
 
 
 
 
 
 

 
18-551, Spring 2003 

Digital Communication and  
Signal Processing Design  

Group 15  

 

Can You See Me Now? 
(Implementation of H264 for use on cellular phones) 

 
 
 

Wayne Chan (wkchan@andrew.cmu.edu),  

Richard Duong (rqd@andrew.cmu.edu),  

Charles Hamilton (charlesh@andrew.cmu.edu) 

 



 2 

Table of Contents 

 

Introduction 3 

Background  3 

The H.264 Video Compression Algorithm 
• Motion Estimation 
• Intra prediction 
• Inter prediction 
• Motion compensation 
• Hadamard Transform and Quantization 
• Context-Based Adaptive Binary Arithmetic Coding 

6 
6 
7 
8 
9 
9 
10 

Overall “Picture” 10 

Approach 11 

PCI and EVM intercommunications 14 

Logistics 15 

Results 16 

Speed Issues 18 

Obstacles to Overcome 19 

Further Work 19 

References 20 



 3 

Introduction 
 

With the increasing need to be connected in today’s society, the demand 

for high bandwidth, feature rich cell phones has emerged.  Cellular phones today 

now come with cameras and color screens that allow you to take pictures.  

However, cellular bandwidth is extremely costly and limited.  In order to conserve 

bandwidth clever compression techniques are needed.  Video is obviously the 

next step in cellular communication technology and therefore there needs to be a 

standard through which video is compressed.  As of now there is no standard for 

cellular video communication.   

 

Our group proposes to use the H.264 video compression standard to 

facilitate the transfer of streaming video over current cellular phone bandwidths.  

The emerging JVT/H.26L video coding standard proposed by the ITU-T video 

coding experts group (VCEG) and the ISO/IEC moving picture experts group is 

acceptable for a wide variety of bit rates, resolutions, qualities, and services. 

Because of these strengths, we feel that it is well suited to implement on the C67 

EVM. 

 

Background 
 

The video coding standard H.264 achieves a high compression capability 

for a desired image quality.  It is capable of the same quality video as previous 

video compression standards, MPEG-4 and H.263, with close to half the 

bandwidth usage.  No single portion of the entire compression algorithm is 

drastically better than previous standards; however it is the combination of many 

small improvements that allow for such large improvements.  Although the 

algorithm is not lossless, some techniques can be employed to attain highly 

efficient compression.  Inter coding uses block-based inter prediction (through 
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time) and intra coding (within a single frame) uses spatial prediction.  Motion 

vectors and intra prediction modes may be specified for a number of block sizes 

in the picture.  This is then further compressed to remove spatial correlation 

using a transform, before it is quantized.  This will keep a close approximation to 

source samples, while removing less important information.  The two parts, the 

motion vectors or intra prediction modes and the quantized transform coefficient 

information are combined and encoded using either variable length codes or 

arithmetic coding.     

 

Within the past 4 months, numerous companies have begun to implement 

the H.264 reference software on digital signal processors and field 

programmable gate arrays.  Ingenient Technologies has a H.264 video 

compression algorithm running on its C64x DSP family.  Equator Technologies 

similarly claimed its media processor's architecture would be capable of real-time 

H.264 encoding and decoding.  Kevin Oerton of VideoLocus said his company's 

FPGA hardware acceleration encoder is capable of standard-definition video at 

30 frames per second.  Most recently, UB Video Inc. has produced a C64 

implementation of the H.264 decoder to be used in real-time video applications.  

It is advertised as the world’s first H.26L based video processing solution on 

Texas Instruments TMS320C64X digital media platform. 

