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The Problem  
 
 Video quality is often hindered by shaky hands of the cameraman or by recording 

from a mobile platform (i.e. recording from a car). This project strives to improve video 

quality by stabilization through image processing. We will input short video clips with a 

resolution of 320x240 pixels and a frame rate of sixteen frames per second then output 

improved, stabilized video clips while retaining as much resolution as possible and the 

same frame rate. 

Prior Relevant Work in 551 
 

We looked at past projects in 551, but we did not find any that were relevant to 

our project. 

Method 
 

The overall algorithm we chose to approach our design with was the rectangular 

component of T. Chen’s design.  From the most basic perspective, the algorithm removes 

shakes from a video stream by analyzing the motion vectors of each frame, filtering those 

vectors, and ensuring that the output contains a video with only the low-frequency global 

motion in it.  This is much more difficult than it first appears. 

The algorithm applies filtering in advance – that is, it determines the original 

vectors through frame i, then filters them to obtain the smoothed vector, then applies a 

correction of that direction and magnitude to either frame i-1 of the input video, or frame 

i-1of the output video (the last output frame).  The borders are filled with other frames 

shifted and applied as background in attempt to best match the output frame, but 



depending on the exact combination of smoothed/original/final vector orientations, this 

isn’t always possible and black borders are used instead.  The most sensitive part of the 

logic is determining whether to resynchronize, meaning to use the previous input frame 

instead of the last output frame. 

Resynchronization is meant to occur when the sum of the smoothed and original 

vectors up to the point of the previous frame are close in size; this way when there is an 

extremely large shake in the video, those frame’s don’t see the output.  This prevents 

large borders in output frames and recognizes that motion estimation isn’t accurate 

enough to correct the worst of movements with enough accuracy that original vectors 

(applied in reverse) could generate a clean, smooth output.  Thus, if a stream is 

resynchronized too often, the output will be very jerky since large original motion vectors 

in the previous actual frame will propagate to the output (Adding the smoothed vector to 

the previous actual frame assumes that the previous frame had a similar sum-of-

smoothed-vectors to sum-of-original-vectors). If it’s resynchronized too rarely, resolution 

in the time-domain in lost because information from only a fraction of the input frames 

are used in the output, and the rest are simply old frames being shifted around in space.  It 

appears that the solution would be to counter the smoothed motion vector during 

resynchronization with the difference between the sum-of-smoothed and sum-of-original 

vectors, but we will explain why our attempt at this improvement failed later. 

When resynchronization occurs, the original algorithm would note the error 

between sum-of-original and sum-of-smoothed vectors and add it into “final” motion 

vectors, which would be what are later compared to the sum-of-original vectors to 

determine whether to resynchronize at future times.  Since resynchronization can also 



occur when a limit to the number of non-resynchronized frames is reached, the theory is 

that this will cause future frames to be resynchronized when they’re close to the new 

actual output, which is now slightly different than just the sum of the smoothed vector.  

To resynchronize the following condition must be met: 

sum(abs(sum(originalMVs(1:i-1,:))-sum(finalMVs(1:i-1,:))).^2) < Threshold^2 || 

Count>Max_Count 

Theoretical Problems 
 

The above approach seemed logistically sound and passed preliminary tests we 

fed it in Matlab.  When we ported the code to C, the same tests ran successfully as well.  

The algorithm worked perfectly on our simple movie with limited internal motion, and 

with movies we manually inserted rectangular motion into.  However with most other 

real-world videos we fed into it completely broke down. 

The problem was in the most fundamental and necessary part of the algorithm, 

resynchronization.  All of the video being fed into the algorithm would reach the 

resynchronization frame limit before it would reach the threshold of vector similarity.  In 

fact the difference between final and original vectors would grow inordinately so large 

that resynchronization would never take place except when forced to by the frame limit. 

Upon resynchronization the following occurs: 

finalMVs(i,:) = smoothedMVs(i,:) + sum(originalMVs(1:i-1,:)) - sum(smoothedMVs(1:i-1,:)); 

 

The sum of the final MVs is what is of necessary interest in determining 

resynchronization, and the affect this has on that is the following: 

 



 

Sum_FinalsMvs + = Frames since last resynchronization  

* [ (Sum of original vectors up to point of last resynchronization) 

   -(Sum of smoothed vectors up to point of last resynchronization) ] 

   +(Sum of smoothed vectors since last resynchronization) 

 

This is the equivalent of saying that to resynchronize at a future point, the total 

original vectors at that point must match closely with a video in which each frame since 

the last resynchronization exhibited the same imperfection that we were forced to accept 

during that resynchronization.  Since lack of similarity to this final vector will still leave 

the output frames with the same unwanted translation (from not desynchronizing), this is 

a valid point.   

