
 
 

 
 

18-551, Spring 2003 
Group 14, Final Report 

 
Do What I Say! 

Image Editing using Voice Commands 
 

Chongseok (Alex) Park (park8) 
Trevor Tse (ttse) 

Ka-Loon Tung (ktung) 
 



18-551 Spring 2003 Group 14 
- 1 - 

 

Table of Contents 
Introduction: ............................................................................................... 2 

Project Overview ......................................................................................... 3 

Transfer Methods........................................................................................ 4 

Prior 18-551 Relevant Works...................................................................... 5 

Speech Recognition Algorithm ................................................................... 6 

Decision Making Process ...........................................................................................6 

Dynamic Time Warping..............................................................................................7 
Coding Dynamic Time Warping .................................................................................9 

Different Algorithms Attempted But Not Used .........................................................11 

Image Processing Algorithm......................................................................12 

Sharpen and Blur .....................................................................................................12 
Pixelate.....................................................................................................................13 

Brighten....................................................................................................................13 
Grayscale ..................................................................................................................14 

Rotate........................................................................................................................14 
Undo .........................................................................................................................14 

Memory Allocation.....................................................................................16 

Speech Processing ....................................................................................................16 
Image Processing .....................................................................................................16 

Memory on the EVM ................................................................................................17 

Speed Issues ...............................................................................................18 

What We Did ............................................................................................................18 

What We Tried..........................................................................................................19 
What We Did Not Do................................................................................................20 

EVM Profiling ...........................................................................................21 

Demo and Tests..........................................................................................23 

References..................................................................................................25 



18-551 Spring 2003 Group 14 
- 2 - 

 

Introduction:             
Problem 

 Today, digital images are a new standard by which society can distribute 

photographs.  Innumerable digital images are exchanged among family and friends every 

day via email and web pages.  Thanks to the internet�s ability to transport these images 

instantaneously, more and more people have begun using image-processing applications 

to �clean up� their pictures before distributing.  However, the majority of the existing 

image processing applications, such as Adobe Photoshop, Paint Shop Pro, etc. contain 

complex menus that intimidate inexperienced users.  Many of these users do not have the 

time to devote hours to learn all the menus/commands let alone master them in order to 

filter pictures to achieve their desired results. 

   

Solution 

 Our project is to implement an image processing application that can alleviate the 

need for complicated menus, and provide the capabilities of the most commonly used 

image-processing filters.  The means of controlling these filters will be a voice input 

through a microphone.  From there, the TI C67 EVM will retrieve the voice input through 

its MIC-in codec, and process it to determine what command was spoken.  Then it will 

run the image processing filter, and save it to a file that can be viewed by the user.  We 

will also feature an undo command for cases where there is an execution of the wrong 

command, or if the user does not like the result. 



18-551 Spring 2003 Group 14 
- 3 - 

 

Project Overview          

The C program is first executed on to the PC side using Microsoft Visual C++.  

Then it asks the user to input the filename of an image and the filename to store the 

output (both in Portable Pix Map (PPM) format).  Afterwards, the program is executed on 

the EVM side using Code Composer Studio.  The PC sends the picture to the TI C67 

EVM (using HPI DMA transfer).  Then, the user inputs a voice command through the 

microphone via the CODEC on the TI C67 EVM.  The speech is recorded at a sampling 

rate of 5512 samples per second.  The TI C67 EVM then sends the buffer containing the 

speech to the PC using asynchronous PCI transfer.  (In order to capture all of our speech 

we made our buffer size 8000.)  Afterwards, the PC down-samples and locates the main 

part of the speech to lower the amount of samples.  If there are too many samples (more 

than 2000), the program will request the user re-enter his/her voice command.  (This was 

an effective way of getting rid of unwanted noise that was excessively high at the ends.)  

Dynamic Time Warping (DTW) is then performed on the PC side to determine the match 

possibility.   The results of each DTW match possibility is then normalized by dividing 

each value by the peak value of the magnitudes.  Finally, these normalized values are 

summed.  The best match determined by this normalized sum is then sent back to the TI 

C67 EVM (using a PCI synchronous message send), where the image is passed through 

the best match image processing filter.  The edited image is then sent back to the PC 

using HPI DMA transfer and written to the output file.   