 

  There has been a past 18-551 project having to do with video 

processing, i.e. the “Virtual Advertising” group.  We will consider the methods 

used by this group to get video from the PC to the EVM and back again.  Our 

group will look into using the MSDN libraries, vfw32.lib and winmm.lib, in 

converting the video into frames before sending it to the EVM, similar to the 

“Virtual Advertising” group.  However, our project is different from this group 

because we are attempting to achieve a higher frame rate with a lower 

resolution.  We are also implementing a more computationally demanding 

process than what has been previously implemented.   
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Preliminary work 
 

We had a good deal of background learning and research to do in order to 

understand the entire algorithm, as well as the reference code before beginning 

the implementation.  Our first step was to become familiar with the sophisticated 

algorithm through careful reading of the specifications and reference materials 

from online sources as well as from books.  Next, we examined the available 

reference C code for encoding and decoding (available at: 

http://bs.hhi.de/~suehring/tml/).  We tried to find the most computationally 

intensive parts of the algorithm, to determine what to tackle first, the encoder or 

the decoder.  This took quite a bit of time because of the density of the material 

and the poor coding and commenting techniques used by the many writers.  In 

the best interest of time, we decided to concentrate on the decoding portion of 

the software.   

 

The Algorithm 
 

Below is a block diagram of the H.264 encoding algorithm.  The decoding 

process, shown in pink, is incorporated in the encoding process as prior encoded 

and reconstructed frames are used in the encoding process.  Different modules 

within the encoding process include: motion estimation, motion compensation, 

Hadamard Transform, Quantizer, Entropy encoding, and a deblocking (loop) 

filter.  Differences from MPEG-4, previous video compression technique, is the 

use of a Hadamard Transform as opposed to a Discrete Cosine Transform.  The 

use of smaller sub pixel motion compensation.  Also, the use of Context-Based 

Adaptive Binary Arithmetic Coding is a vast improvement to output bit stream 

size.  A description of the process follows.   
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Block diagram of encoding process 

 

First, an input frame is processed in units of a macroblock, which is a 

16X16 pixel block of the original image.  From here, a macroblock is subdivided 

further according to the prediction mode and motion content present in the 

macroblock. 

The figure to the left shows the different possible 

subdivisions of a macroblock.  It is referred to as 

the tree structure segmentation method.  Motion 

vectors are transmitted for each block 

subdivision, so it follows that the smaller the 

subdivisions, the better the predicted outcome.  

However, with more to be transmitted, the overall 

computation time is slower. 

 

Motion Estimation 
 

H.264 does integer pixel motion estimation to evaluate the Sum of 

Absolute Difference (SAD) within a given search range.  The SAD finds the sum 

of the pixel differences between the incoming block and the displaced block[1].  
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The macroblock is then either encoded using inter or intra prediction techniques 

based on the following equations:   

 

If  

A < (SADinter – 2 * NB) 

where 

 A =            |original – MBmean| * (! ( Alphaoriginal = =0))  

and 

  SADinter = min(SAD16 (x,y), SADk x 8) 

 

MBmean = (         original) / NB  

    

 

NB is the number of pixels in the block. 

Then, INTRA mode is chosen, otherwise, INTER mode is used. [1] 

 

Intra prediction 
 

 When intra prediction is chosen as a result of the above equations, the 

spatial redundancies of the video sample are exploited to create a prediction 

block.  The resulting block, called an I-frame, only uses neighboring pixels to 

create a prediction frame.  The pixels from the column to the left of and the row 

above the current block are the only ones considered in finding the best 

prediction.  Below are the 9 modes of prediction for 4x4 luma blocks and the 4 

modes of prediction for 16x16 blocks.   
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9 modes of prediction for 4x4 luma blocks 
 

 
 

 

 

 

 

 

 

Inter Prediction 
 

 Inter prediction uses previous and in some cases, future frames to create 

a prediction frame.  The motion estimation and compensation techniques used 

take advantage of the temporal redundancies of consecutive frames.  As shown 

in the macroblock subdivision graphic, for P-frames, the motion compensation 

can be done on block sizes of 16x16, 16x8, 8x16, and 8x8.  Furthermore, if the 

block is split up into 8x8 blocks, these can be divided into 8x4, 4x8, or 4x4 

samples.  P-frames result from using one or more previously encoded and 
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reconstructed frame as reference frame(s) to create a prediction frame.  B-

frames (B stands for bi-directional) result from using previous P- or I-frames and 

future P-frames to create a prediction frame.  Other types of frames, SP- and SI-, 

are used for switching between bit streams with similar content[3].   

