

18-551, Spring 2003
Group 14, Final Report

Do What I Say!

Image Editing using Voice Commands

Chongseok (Alex) Park (park8)
Trevor Tse (ttse)

Ka-Loon Tung (ktung)

18-551 Spring 2003 Group 14
- 1 -

Table of Contents
Introduction: ... 2

Project Overview ... 3

Transfer Methods.. 4

Prior 18-551 Relevant Works.. 5

Speech Recognition Algorithm ... 6

Decision Making Process ...6

Dynamic Time Warping..7
Coding Dynamic Time Warping ...9

Different Algorithms Attempted But Not Used ...11

Image Processing Algorithm..12

Sharpen and Blur ...12
Pixelate...13

Brighten..13
Grayscale ..14

Rotate..14
Undo ...14

Memory Allocation...16

Speech Processing ..16
Image Processing ...16

Memory on the EVM ..17

Speed Issues ...18

What We Did ..18

What We Tried..19
What We Did Not Do..20

EVM Profiling ...21

Demo and Tests..23

References..25

18-551 Spring 2003 Group 14
- 2 -

Introduction:
Problem

 Today, digital images are a new standard by which society can distribute

photographs. Innumerable digital images are exchanged among family and friends every

day via email and web pages. Thanks to the internet�s ability to transport these images

instantaneously, more and more people have begun using image-processing applications

to �clean up� their pictures before distributing. However, the majority of the existing

image processing applications, such as Adobe Photoshop, Paint Shop Pro, etc. contain

complex menus that intimidate inexperienced users. Many of these users do not have the

time to devote hours to learn all the menus/commands let alone master them in order to

filter pictures to achieve their desired results.

Solution

 Our project is to implement an image processing application that can alleviate the

need for complicated menus, and provide the capabilities of the most commonly used

image-processing filters. The means of controlling these filters will be a voice input

through a microphone. From there, the TI C67 EVM will retrieve the voice input through

its MIC-in codec, and process it to determine what command was spoken. Then it will

run the image processing filter, and save it to a file that can be viewed by the user. We

will also feature an undo command for cases where there is an execution of the wrong

command, or if the user does not like the result.

18-551 Spring 2003 Group 14
- 3 -

Project Overview

The C program is first executed on to the PC side using Microsoft Visual C++.

Then it asks the user to input the filename of an image and the filename to store the

output (both in Portable Pix Map (PPM) format). Afterwards, the program is executed on

the EVM side using Code Composer Studio. The PC sends the picture to the TI C67

EVM (using HPI DMA transfer). Then, the user inputs a voice command through the

microphone via the CODEC on the TI C67 EVM. The speech is recorded at a sampling

rate of 5512 samples per second. The TI C67 EVM then sends the buffer containing the

speech to the PC using asynchronous PCI transfer. (In order to capture all of our speech

we made our buffer size 8000.) Afterwards, the PC down-samples and locates the main

part of the speech to lower the amount of samples. If there are too many samples (more

than 2000), the program will request the user re-enter his/her voice command. (This was

an effective way of getting rid of unwanted noise that was excessively high at the ends.)

Dynamic Time Warping (DTW) is then performed on the PC side to determine the match

possibility. The results of each DTW match possibility is then normalized by dividing

each value by the peak value of the magnitudes. Finally, these normalized values are

summed. The best match determined by this normalized sum is then sent back to the TI

C67 EVM (using a PCI synchronous message send), where the image is passed through

the best match image processing filter. The edited image is then sent back to the PC

using HPI DMA transfer and written to the output file.

18-551 Spring 2003 Group 14
- 4 -

Flow Chart

Figure 1: Quick Overview

Transfer Methods

For the PC ! EVM transfers, we used three different sending methods: HPI

DMA transfers, PCI asynchronous FIFO transfers and PCI synchronous message sends

and receives. For the speech recognition part, the buffer containing the voice input is

sent to the PC from the EVM using PCI asynchronous FIFO transfer. For the image

processing part, the image was sent back and forth via HPI transfers. To synchronize the

two parts of our project, the PC side waits for synchronize messages from the TI C67

EVM prior to moving onto the next task.