 



18-551 Spring 2003 Group 14 
- 4 - 

 

Flow Chart 

 

 

Figure 1: Quick Overview 

Transfer Methods          

For the PC ! EVM transfers, we used three different sending methods: HPI 

DMA transfers, PCI asynchronous FIFO transfers and PCI synchronous message sends 

and receives.  For the speech recognition part, the buffer containing the voice input is 

sent to the PC from the EVM using PCI asynchronous FIFO transfer.  For the image 

processing part, the image was sent back and forth via HPI transfers.  To synchronize the 

two parts of our project, the PC side waits for synchronize messages from the TI C67 

EVM prior to moving onto the next task. 

Image 

PC 
1) Gets Image 

2) Performs DTW after 
receiving voice 

command 
3) Writes Output Image 

 
TI C67 EVM 

1) Waits for voice input 
2) Does image processing based on 

best match from DTW 
3) Sends back the final edited 

image 

1) Send Image

Voice 
Command 

2) Send voice 
 command
3) Sends best 
match from DTW
4) Sends the 
image back to PC

Final output 
image 



18-551 Spring 2003 Group 14 
- 5 - 

 

Prior 18-551 Relevant Works        

 There were several previous 18-551 groups that dealt with speech recognition.  

The following were used as references for our project. 

Spring 1998, Group 13 � Voice Recognition for Embedded Systems 

This project involved speech recognition for operating various household objects.  The 

voice command library contained about 15 small discrete words.  This group used a 

template based training set and made the speech recognition speaker dependent.  This 

project used dynamic time warping for speech recognition.   

http://www.ece.cmu.edu/~ee551/Old_projects/projects/s_98_13/powerpointhtml/final/ 

 

Spring 1999, Group 18 � Text Independent Voice Transformation 

This group dealt with speech recognition and voice transformation.  They used linear 

predictive coding with pitch detection to achieve speech recognition and voice 

transformation.   

http://www.ece.cmu.edu/~ee551/Old_projects/projects/s99_18/final.html 

 

Spring 2000, Group 11 � Voice Recognition and Identification System 

This group did a speech recognition project for identification of users.  The library for 

this project was small since it was only a password.  This project also used dynamic time 

warping for speech recognition. 

http://www.ece.cmu.edu/~ee551/Final_Reports/Gr11.551.S00.pdf 
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Speech Recognition Algorithm        

Decision Making Process 

Although our speech recognition part used the Dynamic Time Warping (DTW) 

algorithm instead of the Hidden Markov Model (HMM) algorithm, we still needed a 

relatively large trained library.  When we initially started researching speech recognition 

algorithms, we came to an erroneous conclusion: we believed that the HMM algorithm 

would be the ideal solution for our program.   

Just about every webpage we visited showed that the HMM algorithm is one of 

the most powerful speech recognition tools to date.  Some websites even seemed to 

indicate that HMM is just a more advanced version of DTW.  Furthermore, Carnegie 

Mellon University has its very own SPHINX (well known throughout the speech 

recognition world) that uses a modified HMM algorithm to drive their speech recognition 

program.  After giving our preliminary presentation, we learned that the HMM algorithm 

was indeed very suitable tool for speech recognition; however, HMM is used for robust 

big vocabulary speech recognition, whereas our project focused on isolated, small 

vocabulary speech recognition.   

Our program only required seven words and they were spoken one at a time, 

which fit the bill for DTW.  The difference between HMM and DTW was the amount of 

training each algorithm required to successfully perform speech recognition. 
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Dynamic Time Warping 

 The Dynamic Time Warping algorithm receives it�s named from the fact that it 

compensates for the varying speeds and times of the spoken speech.  The biggest problem 

in speech recognition is not the difference in volume or frequency of the speaker�s voice 

but rather the timing of the speech.  DTW is an algorithm that takes care of that problem.  

In essence, DTW makes �sspeeech� or �spech,� seem the same as �speech.�  This is done 

by a process that consists of matching the incoming speech with stored templates. The 

template with the lowest distance measure from the input pattern is the recognized word.  

The best match (lowest distance measure) is based upon dynamic programming.  In order 

to get the lowest distance measure, the distance measure between two feature vectors is 

calculated using the Euclidean distance metric. 

