 

3. Transmit bitmap x, y sizes if command is not “reset” 

4. Transmit bitmap (bitmap header is stripped off so only pixel data is transmitted) 

5. Get OCR result if command is “full OCR” or “simple OCR” 

6. Repeat… 

The bitmap is loaded and the pixel data and x, y sizes obtained using the Windows 

library. All data is sent to the EVM using synchronous FIFO transmissions. The 

transmission of the data takes very little time relative to the other algorithms so 

asynchronous transmissions provided little speed enhancement at the cost of extra code. 
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The pixel data is sent in 20 byte packets (bigger packet sizes resulted in transmission 

errors). This also assures us that all transmissions are 4-byte aligned (a requirement of the 

FIFO). The OCR result is limited to 100 characters (100 characters are always sent 

regardless of the actual length of the result). This simplifies the programming a great deal 

and removes the need for an additional transmission from the EVM to the PC telling the 

PC the length of the result. 

 

 

3.2 EVM Algorithms 

 

The EVM does almost all of the work in our implementation. We did this since we 

wanted to design a system that could be embedded in a scanner or other device. 

 

The EVM waits for a command and then takes appropriate action. If the command is 

“Reset”, the EVM simply deletes the training set it has stored in memory (52 32x32 

images consisting of the averages of all the training sets submitted). For all other 

commands, the EVM receives a bitmap and processes it as follows: 

  

3.2.1 Segmentation 

 

The segmentation algorithm splits the bitmap into smaller bitmaps consisting of one letter 

each. It also detects spaces if the command is full OCR. The algorithm loops over all 

pixels in the image. If the pixel isn’t “white” and hasn’t yet been assigned to something 
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referred to as a group, the algorithm recursively assigns the pixel and all adjacent non-

“white” pixels to a so-called group. All pixels in the same group are considered to be part 

of the same letter. Groups with fewer pixels than a predetermined threshold are thrown 

away (they are usually due to scanner noise). We determined this threshold to be 4 pixels. 

 

 “White” for purposes of this algorithm is any pixel with luminance above a 

predetermined threshold. We determined the threshold to be 200 (out of 255). 

 

At this point vertically overlapping groups are merged into one group. This prevents the 

bottom of an ‘i’ or ‘j’ and the dot on top from being considered separate letters. This is 

also why a one-pixel (minimum) spacing in-between all letters is required – this prevents 

the letters from being merged by this part of the algorithm. 

 

Figure 3.4 shows two letters that do not have one pixel of white space in-between them 

(there is a one-pixel gray bridge between them). They will be treated as a single letter by 

the segmenter. The sentence these appear in is #2 in section 5.0. Refer to that section to 

see how the OCR algorithm misidentified them. 

 

Figure 3.4 – These letters do not have one pixel of white space in-between them 

 

Next, the algorithm determines the horizontal spacing between the smallest bounding 

rectangles of each pair of adjacent groups. The average horizontal spacing between all 
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pairs of adjacent groups is computed and adjacent groups with horizontal spacing greater 

than a predetermined threshold times this number are considered to have a space in-

between them. This step is skipped unless full OCR is being performed. 

 

Lastly, the algorithm copies the pixels in every group (hereafter referred to as letters) into 

their own 32x32 buffers. As the pixels are copied a bilinear resize is applied to guarantee 

a 32x32 result. The resize allows us to guarantee that all comparisons are done between 

letters of equal size. The result is zero-padded so the aspect ratio of the original letter is 

maintained. In the process of being zero-padded the letter is centered as well so slightly 

taller and slightly wider letters have identical horizontal and vertical centers with respect 

to each other. 

 

What happens next depends on the command the EVM is currently executing. 

 

3.2.2 Training Set Processing 

 

If the bitmap represents a training set, the EVM checks to ensure that there are 26 letters 

(groups) in the segmented input. If this requirement isn’t met, the input is thrown away 

and the EVM waits for the next command.  

 

The EVM’s “comparison set” consists of 52 32x32 images (one 32z32 image for every 

uppercase letter followed by one for every lowercase letter, in alphabetical order). Each 
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letter in the comparison set represents the pixel-wise average of all instances of that letter 

in all training sets submitted so far. 