However, in real-world video it prevents the resynchronization threshold from 

ever being reached again.  If the sum of original and sum of smoothed vectors are very 

different, as is often the case when resynchronization is forced, this difference is 

multiplied larger the longer it goes before resynchronization is possible again, which is 

all the more likely to be a long time after a poor resynchronization choice.  In short, the 

more the system is in need of error control, the worse it handles the error.  Indeed, in 

Chen’s own report, his tests resynchronized every 5-15 frames, and he only used video of 

still objects.   

Theoretical Improvements 
 

To counter this we tried a new algorithm entirely: applying the reverse of the 

original minus smoothed vectors in reverse to the same frame as was being inputted.  



These results were equally interesting, and unacceptable.  Correction to the output video 

provided an apparent proof of concept as large motions could be filtered out in a single 

frame and without losing time-domain resolution.  However the visual quality was 

extremely jerky due to the fact that the edges changed rapidly, and vector determination 

isn’t perfect - a smooth but motion-ridden input video produced an output with a smaller 

but more ugly and pronounced 16hz vibration as it was shifted around.  The conclusion 

we reached was that limitations on the accuracy of vector determination and the 

adherence of real video to purely rectangular shifts made this a poor approach, and if 

motion vectors were to be used they had to be averaged together over several frames, as 

in the first algorithm. 

Acceptable results were obtained by altering the resynchronization component of 

Chen’s algorithm.  We changed the logic that whenever resynchronization. occurs, the 

sum-of-final vectors is set to equal the sum-of-original vectors plus the current smoothed 

vector (and thus, errors don’t accumulate past a resynchronization).  This essentially 

accepts the fact that there will be error in the output video, and that such an error, in a 

worst case scenario, will be present for as long as is the limit to the number of frames 

between resynchronizations.  In the worst case, it becomes pronounced because after the 

unwanted motion is forced to the output, it continues to be shifted in the undesired 

direction because its own motion is averaged into the filter and applied to itself when not 

resynchronizing.  However, unlike in Chen’s algorithm, use of this frame does not 

preclude future resynchronizing, and it does not break the system.  The system outputs a 

bad frame but then, after one to several frames later, completely recovers.  Also the 



likelihood of this situation occurring in the first place is much lower because the 

resynchronization logic is always meaningful. 

Another modification allows the threshold to depend on how long it has been 

since the last resynchronization.  This improved results by preventing the algorithm from 

crashing but allowing smaller, optimal value to be used in normal circumstances. 

Implementation: Components 
 

 

 

The algorithm infers three main pieces: 

I) Motion Determination 

II) Motion Filtering 

III) Motion Compensation 

 

The Matlab code we had was not easily portable to C, and ran unrealistically slow  

(several minutes per frame).  To solve this we implemented a custom solution to these 

parts.   

 



Motion Determination 

We accepted Chen’s approach of dividing the frames into blocks, and finding the 

median of the vector in each of those blocks between frames.  This provides “global” 

motion and is meant to work even while there are objects in motion inside the video.  

However we don’t do a search on every block, we use a limited search range, and we 

downsample the resolution.  Block selection is done using edge and energy detection, and 

block matching by a custom algorithm. 

Edge & Energy Detection 
 
 To select the blocks containing the most information for effective motion 

determination, we employed edge & energy detection. This way, the blocks being 

searched are the blocks which are most interesting and representational of the entire 

picture.  

 Edge & energy detection is accomplished by running a Sobel filter then obtain the 

sum of all pixels on each 16 by 16 block. The Sobel filter has two components to detect 

and vertical and horizontal contrasts in the picture. Essentially, these components can be 

represented by two 3 by 3 matrices: 

 

 

 

We can perform convolution of the picture on both matrices by simply applying the 

following formula on each pixel: 



 

xvector =   top right pixel+ top left pixel + 2 * right pixel – 2 * left pixel + bottom right 

pixel – bottom left pixel 

yvector =   - top right pixel - top left pixel - 2 * top pixel + 2 * bottom pixel + bottom 

right pixel + bottom left pixel 

new pixel value = square_root( abs(vectorx/4)^2 + abs(vectory/4)^2) 

We simply calculate each x and y vector then take the magnitude of the resulting 

normalized vector. A sample picture will be shown in the result section. 