 

The sum of the smallest Euclidean distances is the lowest distance sum.  We limit the 

possible minimum values to the values in directions that are linearly possible (only 

increases in the matrix index are allowed).  Every other value is not a possible minimum 

distance.  Therefore, the lowest distance sum is calculated by the following equation: 

 

D(i, j) = min[D(i-1, j-1), D(i-1, j), D(i, j-1)] + d(i, j) 
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For example, when the signal (spoken word into the microphone) and the key (the 

template speech sample the signal is compared to) of DTW are identical, the following 

path would result: 

 

Figure 2: Brighten vs. Brighten 

The shortest path of this example is obviously a linearly ideal path.  However, when two 

different words are compared such as brighten and sharpen, the following result would 

occur: 

 

Figure 3: Brighten vs. Sharpen 
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Although the path seems fairly linear, it is obvious that the path has become slightly less 

linear than the previous.  When two words that are essentially the same, but not identical 

(such as �sspeeech� and �speech�) the path will look similar to the following: 

 

Figure 4: Sspeeech vs. Speech 

Although not as good as the original, this comparison is more linear than the previous 

result. 

 

Coding Dynamic Time Warping 

When we first started working on our DTW speech recognition, we luckily found 

a cookbook of speech recognition tools on a CMU website.  We ran the cookbook on a 

Linux based machine to see how accurately the speech algorithm would work.  It worked 

well and we proceeded to try to get the program working on a Windows based platform 

(on Visual Studios).  After numerous hours, we decided it was too difficult to translate 

the arcane code.  We searched on the web once again and found a MATLAB based DTW 

algorithm.  This new algorithm, however, differed from the algorithm that was 

implemented in the cookbook.  Instead of calculating the minimum distance sum, this 
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code generated a new path that would best reconstruct the signal to make it look similar 

to the key.  Basically, it tried to make the signal overlap with the key in time (as 

illustrated in the chart below).   

 

Figure 5:  Example of overlapping the key with the input 

 Initially, we tried to take advantage of this newfound algorithm and implement 

our own version to see how well it would work.  We wrote the same MATLAB code in C 

and then tried to correlate the newly generated signal along with the key.  Although this 

seemed like a great idea, it did not work well.  We thought this method would allow us to 

see the best results from the correlations easily, but the results were mixed and 

inconsistent. 

 Before we scrapped this path finding code, we realized that it was not completely 

useless.  Fundamentally, the code was using the same ideas as the cookbook�s code.  We 

edited the code to mimic the ideas that were present in the cookbook�s code and tested it 

out.  Our new code returned favorable results. 
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Different Algorithms Attempted But Not Used 

As mentioned before, we tried using the code we obtained to get the best path and 

regenerate a new path for the signal that would best match the key in time.  Then we tried 

to correlate this new signal with the key and see which one would return the best result.  

This method did not work as planned with inconsistent results. 

Another idea we tried utilized our current DTW algorithm but tried to improve on 

it.  Because our DTW algorithm was too slow on the TI C67 EVM and even on the PC 

side we tried to speed it up.  In addition, we tried to improve our accuracy.  Going 

through previous years� projects and searching on the web, we found out that Linear 

Predictive Coding (LPC) was an algorithm that aided speech recognition.  LPC extracts 

the most important parts in speech and uses those for speech recognition instead of the 

actual whole speech.   

LPC required an autocorrelation of the signal (speech we speak in to the microphone) and 

then a new signal was made that had only the essential parts of the speech.  Then we tried 

using DTW on that new speech with the keys.  This method worked to some extent and it 

did yield extremely fast results.  It was fast enough that we could have put it on the EVM.  

(Basically, using LPC got rid our 2000x2000 size matrices and replaced them with 13x13 

matrices).  However, this method did not yield an improvement in accuracy of speech but 

rather showed a decrement in the accuracy.  We preferred accuracy to speed and decided 

not to use this approach. 
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Image Processing Algorithm        

 The image processing filters that we implemented, sharpen, blur, pixelate, 

grayscale, brighten, and rotate, all use relatively different operations to change the pixel 

values within the image.  Our project reads in a Portable Pix Map (PPM) format image, 

using source code obtained from the teacher�s assistants.  Once the header is decoded, 

and the size of the image extracted, the contents of the image is read into an array of 

bytes of size length*width*3 unsigned characters. 