 

Motion Compensation 
 

The prediction block for each subdivided block is given by displacing an 

area of the reference block.  Up to sixteen motion vectors can be transmitted for 

each P-frame.  Motion vectors are also allowed to be pointing outside the image 

area.  In these cases, interpolation is done by duplicating the edge pixels.  ¼-pel 

motion compensation is used for temporal prediction.  6-tap interpolation filtering 

is done to determine ½-pel positions.  This is followed by bi-linear interpolation to 

get ¼-pel positions.  For the more optimal profiles of H.264, 8-tap interpolation 

filtering is used to derive 1/8 -pel positions[3].   

 

 

Hadamard Transform and Quantization 
 

Next, the prediction macroblock P is subtracted from the current 

macroblock to create a difference macroblock.  The block is transformed using a 

Hadamard Transform.  A Hadamard Transform is very similar to a discrete 

cosine transform, however uses integer values as opposed to floating-point.  This 

fact reduces rounding errors, and eliminates mismatch values between the 

encoder and decoder.  Also, the 4x4 size is smaller than the 8x8 size of the DCT 

used by prior video compression techniques, which helps reduce blocking and 

ringing artifacts.  Its core operations can be done by only using additions and bit 

shifts.  There is only one multiply required, and can be performed in the 

quantizer[5].  On a side note, the Hadamard Transform has a disadvantage to 

the DCT, in that the result creates a more blocky output.  The advantages are the 
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decrease in errors because of the use of integers, and the minimization of 

computations.  The result is then quantized to give a set of quantized transform 

coefficients[6].   

 

 

Context-Based Adaptive Binary Arithmetic Coding 

(CABAC) 
 

The coefficients are then re-ordered and entropy encoded.  The entropy 

encoding used is called Context -Based Adaptive Coding (CABAC).  [more about 

this]  This information along with information required to decode (macroblock 

prediction mode, quantizer step size, motion vector information as to how the 

macroblock was motion-compensated, etc.) comprises the compressed bit 

stream[5].   

 

Overall “Picture” 
 
 When the encoder runs, the first frame is encoded as an I-frame, or intra 

predicted frame.  This is because a reference frame must be encoded first before 

more sophisticated compression can occur.  Therefore, the first frame has no 

motion information and is encoded only using the neighboring pixels of each 

macroblock.  From that point on, depending on the mode the encoder is running, 

either just P-frames will be encoded, or B- and P-frames will be alternating in 

order for encoding.  We chose to run the encoding process without the use of B-, 

SP-, or SI- frames as per the baseline mode of H.264.  We do, however, use 

other features that are not specified in the baseline mode of H.264 such as 

CABAC[5].   
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Approach   
 

The original H.264 reference code comes as a pair of entities.  As 

mentioned earlier the decoder entity is contained inside of the encoder entity to 

decode the previous frame for use to build the current frame.  We concluded that 

if we were to implement the whole system a good place to start would be the 

decoder since a slow decoder would ultimately be a bottleneck of the overall 

system.   

 

To start both the encoder and decoder were compiled in Visual Studio 6 

and run on YUV samples to learn how the software works.  YUV files were 

compressed and decompressed then reviewed to observe similarities.  

Everything ran worked fine so we decided to begin porting the software.  The 

original reference code was built in C, however it was not a very portable 

application as claimed by the release information.  Initial attempts to compile the 

decoder in other environments such as UNIX failed miserably and caused more 

errors than allowed by the compiler to return.  Early attempts to compile the 

software in Metrowerks Code Warrior were also futile.  It was decided at this 

point that the code needed to be cleaned up and made portable so that we could 

work with it in an environment other than Microsoft’s Visual Studio 6.   

 

Cleaning up the decoder took a great deal of time.  There were libraries 

that were referenced that were not included and there were library references 

that didn’t need to be referenced all over the mass of the code.  There weren’t 

even prototypes for some of the functions.  Time libraries which were used to 

benchmark had to be taken out and the code had to be modified since there was 

no real time clock in the EVM.  The complete code was so large that it had to be 

completely stored in the SDRAM and therefore it would make it slow for running.  

Alterations throughout the code were done to individual C files until they 

compiled under code composer one by one.  One of the large problems we 
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encountered while using this method came when we tried to like the program.  