Block Matching 
 
 The block matching portion of our algorithm compares a 16 by 16 pixel block of 

the current frame to all of the 16 by 16 pixel blocks of the previous frame within a 16 

pixel search radius of the corresponding block of the previous frame (making the search 

area in the previous frame 48 by 48 pixels).  The goal of the search is to find the most 

similar nearby block in the previous frame, which should allow one to determine how 

much the image has shifted.  To determine the similarity between two blocks, we subtract 

corresponding pixels and then sum the square of all of the differences.  In order to 

decrease the number of computations and increase the speed of the algorithm, we only 

compare every fifth pixel of the blocks.  We found that comparing every fifth pixel 

greatly increased the speed without significantly affecting the results. 



 

 

 

 

 

 

An illustration of one of the 16x16 blocks. 
The blue squares are the pixels that will be compared. 

 

Motion Filtering 
This is the simplest piece of the approach, and involves a simple, moving average 

filter.  The length is parameterized but the best value we’ve found is a kernel length of 9.  

This worked well enough and was easy to implement using single array.  Extensive 

testing and customization of the algorithm might do well to substitute more advanced or 

adaptable filters, but for our purposes this was not the bottleneck of the system in terms 

of result quality.   

 

Motion Compensation 

This portion of the code involves superimposing a foreground a background 

image of different rectangular shifts on top of each other.  The Matlab was straight-

forward: 

 

if uf >= 0 & vf >= 0, 

outFrame(1:nRows-vf,1:nCols-uf) = inFrame2(1+vf:nRows,1+uf:nCols); 

elseif uf >=0 & vf < 0, 

outFrame(1-vf:nRows,1:nCols-uf) = inFrame2(1:nRows+vf,1+uf:nCols); 

elseif uf < 0 & vf >= 0, 



outFrame(1:nRows-vf,1-uf:nCols) = inFrame2(1+vf:nRows,1:nCols+uf); 

else 

outFrame(1-vf:nRows,1-uf:nCols) = inFrame2(1:nRows+vf,1:nCols+uf); 

end 

if u >= 0 & v >= 0, 

outFrame(1:nRows-v,1:nCols-u) = inFrame1(1+v:nRows,1+u:nCols); 

elseif u >=0 & v < 0, 

outFrame(1-v:nRows,1:nCols-u) = inFrame1(1:nRows+v,1+u:nCols); 

elseif u < 0 & v >= 0, 

outFrame(1:nRows-v,1-u:nCols) = inFrame1(1+v:nRows,1:nCols+u); 

else 

outFrame(1-v:nRows,1-u:nCols) = inFrame1(1:nRows+v,1:nCols+u); 

end 

 

We decided to improve this though by using pointer arithmetic instead of actually 

accessing the data.  This would allow us to avoid having to perform reads to slow 

SDRAM memory, and we could generate pointers that could be fed into Asynchronous 

transfer registers to control a background transfer back to the computer.  This wasn’t a 

bottleneck of our system and we would have been fine with a simpler implementation, 

but our approach would be useful if scaling the system to higher resolution, color-depth, 

and framerate, in which the simple approach would be too slow. 

The initial logic in our code determines for each image and for each row what the 

offset is, and what the address is of memory where the first read in that row would be.  A 

loop of other logic runs once per row and uses that data to classify the row into one of a 

number of conditions based on the overlap, and then stores up to three “start” and “stop” 

pointers in the array, which at completion of the function represents the new image in 

address-form. 

 



Training and Test Sets 
 

 Due to the nature of our project, we did not need to use any training sets, but we 

did record and utilize several input videos to test our project.  We recorded many videos 

and selected the ones that had the most useful properties to test.  The names of the videos 

that we tested are: car, cat, park, truck, and walk.  All of these videos were between five 

and fifteen seconds because we wanted to use videos that were long enough to 

demonstrate whether or not stabilization was working, but short enough that they did not 

take up too much disk space or too much time to process.  Also, each video is an example 

of a different type of situation.  In Car, there is no motion of the camera other than the 

shaking nor is there any motion in the scene being recorded.  In Truck, there is no motion 

of the camera besides the shaking, but several automobiles quickly drive across the scene.   

Park has a small amount of motion within the scene and the camera pans across the 

scene.  The camera is not panned in Cat, but the cat in the recording moves around in the 

video.  In Walk, the cameraman walks down a sidewalk while videotaping. 