 

Sharpen and Blur 

 Sharpen and blur in essence use the same principles by which to edit the image.  

When you sharpen an image, you want to decrease the influence neighboring pixels have 

on the current pixel.  In contrast, when you blur an image, you want to increase the 

influence neighboring pixels have on the current pixel.  Each pixel is convoluted with a 

general 3x3 sharpening and blurring matrix and the result was summed and placed in the 

corresponding location in the resulting image array.  Because the values are stored in 

bytes, the issue of overstepping the 255-value limit became an issue.  As a result, we 

altered each matrix so that it does not overstep the boundary.   

 

Sharpen Matrix: Blurring Matrix: 
0    -0.25      0   1/5 1/5 1/5 

     -0.25      2    -0.25   1/5 1/5 1/5 
         0    -0.25      0   1/5 1/5 1/5 

Sharpen and Blur Matrices
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Pixelate 

Pixelate can be used to create a similar effect as if the image were an oil painting, 

or if you were looking through a frosted glass window.  When you pixelate, one pixel is 

selected within a set range and all values in that range is set to that value.  Our algorithm 

selects a random pixel to be replicated throughout a calculated range.  The range that we 

used is an algorithm that compensates for the fact that various image sizes may be 

processed.  In order to determine this degree of pixelation, we divided both the length and 

width by the degree.  If both values are still greater than 85, then we increment the degree 

and then test once again.  However, once either of these division results falls below 85, a 

random number between 0 and degree2 - 1 is generated for each square matrix (degree × 

degree).  The random number generated corresponds with the value calculated by row × 

degree + column.  This determines the location of the pixel value that will be replicated 

throughout that square pixel range.  For any pixels that are not included within a square 

matrix, we simply copied the original pixels over. 

 

Brighten 

Brighten takes advantage of the fact that each pixel uses three bytes containing 

the values between 0 and 255 to stores color intensity for each of the three layers.  For the 

sake of simplicity and generalization, we forced our filters to brighten by a factor of 20% 

for every run of this command.  Once again, the issue of overstepping the storage 

limitation of 255 becomes an issue.  We capped the value limit and set any value that 

exceeds 255 to 255. 
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Grayscale 

 For grayscale, we followed the YIQ color model used by the National Television 

Standards Committee.  This method of gray scaling uses a weighted average of the three 

different layers.  This method takes 30% red, 59% green, and 11% blue, sums up the 

values, and sets the value of the pixel in all three layers to the result.   

 

Rotate 

 Rotating the image is a matter of shifting the location of the pixel.  For the 90o 

clockwise rotation we desired, we had to swap the indexing.  The new height index is 

now the current width index (yi = xcurr), while the new width index is the max height 

minus the current height index minus 1 (xi = ymax � ycurr � 1).  The pixel is then written 

into the appropriate location of the array.  In addition, the new reference height and width 

in the structure is changed to correspond with the now filtered image.  With rotate, unlike 

every other command, we had to send in the new dimensions of our image because of the 

way we implemented the filter.  Through a PCI synchronous send message, we sent in the 

values of the length of X and the length of Y.   

 

Undo 

Undo is the only voice command that required no actual computations.  Due to 

the memory requirements, we offered only the option of undoing the last image 

processing command executed.  If we wanted to have multiple levels of undo, we needed 

to allocate more memory and therefore, we did not feel it was necessary.  On the EVM, 

we had two arrays that stored the image.  The first was the frame, which was an unsigned 
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character array, and the second was result.  Working with these two arrays, we simply 

copied the result back into frame right before each image processing command is to be 

executed.  If �undo� is the recognized speech input from the microphone, the frame is 

copied into result (over-writing the previous result).  This process undoes the last image 

processing command that is executed. 



18-551 Spring 2003 Group 14 
- 16 - 

 

Memory Allocation          

Speech Processing 

The memory allocation for the speech recognition part of this project remained 

constant.  We allocated a buffer that has the size of 8096 x the size of a 32-bit int (4), 

which is 32384 bytes.  This buffer stored the inputted voice from the microphone via the 

TI C67 EVM CODEC.  