Image

PC
1) Gets Image

2) Performs DTW after
receiving voice

command
3) Writes Output Image

TI C67 EVM

1) Waits for voice input
2) Does image processing based on

best match from DTW
3) Sends back the final edited

image

1) Send Image

Voice
Command

2) Send voice
 command
3) Sends best
match from DTW
4) Sends the
image back to PC

Final output
image

18-551 Spring 2003 Group 14
- 5 -

Prior 18-551 Relevant Works

 There were several previous 18-551 groups that dealt with speech recognition.

The following were used as references for our project.

Spring 1998, Group 13 � Voice Recognition for Embedded Systems

This project involved speech recognition for operating various household objects. The

voice command library contained about 15 small discrete words. This group used a

template based training set and made the speech recognition speaker dependent. This

project used dynamic time warping for speech recognition.

http://www.ece.cmu.edu/~ee551/Old_projects/projects/s_98_13/powerpointhtml/final/

Spring 1999, Group 18 � Text Independent Voice Transformation

This group dealt with speech recognition and voice transformation. They used linear

predictive coding with pitch detection to achieve speech recognition and voice

transformation.

http://www.ece.cmu.edu/~ee551/Old_projects/projects/s99_18/final.html

Spring 2000, Group 11 � Voice Recognition and Identification System

This group did a speech recognition project for identification of users. The library for

this project was small since it was only a password. This project also used dynamic time

warping for speech recognition.

http://www.ece.cmu.edu/~ee551/Final_Reports/Gr11.551.S00.pdf

18-551 Spring 2003 Group 14
- 6 -

Speech Recognition Algorithm

Decision Making Process

Although our speech recognition part used the Dynamic Time Warping (DTW)

algorithm instead of the Hidden Markov Model (HMM) algorithm, we still needed a

relatively large trained library. When we initially started researching speech recognition

algorithms, we came to an erroneous conclusion: we believed that the HMM algorithm

would be the ideal solution for our program.

Just about every webpage we visited showed that the HMM algorithm is one of

the most powerful speech recognition tools to date. Some websites even seemed to

indicate that HMM is just a more advanced version of DTW. Furthermore, Carnegie

Mellon University has its very own SPHINX (well known throughout the speech

recognition world) that uses a modified HMM algorithm to drive their speech recognition

program. After giving our preliminary presentation, we learned that the HMM algorithm

was indeed very suitable tool for speech recognition; however, HMM is used for robust

big vocabulary speech recognition, whereas our project focused on isolated, small

vocabulary speech recognition.

Our program only required seven words and they were spoken one at a time,

which fit the bill for DTW. The difference between HMM and DTW was the amount of

training each algorithm required to successfully perform speech recognition.

18-551 Spring 2003 Group 14
- 7 -

Dynamic Time Warping

 The Dynamic Time Warping algorithm receives it�s named from the fact that it

compensates for the varying speeds and times of the spoken speech. The biggest problem

in speech recognition is not the difference in volume or frequency of the speaker�s voice

but rather the timing of the speech. DTW is an algorithm that takes care of that problem.

In essence, DTW makes �sspeeech� or �spech,� seem the same as �speech.� This is done

by a process that consists of matching the incoming speech with stored templates. The

template with the lowest distance measure from the input pattern is the recognized word.

The best match (lowest distance measure) is based upon dynamic programming. In order

to get the lowest distance measure, the distance measure between two feature vectors is

calculated using the Euclidean distance metric.

The sum of the smallest Euclidean distances is the lowest distance sum. We limit the

possible minimum values to the values in directions that are linearly possible (only

increases in the matrix index are allowed). Every other value is not a possible minimum

distance. Therefore, the lowest distance sum is calculated by the following equation:

D(i, j) = min[D(i-1, j-1), D(i-1, j), D(i, j-1)] + d(i, j)

18-551 Spring 2003 Group 14
- 8 -

For example, when the signal (spoken word into the microphone) and the key (the

template speech sample the signal is compared to) of DTW are identical, the following

path would result:

Figure 2: Brighten vs. Brighten

The shortest path of this example is obviously a linearly ideal path. However, when two

different words are compared such as brighten and sharpen, the following result would

occur:

Figure 3: Brighten vs. Sharpen

18-551 Spring 2003 Group 14
- 9 -

Although the path seems fairly linear, it is obvious that the path has become slightly less

linear than the previous. When two words that are essentially the same, but not identical

(such as �sspeeech� and �speech�) the path will look similar to the following:

Figure 4: Sspeeech vs. Speech

Although not as good as the original, this comparison is more linear than the previous

result.