 

The EVM assumes that the segmented input of a training set is in alphabetical order, and 

so it just begins at the appropriate image in the comparison set (‘A’ or ‘a’ depending on if 

the training set sent is uppercase or lowercase) and pixel-wise averages in the first group 

of the training set with the first item in the comparison set, followed by the second group 

of the training set with the second item in the comparison set and so on. 

 

The average is done with the comparison set’s pixels weighted by the number of training 

sets previously averaged into it. This is done separately for uppercase and lowercase so 

that one need not submit the same number of uppercase and lowercase training sets. 

 

3.2.3 OCR Processing 

 

For OCR, each group in the segmented input is compared to each letter in the comparison 

set. For each letter in the comparison set, an overall score is computed. The group is 

considered to be the letter in the comparison set that received the lowest overall score 

(lower is better). If one or more letters receives an overall score within a predetermined 

threshold times the lowest overall score, all such letters whose overall scores are within 

this threshold are sent to context processing. We determined this threshold to be 1.1.  
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A so-called “sub-score” is determined by summing the difference squared between the 

luminance value of each pixel in one image and the luminance value of the pixel in the 

same position in the other image. Sub-scores are computed for a pair of images for all 

possible offsets of up to two pixels in the x and y directions of one image with respect to 

another. This results in 5x5=25 sub-scores computed per pair of input images. This is 

illustrated in the pseudo-code below: 

FOR X OFFSET OF A = -2 TO 2 

 FOR Y OFFSET OF A = -2 TO 2 

  COMPARE A AND B 

The overall score referred to above is the best (lowest) sub-score computed for a pair of 

input images. This is important because parts of letters can be slightly shifted with 

respect to one another (the bottom of a “T” in one could be shifted slightly to the right of 

the bottom of the “T” in the other resulting in only the top part matching if we didn’t try 

computing the difference with one offset slightly from the other). 

 

3.2.4 Context Processing 

 

Refer to section 3.2.3 for reasons letters may be referred to context processing. Context 

processing is ignored in the following cases: 

• If simple OCR is being performed 

• If the previous letter output was a space 

• If the previous letter output was uppercase 

In these cases, context processing outputs whatever letter has the best (lowest) overall 

score. Otherwise, context processing ignores the scores entirely and outputs whatever 
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letter is most likely in a dictionary, of those submitted (recall that only letters with overall 

scores within 10% of the best (lowest) overall score are submitted) to follow the last 

letter output. 

 
 
 

4.0 SIGNAL FLOW  
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5.0 RESULTS  
 

Group 8 of 2002 used a benchmark in which they trained the system on 50 lowercase 

alphabets and then did OCR on a different 50 lowercase alphabets. They achieved an 

accuracy of 75%. 

 

We did this benchmark on our system as well so we could directly compare our 

performance with their performance. To do this on our system, we submitted 50 

lowercase training sets to build a comparison set and then did simple OCR on a different 

50 lowercase training sets. Two things are of note in this benchmark: First, simple OCR 

does not implement context recognition, and so these are raw results. Second, as only 

lowercase training sets are present in the comparison set, letters could only be recognized 

as lowercase (no letters could be mistakenly detected as being capital letters). Since 

Spring 2002 group 8 did not implement context recognition or capital letter detection, this 

allows our results to be directly compared. 

 

Our recognition rate was 96.8%. Table 5.1 shows what letters were detected as what.  

The first element in a row indicates the input character and the following columns list 

how many times the character was recognized as the character at the top of the column.  
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Most errors occurred with characters that have similarities. Looking at the Table 5.1, we 

can see that ‘z’ gave lowest accuracy out of all the lowercase alphabets.  Out of 50 z’s, 

OCR detected 45 correctly but misinterpreted 5 of them as ‘x’.  There were also 

confusion between ‘c’ and ‘e’, ‘g’ and ‘q’, and ‘r’ and ‘h’.  Some of this character 

confusion is obvious, for example a lowercase ‘e’ is very similar to a ‘c,’ except for the 

middle line down the center, and a printed lowercase ‘g’ and ‘q’ are also very similar, 

differing only in the direction of their respective tails.  Other cases are less obvious and 

occur in part due to the nuances of our user’s handwriting.  Due to the fact that most of 

our printed z’s were written with a middle line, they were easily confused with ‘x’s.  

Similarly, the h’s could easily be viewed as an ‘r’ with an extended line. 