 

Image Processing 

The memory allocation on the TI C67 EVM varies depending on the image that is 

used.  Assuming an image has the dimensions XSIZE by YSIZE, the memory allocation 

for the image processing part is: 

- Frame: XSIZE x YSIZE x 3 x the size of unsigned char (1) 

- Result: XSIZE x YSIZE x 3 x the size of short of int (2) 

The frame contains the image from the PC side and the result is the image that is 

returned after the image processing filters are performed.  For example, if the image were 

600 * 400, the memory allocated on the TI C67 EVM would be 720,000 bytes.   
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Memory on the EVM 

We increased the heap size and used the off chip memory for storing the code on 

the EVM. 

Name Origin Length 

Heap - 0x3d0000 

Stack - 0x400 

ONCHIP_PROG (RX) 0x00000000 0x00010000 

ONCHIP_DATA (RW) 0x80000000 0x00010000 

SBSRAM_PROG (RX) 0x00400000 0x00028000 

SBSRAM_DATA(RW) 0x00428000 0x00040000 

SDRAM0 (RW) 0x02000000 0x00400000 

SDRAM1 (RW) 0x03000000 0x00400000 

 

Table 1: EVM memory allocation 
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Speed Issues           

What We Did 

 When we first got the speech recognition DTW algorithm working, the 

calculations took an excessive amount of time to complete.  In order to speed up the 

algorithm, we attempted to remove as many double for loop calculations as possible.  The 

initialization of the local distance matrix (LDM) and the accumulative distance matrix 

(ADM) were the first loops removed.  Since we calculated the LDM in the next double 

for loop, and every value was calculated and set in that loop, we were able to remove 

initialization of the LDM.  Also by shifting the ADM initialization into the LDM 

calculation loop, we were able to remove yet another loop.  In addition, we removed a 

third double for loop when calculating the �best choice� for the next step in our 

algorithm.  The result was a decrease of approximately 60% of the time required, since 

we removed three of the five double for loops.  These double for loops wouldn�t have 

been a problem if they were simply in their teens, but these loops continued on into 

ranges greater than that of 4000.  Memory wise, this code did not work on the EVM 

because the EVM�s maximum memory is approximately 8 megabytes.  We had to find a 

way through this problem because we required the big matrices to be there. 

 The result of this optimization was still inadequate to improve the overall 

performance of our algorithm.  We realized that our DTW required only key points to 

perform the accuracy check.  First, we cut off the noise that was sent into our algorithm 

but cutting off values that did not exceed a normalized threshold value of 0.2.  This 

removed the noise, and cut down length of the sample from 8096 to less than 4000 

samples.  Afterwards, we down sampled by a factor of two.  The resulting performance 
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was much faster than the initial algorithm, with an indistinguishable difference in 

accuracy rate.  Performance overall was acceptable for individual runs of the algorithm.  

After performing all these optimizations, we were able to run the DTW code on the 

EVM.  However, because of the number of trained values (42), and the difference in 

speed of the PC�s processor of 1.8 GHz and the EVM�s speed of 167MHz, the overall 

time requirement when processing on the EVM was unrealistically long. We had no 

choice but to leave the speech processing on the PC side.  

 For the image processing, due to time constraints, we were unable to complete 

any significant optimizations.  Therefore, the only optimization that we implemented was 

Code Composer�s built in loop unrolling feature.  The result was a slight increase in 

speed for the image processing filters. 

 

What We Tried 

 Our further attempts to improve the speed of our DTW algorithm was first to 

employ LPC (Linear Predictive Coding).  LPC is a method of down sampling that 

extracts the key parts of the input waveform.  These key parts are also the changes in the 

tones of the input waveform.  The result is a list of coefficients for a filter that will 

reproduce a similar waveform.  However, the result of our LPC calculations was rejected 

because of the decrease in accuracy.  Though it improved the improved the speed of our 

algorithm dramatically, the resulting accuracy rate dropped from roughly 75%-80%, to 

10%-15%.  We decided to reject any further attempts of programming this algorithm due 

to time constraints. 
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What We Did Not Do 

 Because the DTW algorithm caused the brunt of our speed issues, we attempted to 

optimize it as much as possible and import it to the EVM.  However all working 

optimizations still resulted in an unacceptable speed when testing on the EVM. 