Coding Dynamic Time Warping

When we first started working on our DTW speech recognition, we luckily found

a cookbook of speech recognition tools on a CMU website. We ran the cookbook on a

Linux based machine to see how accurately the speech algorithm would work. It worked

well and we proceeded to try to get the program working on a Windows based platform

(on Visual Studios). After numerous hours, we decided it was too difficult to translate

the arcane code. We searched on the web once again and found a MATLAB based DTW

algorithm. This new algorithm, however, differed from the algorithm that was

implemented in the cookbook. Instead of calculating the minimum distance sum, this

18-551 Spring 2003 Group 14
- 10 -

code generated a new path that would best reconstruct the signal to make it look similar

to the key. Basically, it tried to make the signal overlap with the key in time (as

illustrated in the chart below).

Figure 5: Example of overlapping the key with the input

 Initially, we tried to take advantage of this newfound algorithm and implement

our own version to see how well it would work. We wrote the same MATLAB code in C

and then tried to correlate the newly generated signal along with the key. Although this

seemed like a great idea, it did not work well. We thought this method would allow us to

see the best results from the correlations easily, but the results were mixed and

inconsistent.

 Before we scrapped this path finding code, we realized that it was not completely

useless. Fundamentally, the code was using the same ideas as the cookbook�s code. We

edited the code to mimic the ideas that were present in the cookbook�s code and tested it

out. Our new code returned favorable results.

18-551 Spring 2003 Group 14
- 11 -

Different Algorithms Attempted But Not Used

As mentioned before, we tried using the code we obtained to get the best path and

regenerate a new path for the signal that would best match the key in time. Then we tried

to correlate this new signal with the key and see which one would return the best result.

This method did not work as planned with inconsistent results.

Another idea we tried utilized our current DTW algorithm but tried to improve on

it. Because our DTW algorithm was too slow on the TI C67 EVM and even on the PC

side we tried to speed it up. In addition, we tried to improve our accuracy. Going

through previous years� projects and searching on the web, we found out that Linear

Predictive Coding (LPC) was an algorithm that aided speech recognition. LPC extracts

the most important parts in speech and uses those for speech recognition instead of the

actual whole speech.

LPC required an autocorrelation of the signal (speech we speak in to the microphone) and

then a new signal was made that had only the essential parts of the speech. Then we tried

using DTW on that new speech with the keys. This method worked to some extent and it

did yield extremely fast results. It was fast enough that we could have put it on the EVM.

(Basically, using LPC got rid our 2000x2000 size matrices and replaced them with 13x13

matrices). However, this method did not yield an improvement in accuracy of speech but

rather showed a decrement in the accuracy. We preferred accuracy to speed and decided

not to use this approach.

18-551 Spring 2003 Group 14
- 12 -

Image Processing Algorithm

 The image processing filters that we implemented, sharpen, blur, pixelate,

grayscale, brighten, and rotate, all use relatively different operations to change the pixel

values within the image. Our project reads in a Portable Pix Map (PPM) format image,

using source code obtained from the teacher�s assistants. Once the header is decoded,

and the size of the image extracted, the contents of the image is read into an array of

bytes of size length*width*3 unsigned characters.

Sharpen and Blur

 Sharpen and blur in essence use the same principles by which to edit the image.

When you sharpen an image, you want to decrease the influence neighboring pixels have

on the current pixel. In contrast, when you blur an image, you want to increase the

influence neighboring pixels have on the current pixel. Each pixel is convoluted with a

general 3x3 sharpening and blurring matrix and the result was summed and placed in the

corresponding location in the resulting image array. Because the values are stored in

bytes, the issue of overstepping the 255-value limit became an issue. As a result, we

altered each matrix so that it does not overstep the boundary.