Many global variables were defined and not declared with ‘extern’ which led to 

“multiply defined” errors.  Also, we had to target appropriate libraries in order for 

the linking process to complete.   

 

When compiling the code all together without any optimization on it took 

roughly 15 minutes.  However, when optimizations were turned on it ran for over 

an hour until we decided that it wasn’t going to finish compiling in any definite 

amount of time and decided to cancel and take another approach.  The non-

optimized version of the program was moved over to the EVM and run, however 

it seemed to do nothing.  This implemented version was built inside of Code 

Composer Studio and was designed to run completely on the EVM, grab files off 

of the hard drive, decompress them, and write them back to a file on the hard 

drive without the use of a proxy PC application to send and receive data.  After 

working for roughly 4 weeks on making this version compile, link, and build to a 

program that could be sent to the EVM we finally had to abandon this version 

because working out the runtime problems would not be cost effective.  The time 

it took to rebuild the whole program, send it to the EVM and run it with debugging 

information for each modification would take much longer than the time it would 

take to make a single modification in the code.  Repeating this process until the 

production of a viable product was produced could not be done in any feasible 

amount of time.  Therefore this approach was abandoned to seek a more 

feasible solution to our problem.   

 

At this point we decided to attack our problem with a more bottom up 

approach.  A stand alone EVM version was not feasible in the time frame that we 

had with the resources that we had available.  Therefore we decided to modify 

our plan to build an EVM assisted version of the encoder to run on the PC. The 

encoder was built instead of the decoder for this implementation because we 

could streamline the encoder to run in a simplified “baseline” mode where it 

would use only the specific features of H.264 that we needed for our specific 
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application.  A streamlined decoder would only be able to decode a similarly 

streamlined encoded bit stream, whereas the original decoder would be able to 

decode any operating mode of the encoder.   

 

In order to determine which portion of the code we should sub task to the 

EVM, we stepped through the encoder to find portions of the code that the 

program spent the most time in.  We found that a major amount of the calls were 

being made to parts of block.c, roughly 50,000 calls per frame.  We determined 

that this was the portion of code that did the transform, quantization, inverse 

quantization, and inverse transform for luma parts of the YUV frame.  This 

portion is used in every sub-block of every macroblock, therefore it seemed 

reasonable to compute this portion as fast as possible.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Final system diagram 
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PC and EVM intercommunications 
 

We started with the dct_luma() function in block.c.  In order to sever this 

portion of code from the PC side we had to step through the code to find which 

memory locations were being changed.  Creation of two new files on the PC side 

'comm.c' & 'comm.h' was necessary because within the communication library 

'evm6xdll.h' TRUE and FALSE are redefined once and in 'globals.h', TRUE and 

FALSE are redefined a second time. Commenting out one or the other did not 

seem to make it work.   

 

In order to work around this we took the pointer values of the structs in 

global.h and passed them into comm.c for use within comm_dct_luma(). Now 

that comm.c has access to the variables that is necessary for dct_luma() it 

acquires them from memory and stores them into an array.  Communication is 

now opened with the EVM and a flag is set in a predefined memory location.  On 

the EVM side 'acute.c' is waiting for the flag to be set and sends an 

acknowledgement to the PC that it is ready to receive data when the flag is 

changed.  The PC is waiting for this acknowledgement and responds by sending 

the data array that was created in comm_dct_luma.   

 

When the EVM receives the data, it is broken up from the single block of 

memory back into smaller easily more manageable variables by using DMA 

transfers to on-chip memory.  While the data is on the on-chip memory within the 

EVM side it is processed in dct_luma() which was severed from the PC side.  

The processed values are returned using a DMA transfer to SDRAM while the 

EVM sends a message back to the PC that it is ready to be transmitted.  It begins  

transmitting to the PC and sends a message back to the PC to acknowledge that 

it is finished.   
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The PC receives all the data back and stores it back into the appropriate 

memory locations that they came from.  The PC then breaks out of 

comm_dct_luma() when the kill message is sent from the EVM and the program 

returns back to the portion of 'block.c' that was running.  Inside of 'block.c' the 

integer is returned and the outsourced portion of code to the EVM runs 

transparent to the rest of the program in the  same manner that it was before the 

EVM assistance.   