 Due to time constraints, we did not have enough time to optimize the image-

processing filters.  However, ideas for optimization that we were ready to employ are 

paging and parallelization.  In filters such as grayscale and brighten, paging would not be 

hard to accomplish, since it processing each pixel individually and completes all 

processing before moving onto the next.  Sharpen, blur, and pixelate would be more 

complicated, and will require a larger segment of input data to be paged compared to the 

output.  Rotate is the only function that would provide an issue in paging, since it takes 

segments and reroutes the index.   
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EVM Profiling           

The TI C67 EVM allows profiling of specific functions that are placed on the 

board.   

 

Image Processing Filter (Big O notation) Number of Cycles on the EVM 

Brighten O(n) 43,217,781 

Sharpen O(n2) 176,238,856  

Blur O(n2) 176,538,645  

Gray Scale O(n) 27,885,808  

Pixelate O(n4) 331,429,540  

Rotate O(n) 29,020,405  

Table 2: Profiling of functions on the EVM 

For some reason, these values were greater than that of what we expected.  We based our 

image processing codes on lab 3 and therefore most of the results should have yielded 

similar results.  However, our results were significantly greater.  The only possible 

reasons for this discrepancy can be the computer we profiled on (or the EVM) was 

somehow problematic or the way we carried out our filters were somehow worse than the 

edge detection filter we did in lab 3.  Although our sharpen algorithm and edge detection 

filter basically perform the same task, we wrote it differently because we tested and 

coded our own filters.
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Training and Test Sets         

 Training was a critical part of our speech recognition program.  Although DTW is 

an algorithm that is really highlighted for its ability to work with minimal training, the 

more we increased the number of training samples, the better our speech recognition 

accuracy got.  Initially, we tested our algorithm with only one set of templates.  We 

recorded Alex�s voice through a microphone connected to the EVM through the CODEC 

and using our own data format, recorded the speech onto a file.  We needed seven 

samples because we needed a sample for each image processing command (brighten, 

sharpen, pixelate, rotate, blur, grayscale), and another for undo.   

When we tested the accuracy in matching what was spoken with one reference 

template, the accuracy was acceptable when Alex tested the algorithm (~70% accuracy), 

but it was much lower when Ka-Loon and Trevor tested it (~45% accuracy).  Then we 

tried two sets of templates that Alex recorded again.  As expected, the accuracy rose for 

Alex (~75%), but it was a surprise that it rose for other people as well (~50%).  

Ultimately we decided on using two sets for each individual in our group, which resulted 

in six sets of training data.  This gave the best balance in accuracy and speaker 

independence (at least among the three of us).  For our final results, we wound up with 

~76% accuracy.   

For our image processing part, we did not require any training.  Our image 

processing was filters, some that were similar to the edge detection filter that we did in 

lab 3.  However, we did have to go through testing in MATLAB to see how well our 

filters worked and tweaked it to our tastes. 
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Demo and Tests          

Demo 

For our demo, we load an image (300 x 197 or 600 x 400) onto the TI C67 EVM 

through our user interface by typing in the filename of the image.  (We did not test any 

other sizes but we presume they would work as well.)  We then say any one of the seven 

commands and show the output of the performed image processing filters.  

  

Test: Speech Recognition 

Our group tested all seven commands four times each to see the accuracy of our 

speech recognition.  The results are shown below 

Command Ka-Loon Alex Trevor 

Brighten 3/4 4/4 4/4 

Sharpen 3/4 1/4 2/4 

Blur 4/4 1/4 2/4 

Gray Scale 3/4 4/4 1/4 

Pixelate 4/4 4/4 4/4 

Rotate 3/4 2/4 4/4 

Undo 3/4 4/4 4/4 

Table 3: Results of speech recognition 

Ka-Loon had the best overall accuracy (~82%) when testing each command, 

while Alex (~71%) and Trevor (75%) had similar performances.  Getting an exact match, 

requires the time of the spoken word to be the about the same and the pitch of the voice 

has to be about the same.   
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Test: Image Processing 

This is the inputted image that we tested on the EVM.  The size of this picture is 300 x 

197. 

 

Figure 6: Original image  

The following pictures were outputted from the TI C67 EVM to the PC. 

 

Figure 7: Edited images outputted from the EVM 

Brighten Sharpen Blur

Gray Pixelate Rotate
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