Sharpen Matrix: Blurring Matrix:
0 -0.25 0 1/5 1/5 1/5

 -0.25 2 -0.25 1/5 1/5 1/5
 0 -0.25 0 1/5 1/5 1/5

Sharpen and Blur Matrices

18-551 Spring 2003 Group 14
- 13 -

Pixelate

Pixelate can be used to create a similar effect as if the image were an oil painting,

or if you were looking through a frosted glass window. When you pixelate, one pixel is

selected within a set range and all values in that range is set to that value. Our algorithm

selects a random pixel to be replicated throughout a calculated range. The range that we

used is an algorithm that compensates for the fact that various image sizes may be

processed. In order to determine this degree of pixelation, we divided both the length and

width by the degree. If both values are still greater than 85, then we increment the degree

and then test once again. However, once either of these division results falls below 85, a

random number between 0 and degree2 - 1 is generated for each square matrix (degree ×

degree). The random number generated corresponds with the value calculated by row ×

degree + column. This determines the location of the pixel value that will be replicated

throughout that square pixel range. For any pixels that are not included within a square

matrix, we simply copied the original pixels over.

Brighten

Brighten takes advantage of the fact that each pixel uses three bytes containing

the values between 0 and 255 to stores color intensity for each of the three layers. For the

sake of simplicity and generalization, we forced our filters to brighten by a factor of 20%

for every run of this command. Once again, the issue of overstepping the storage

limitation of 255 becomes an issue. We capped the value limit and set any value that

exceeds 255 to 255.

18-551 Spring 2003 Group 14
- 14 -

Grayscale

 For grayscale, we followed the YIQ color model used by the National Television

Standards Committee. This method of gray scaling uses a weighted average of the three

different layers. This method takes 30% red, 59% green, and 11% blue, sums up the

values, and sets the value of the pixel in all three layers to the result.

Rotate

 Rotating the image is a matter of shifting the location of the pixel. For the 90o

clockwise rotation we desired, we had to swap the indexing. The new height index is

now the current width index (yi = xcurr), while the new width index is the max height

minus the current height index minus 1 (xi = ymax � ycurr � 1). The pixel is then written

into the appropriate location of the array. In addition, the new reference height and width

in the structure is changed to correspond with the now filtered image. With rotate, unlike

every other command, we had to send in the new dimensions of our image because of the

way we implemented the filter. Through a PCI synchronous send message, we sent in the

values of the length of X and the length of Y.

Undo

Undo is the only voice command that required no actual computations. Due to

the memory requirements, we offered only the option of undoing the last image

processing command executed. If we wanted to have multiple levels of undo, we needed

to allocate more memory and therefore, we did not feel it was necessary. On the EVM,

we had two arrays that stored the image. The first was the frame, which was an unsigned

18-551 Spring 2003 Group 14
- 15 -

character array, and the second was result. Working with these two arrays, we simply

copied the result back into frame right before each image processing command is to be

executed. If �undo� is the recognized speech input from the microphone, the frame is

copied into result (over-writing the previous result). This process undoes the last image

processing command that is executed.

18-551 Spring 2003 Group 14
- 16 -

Memory Allocation

Speech Processing

The memory allocation for the speech recognition part of this project remained

constant. We allocated a buffer that has the size of 8096 x the size of a 32-bit int (4),

which is 32384 bytes. This buffer stored the inputted voice from the microphone via the

TI C67 EVM CODEC.

Image Processing

The memory allocation on the TI C67 EVM varies depending on the image that is

used. Assuming an image has the dimensions XSIZE by YSIZE, the memory allocation

for the image processing part is:

- Frame: XSIZE x YSIZE x 3 x the size of unsigned char (1)

- Result: XSIZE x YSIZE x 3 x the size of short of int (2)

The frame contains the image from the PC side and the result is the image that is

returned after the image processing filters are performed. For example, if the image were

600 * 400, the memory allocated on the TI C67 EVM would be 720,000 bytes.

18-551 Spring 2003 Group 14
- 17 -

Memory on the EVM

We increased the heap size and used the off chip memory for storing the code on

the EVM.