• z -  versus x -  

• r -  versus h -  

 
 

  a b c d e  f g h i  j k l  m n o p q r s t u v w x y Z 

a 50                                            

b  49            1                             

c   50                                           

d    50                                         

e    2  48                                       

f      48       1        1        

g       49          1           

h             49          1          

I              50                   

j               50                  

k           50                

l             50               

m             50              
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n              49    1         

o 1              49            

p            1    49           

q                 50          

r        2        1  47         

s                   50        

t                    50       

u                     50      

v          1            48 1    

w                       50    

x                        49 1  

y                         50  

z                         5  45 

 
Table 5.1 – Output data based on recognition only (no context processing) 

 
We also wanted to find out how our recognition algorithm’s performance varied with the 

number of training sets in the comparison set.  We built different comparison sets from 

different numbers of training sets ranging from 10 to 100 training sets and tested 5 

sentences using full OCR.  Figure 5.2 shows the results. 
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Figure 5.2 – Recognition rate vs. # of training sets 

 
The best result was 96.4%. Interestingly enough, this occurred for 20, 50 and 60 training 

sets. Also interesting was that even with 10 training sets, the recognition rate was above 

90 percent. Accuracy seemed to decrease slightly at higher numbers of training sets 

submitted, probably because the letters become very blurry. Note that, theoretically, as 

the number of training sets submitted goes to infinity, recognition rate goes to zero 

because everything in the comparison set approaches being a 32x32 solid gray square. 

 

To analyze the effect of context recognition, we did OCR on 25 training sets without 

context recognition, 25 training sets with context processing, 50 training sets without 

context recognition, and 50 training sets with context processing. The results are shown 

below; letters in red indicate a letter that was misidentified: 
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Original Sentences 

1.  

2.  

3.  

4.  

5.  
 

Using 25 training sets without context processing 
 

1. The Quick BroWn Pox jumps Over the laky Doq 
2. The main adVantage of tis metbod iS in tHe Slmple 
3. AlSo Hote that there maY bO comMuHication sfeGd 
4. improYemeAts usinq this mothOd since polk Composer 
5. This Wlll not Work if code Composer iS opcn 
 
174/205 = 84.878 % accuracy 
 

Using 25 training sets with context processing 
 

1. The Quich Brown Pox jumps Over the laky Doq 
2. The main advantage of tis method is in tre Slmple 
3. Also Hote that there may bo communication spead 
4. improvemerts using this mothed since pole Composer 
5. This Wlll net Work if Code Composer is opon 

 
186/205 = 90.732 % accuracy 
 

Using 50 training sets without context processing 
 

1. The Duick BroWn Fox jumps Over the laky Dog 
2. The main advantage Df diS method is in tHe Slmple 
3. Also note that thehe may bO commuHication sfeed 
4. improYemeAts using this mcthOd since Cole CompoSer 
5. This will not Work if Code Composer is open 

 
186/205 = 90.732 % accuracy  
 

Using 50 training sets with context processing 
 

1. The Duick Brown Fox jumps Over the laky Dog 
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2. The main advantage of dis method is in the Slmple 
3. Also note that there may be communication sfead 
4. impropemerts using this mothod since Cole Composer 
5. This will not Work if Code Composer is open. 
 
194/205 = 94.634 % accuracy 
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Figure 5.3 – Plot of results of context processing study 

 
 
The results show that context processing improves results by a few percentage points.  

With a small amount of training sets, the OCR algorithm often confuses some lowercase 

letters with their uppercase equivalents.  The most prevalent example of this occurs in 

sentence 2 with 25 training sets without context processing. Capital letters are common, 

often occurring in the middle of sentences, though the desired result only has one capital 

at the beginning of the sentence.  The reason for this confusion is that our resize 

algorithm treats each group segment equally, resizing them to the same size each time.  

For letters in which lower and uppercase letters are very similar, this can be a problem (a 

lowercase ‘w’ looks exactly like an uppercase ‘W’ when both are resized to 32x32).  
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Fortunately, our context post-processing can fix many of these errors, since it eliminates 

any chance of an uppercase letter following a lowercase one.  To further improve the base 

algorithm however, it may be wise to implement some sort of baseline extraction, 

knowing that lowercase letters tend to appear only on the lower half of the centerline 

while uppercase letters will cross the center into both halves.  This may also help 

distinguish letters that actually fall below the baseline such as ‘j’ and ‘g.’ 