 

 

Logistics 
 

H.264 is designed to compress video in the YUV 4:2:0 format.  The YUV 

4:2:0 format consists of one luminance and two chrominance components.  The 

luminance component is sampled at the 176x144 frame resolution whereas the 

chrominance components are down-sampled by two in the horizontal and vertical 

directions.   

 

We recorded several .AVI samples using our Alaris Weecam webcam at 

10 frames per second.  Using an avi-to-yuv converter we found online, we 

converted these files to the YUV 4:2:0 format to be encoded.  After a sample was 

encoded and then decoded, we played the output using our yuv viewer, which we 

also found online.     
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Results 
 
 Our first attempt, was to do PCI FIFO transfers for everything, which 

turned out to take a large portion or the total time of communications between the 

EVM and PC.  Our initial processing times were slower than our final processing 

times, however, still much larger than the time required for the PC to encode by 

itself.   

 

In the end, as described earlier, we used dma transfers for sending and 

receiving our variables between the PC and EVM.  This was the method used in 

lab 3, and proved to be the most effective for our situation. 

 

On the next page is a screen shot of the output given by our 

implementation of the encoder.  Under Frame, the type of frame being processed 

(I or P) can be seen indicating whether intra or inter prediction is taking place.   

 

Our original processing times for the PCI FIFO trans fers: 

 

Areas Code Size Incl. Average Excl. Average 
send_variables 392 8105 8030 
request_transfer 116 1895 36 
process_memory 472 681 396 
 

 

After changing to dma transfers: 

 

Areas Code Size Incl. Average Excl. Average 
send_variables 484 37646 10743 
request_transfer 40 147393 12 
process_memory 20 17839 6 
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Speed Issues 
 

The H.264 implementation built for the PC was designed to be run with a 

great deal of memory at once.  However, the EVM does not have a great deal of 

memory like a PC.  The original implementation of the decoder consumed a 

massive amount of space on the EVM. It was roughly 4 Mbytes in size.  This 

caused a very limited space for the data frames and any manipulation of on data.  

However it did fit barely on the onboard memory however it was much too large 

to run in on chip or even SBSRAM.   

 

 When we moved to the implementation of the encoder, dct_luma() and the 

respective data fit conveniently on on-chip memory.  This allowed us to maximize 

the speed of that portion of the algorithm.  Original speed issues before moving 

to DMA block transfers were massive.  When we were using PCI transfers the 

time it took to process a single sub-block took much less time than was needed 

to transfer the memory. The memory transfer of all the variables on and off of the 

EVM from the PC was definitely our bottleneck in processing dct_luma() on the 

EVM.   
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Obstacles to Overcome 
 

 Once again, the reference code provided by Karsten Suehring and the 

Joint Video Team was poorly written and commented.  H.264 codec was 

designed with the video compression layer and the network abstraction layer.  

Flexible Macroblock Ordering (FMO) allows the blocks to be sent in an order 

different from raster scan order.  This makes the algorithm faster, however 

necessitates a need for wrappers to be placed around each block to ensure that 

the decoder performs in the correct order. 

 

 Large data structures and objects are used by the algorithm, and there 

was a problem that was fixed about how to go about dealing with these large 

structures as well as pointers to these structures.  We got around that problem by 

creating an array of all the variables that were needed and that were to be 

changed by the dct_luma function.  Thus, entire structures did not need to be 

sent, rather only portions of the entire structure.  This saved processing time as 

well as memory greatly.     

  

Further Work 
Our project could be improved upon and extended in the following ways.  

More functions could have been ported onto the EVM that were similar to the one 

we did, i.e. doing transform and quantization for the chrominance blocks, as 

opposed to only doing it for the luminance blocks.  If we had ported a similar 

function onto the EVM that used similar variables, this definitely would have cut 

back on the time to send variables back and forth from the PC to EVM and thus, 

cut back on total encoding time.  Thus, stepping back another level and 

implementing more of the algorithm would be the next step for this project.  Given 

the fact that we were working on getting the decoder to work on the EVM for too 

long, we were not able to do this. 
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