Name Origin Length

Heap - 0x3d0000

Stack - 0x400

ONCHIP_PROG (RX) 0x00000000 0x00010000

ONCHIP_DATA (RW) 0x80000000 0x00010000

SBSRAM_PROG (RX) 0x00400000 0x00028000

SBSRAM_DATA(RW) 0x00428000 0x00040000

SDRAM0 (RW) 0x02000000 0x00400000

SDRAM1 (RW) 0x03000000 0x00400000

Table 1: EVM memory allocation

18-551 Spring 2003 Group 14
- 18 -

Speed Issues

What We Did

 When we first got the speech recognition DTW algorithm working, the

calculations took an excessive amount of time to complete. In order to speed up the

algorithm, we attempted to remove as many double for loop calculations as possible. The

initialization of the local distance matrix (LDM) and the accumulative distance matrix

(ADM) were the first loops removed. Since we calculated the LDM in the next double

for loop, and every value was calculated and set in that loop, we were able to remove

initialization of the LDM. Also by shifting the ADM initialization into the LDM

calculation loop, we were able to remove yet another loop. In addition, we removed a

third double for loop when calculating the �best choice� for the next step in our

algorithm. The result was a decrease of approximately 60% of the time required, since

we removed three of the five double for loops. These double for loops wouldn�t have

been a problem if they were simply in their teens, but these loops continued on into

ranges greater than that of 4000. Memory wise, this code did not work on the EVM

because the EVM�s maximum memory is approximately 8 megabytes. We had to find a

way through this problem because we required the big matrices to be there.

 The result of this optimization was still inadequate to improve the overall

performance of our algorithm. We realized that our DTW required only key points to

perform the accuracy check. First, we cut off the noise that was sent into our algorithm

but cutting off values that did not exceed a normalized threshold value of 0.2. This

removed the noise, and cut down length of the sample from 8096 to less than 4000

samples. Afterwards, we down sampled by a factor of two. The resulting performance

18-551 Spring 2003 Group 14
- 19 -

was much faster than the initial algorithm, with an indistinguishable difference in

accuracy rate. Performance overall was acceptable for individual runs of the algorithm.

After performing all these optimizations, we were able to run the DTW code on the

EVM. However, because of the number of trained values (42), and the difference in

speed of the PC�s processor of 1.8 GHz and the EVM�s speed of 167MHz, the overall

time requirement when processing on the EVM was unrealistically long. We had no

choice but to leave the speech processing on the PC side.

 For the image processing, due to time constraints, we were unable to complete

any significant optimizations. Therefore, the only optimization that we implemented was

Code Composer�s built in loop unrolling feature. The result was a slight increase in

speed for the image processing filters.

What We Tried

 Our further attempts to improve the speed of our DTW algorithm was first to

employ LPC (Linear Predictive Coding). LPC is a method of down sampling that

extracts the key parts of the input waveform. These key parts are also the changes in the

tones of the input waveform. The result is a list of coefficients for a filter that will

reproduce a similar waveform. However, the result of our LPC calculations was rejected

because of the decrease in accuracy. Though it improved the improved the speed of our

algorithm dramatically, the resulting accuracy rate dropped from roughly 75%-80%, to

10%-15%. We decided to reject any further attempts of programming this algorithm due

to time constraints.

18-551 Spring 2003 Group 14
- 20 -

What We Did Not Do

 Because the DTW algorithm caused the brunt of our speed issues, we attempted to

optimize it as much as possible and import it to the EVM. However all working

optimizations still resulted in an unacceptable speed when testing on the EVM.

 Due to time constraints, we did not have enough time to optimize the image-

processing filters. However, ideas for optimization that we were ready to employ are

paging and parallelization. In filters such as grayscale and brighten, paging would not be

hard to accomplish, since it processing each pixel individually and completes all

processing before moving onto the next. Sharpen, blur, and pixelate would be more

complicated, and will require a larger segment of input data to be paged compared to the

output. Rotate is the only function that would provide an issue in paging, since it takes

segments and reroutes the index.

18-551 Spring 2003 Group 14
- 21 -

EVM Profiling

The TI C67 EVM allows profiling of specific functions that are placed on the

board.

Image Processing Filter (Big O notation) Number of Cycles on the EVM

Brighten O(n) 43,217,781

Sharpen O(n2) 176,238,856

Blur O(n2) 176,538,645

Gray Scale O(n) 27,885,808

Pixelate O(n4) 331,429,540

Rotate O(n) 29,020,405

Table 2: Profiling of functions on the EVM

For some reason, these values were greater than that of what we expected. We based our

image processing codes on lab 3 and therefore most of the results should have yielded

similar results. However, our results were significantly greater. The only possible

reasons for this discrepancy can be the computer we profiled on (or the EVM) was

somehow problematic or the way we carried out our filters were somehow worse than the

edge detection filter we did in lab 3. Although our sharpen algorithm and edge detection

filter basically perform the same task, we wrote it differently because we tested and

coded our own filters.