 
 
6.0 MEMORY ALLOCATION AND SPEED  
 
Our memory map for the EVM is shown in table 6.1: 
 
         name            origin    length      used    attr    fill 
----------------------  --------  ---------  --------  ----  -------- 
ONCHIP_PROG             00000000   00010000  0000f480  R  X 
SBSRAM_PROG             00400000   00004000  00000000  R  X 
SBSRAM_DATA             00404000   0003c000  00000400  RW   
SDRAM0                  02000000   00400000  00000000  RW   
SDRAM1                  03000000   00400000  00100000  RW   
ONCHIP_DATA             80000000   00010000  0000ee1b  RW   
 

Table 6.1 – EVM memory map 
 
Note that the program memory is almost completely full – our program just fits in the 

EVM’s memory. Almost everything is stored in ONCHIP_DATA; however, the great 

majority of ONCHIP_DATA is taken up by the comparison set, which uses 52x32x32 

bytes (0xd000 out of 0xee1b). Since the majority of our accesses are into the comparison 

set, this greatly speeds up our algorithm. This is due to the 25 accesses per pixel per item 

in the comparison set per group in the input during OCR. 

 

Unfortunately, this doesn’t leave any room for the stack in ONCHIP_DATA, so we had 

to move it to SBSRAM_DATA. This is not too much of an issue since our algorithm uses 

very few local variables, however, this slows down the segmentation which uses a lot of 
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recursive function calls. We tried moving the stack to ONCHIP_DATA and the 

comparison set to SBSRAM_DATA, but this was far slower. 

 

The only other things not stored on ONCHIP_DATA are those buffers that are allocated 

with malloc and thus stored on SDRAM0: 

• The receive buffer 

o Receives images from the PC 

• The map buffer 

o Stores what pixels in the input image are in what groups 

• The groups array 

o Segmented 32x32 groups to be put in or compared to the comparison set 

• The spaces array 

o Stores the location of spaces  in the input sentence (for full OCR) 

The sizes of all of these vary greatly with the input data size and thus cannot effectively 

be pre-allocated. 

 

Another major memory saving technique we used was to apply the bilinear resize filter as 

the data was copied from the receive buffer to the groups array (see section 3.2.1). 

Without this another buffer of approximately the same size as the groups array is needed 

and all the data in that buffer has to be copied one more time. 

 

Speed enhancements were difficult to make because the actual mathematical operations 

are very simple. We put the compiler on –o3 for the final result and saw some 

improvements in our overall speed. The profiler produced the following results: 

• Training: Approx. 68,000,000 cycles/26 letters 
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o Approx. 2,600,000 cycles/letter 

• OCR: Approx 114,000,000 cycles/35 letters 

o Approx 3,300,000 cycles/letter 

However, the profiler seemed to have a lot of difficulty profiling our algorithm. The 

above results are the minimum inclusive results; all other results turned out to be garbage 

(numbers on the order of 10^20!!). A better metric is that it takes about :15 to process a 

training set of 26 characters at 96 dpi and about :30 to process a 35 letter sentence for 

OCR. The majority of time in our algorithm is spent in segmentation, probably due to a 

lot of recursive calls and the stack being on SBSRAM_DATA. 

 

Note that in an actual application the training sets only need to be submitted once per user 

and after that are just stored on the chip in the comparison set (probably in EEPROM in a 

real-world implementation).  

 
7.0 REFERENCES  
 
Although our algorithm was entirely original, we used some basic ideas and dos and 

don’ts from several sources: 

• http://www.computerworld.com/softwaretopics/software/apps/story/0,10801,73023,00.html 

• http://www.acadjournal.com/2001/V5/part5/p2/ 

• http://www.cs.byuh.edu/research/wilmott/491/paper.html 

We also took the bilinear resize algorithm from: 

• http://www.codeproject.com/cs/media/imageprocessing4.asp 

The algorithm was modified to work in-place as data was copied from one buffer to 

another as detailed above (see sections 3.2.1 and 6.0). The PC-side communications code 

was taken from 18-551 Spring 2003 Lab #2 and modified to fit our needs. 