18-551 Spring 2003 Group 14
- 22 -

Training and Test Sets

 Training was a critical part of our speech recognition program. Although DTW is

an algorithm that is really highlighted for its ability to work with minimal training, the

more we increased the number of training samples, the better our speech recognition

accuracy got. Initially, we tested our algorithm with only one set of templates. We

recorded Alex�s voice through a microphone connected to the EVM through the CODEC

and using our own data format, recorded the speech onto a file. We needed seven

samples because we needed a sample for each image processing command (brighten,

sharpen, pixelate, rotate, blur, grayscale), and another for undo.

When we tested the accuracy in matching what was spoken with one reference

template, the accuracy was acceptable when Alex tested the algorithm (~70% accuracy),

but it was much lower when Ka-Loon and Trevor tested it (~45% accuracy). Then we

tried two sets of templates that Alex recorded again. As expected, the accuracy rose for

Alex (~75%), but it was a surprise that it rose for other people as well (~50%).

Ultimately we decided on using two sets for each individual in our group, which resulted

in six sets of training data. This gave the best balance in accuracy and speaker

independence (at least among the three of us). For our final results, we wound up with

~76% accuracy.

For our image processing part, we did not require any training. Our image

processing was filters, some that were similar to the edge detection filter that we did in

lab 3. However, we did have to go through testing in MATLAB to see how well our

filters worked and tweaked it to our tastes.

18-551 Spring 2003 Group 14
- 23 -

Demo and Tests

Demo

For our demo, we load an image (300 x 197 or 600 x 400) onto the TI C67 EVM

through our user interface by typing in the filename of the image. (We did not test any

other sizes but we presume they would work as well.) We then say any one of the seven

commands and show the output of the performed image processing filters.

Test: Speech Recognition

Our group tested all seven commands four times each to see the accuracy of our

speech recognition. The results are shown below

Command Ka-Loon Alex Trevor

Brighten 3/4 4/4 4/4

Sharpen 3/4 1/4 2/4

Blur 4/4 1/4 2/4

Gray Scale 3/4 4/4 1/4

Pixelate 4/4 4/4 4/4

Rotate 3/4 2/4 4/4

Undo 3/4 4/4 4/4

Table 3: Results of speech recognition

Ka-Loon had the best overall accuracy (~82%) when testing each command,

while Alex (~71%) and Trevor (75%) had similar performances. Getting an exact match,

requires the time of the spoken word to be the about the same and the pitch of the voice

has to be about the same.

18-551 Spring 2003 Group 14
- 24 -

Test: Image Processing

This is the inputted image that we tested on the EVM. The size of this picture is 300 x

197.

Figure 6: Original image

The following pictures were outputted from the TI C67 EVM to the PC.

Figure 7: Edited images outputted from the EVM

Brighten Sharpen Blur

Gray Pixelate Rotate

18-551 Spring 2003 Group 14
- 25 -

References

Speech Recognition

1) Dynamic Time Warping

http://www.cnel.ufl.edu/~kkale/dtw.html

2) Dynamic Time Warping

http://www.owlnet.rice.edu/~elec301/Projects99/wrcocee/imp.htm

3) Dynamic Time Warping

http://www-2.cs.cmu.edu/afs/cs/project/ai-

 repository/ai/areas/speech/systems/cookbook/0.html

Image Processing

1) Digital Image Processing: concepts, Algorithms, and Applications by Bernd

Jahne. New York, New York: Springer-Verlag, ©1991

2) PPM Library (Received from TA�s)

Previous Groups

1) Spring 1998, Group 13

2) Spring 1999, Group 18

3) Spring 2000, Group 11

Figures

 Figures 2-4

 http://www.cnel.ufl.edu/~kkale/dtw.html

 Figure 5

 http://www.owlnet.rice.edu/~elec301/Projects99/wrcocee/imp.htm