Formats and Conversions 
 
 The camera we used outputted video in MPEG format.  The video was recorded at 

16 frames per second and had 320x240 resolution.  We used Blaze Media Pro 2002 

[http://www.blazemp.com], a shareware program, to convert the MPEG movies to 

320x240 bitmap frames.  We then used Photoshop 6.0 

[http://www.adobe.com/products/photoshop/main.html] to convert the bitmap images 

into RAW images.  After running our program to stabilize the video, we took the 

outputted RAW frames and converted them into bitmaps.  Then we took the bitmap 



frames and converted them into an AVI movie that displayed 16 frames per second using 

Blaze Media Pro 2002.   

Demo 
 
 The demo that we had planned was to take a few of our test videos, run each of 

them through our program on the EVM, and show the resulting movie along with the 

associated input movie for comparison.  The movies that we were going to do this with 

were cat, park, and truck.  However, in order to save time and since Prof. Casasent said 

that he did not need to see them run through the EVM, we simply showed the input and 

output videos of Cat, Park, and Truck for comparison.  The results of the demo will be 

discussed in the results analysis section.  

Results 
 

Results were obtained that indicate success to a point.  Videos were stabilized, 

and the algorithm successfully runs on the EVM.  The inherent algorithm we’re using is 

not perfect, though, and the output videos show the weaknesses in it 

 

Ideal Video 

Smooth, oscillating, high-frequency movement 

Purely Rectangular distortion 

Little movement of objects. 

 

Non-Ideal Video 

Rotational Movement 

Zooming / Forward Movement 

Internal Movement 



 
Cat Video 
 
Example Strip 
 

  
 
 
              Stabilized     Original 



Above shows an example set of frames from this video.  Much of the low-

frequency oscillation in the movement is removed.  The effects on the border show the 

new frame being superimposed in attempt to match the image up (with somewhat limited 

success.)  This data also shows how the less regular the movement becomes, the more 

infrequently it resynchronizes.  The bottom graph below shows, though, how our 

algorithm recovers and is able to be compared to a fixed threshold to determine when this 

should happen. 

 

Motion Vectors: Cat Video
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Truck Video 

This video proved that it is possible to have internal motion and still have 

successful stabilization.  Finding the median of the blocks ignores local motion.  

However, with only using 10 blocks its possible that if most of the energy in the picture is 

covered by the image, and the image covers most of the frame, that distortion would be 

present.  When this is the case this motion is filtered out, and the frame doesn’t propagate 

through resynchronization logic to the output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Here are some vectors as results of block matching. By taking the median 
of the x and y vector, we determined the global motion to be (2,-8). This 
way, we correctly eliminated the drastic internal movement of the truck. 
See next picture.  



 

 

 

 

 

 

 

 

 

 

 

 

Walk Video 

This video was perhaps the poorest performer.  The movement patterns were very 

strange.  Resynchronization was made all the more visible by the fact that there was 

forward motion.  Every time it resynchronized there was a jerk, and every time it didn’t 

resynchronize it created the effect of the motion stopping.  This is clearly a limitation of 

the algorithm we used, and a 3D based design would have been better suited here. 

 

 

 

 

 

 

 

 

 

 
An example of the result of edge & energy detection: The most characteristic 
parts of the frame are used for motion determination. 



 

 

 

 

 

 

 

Motion Vectors: Walk Video

-100

-80

-60

-40

-20

0

20

40

60

80

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Frame Number

Pi
xe

ls

Sum of Original X

Sum of Original Y

Sum of Smoothed X

Sum of Smoothed Y

Sum of Final X

Sum of Final Y

Resynchronization Occurs

Resynch_Value: Walk Video

0

50

100

150

200

250

300

350

400

450

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

F rame N umb er



Park Video 

Example Strip 

  
                 Stabilized                 Original 



This video showed how a large DC movement will still propagate to the output.  

However, because the video was already stabilized, the algorithm introduced more 

distortion than it fixed, mostly because of the delay present in this movement, due to the 

moving average filter we used (see graph below). 

This data seems to suggest that a more advanced feature of the algorithm should 

be to turn itself off when it isn’t needed, or to automatically scale resynchronization 

threshold to effectively accomplish the same thing. 

 

 
 

Motion Vectors: Park Video
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EVM Speed 
 
 Although we improved the speed by a factor of 50, it turns out that our timing 

estimation still was off by a factor of 16. While real time performance processes 16 

frames a second, the program is running at a speed of slightly less than one second per 

frame. Here is the breakdown of how the processing cycles are allocated for each stage of 

calculation: 

 

Motion
Determination

68%

Memory
Manipulations

16%

Edge & Energy
Detection

14%

Transfers
2%

 
In this section, we will first talk about what caused our estimation to be off then what we 

did to improve the performance by a factor of 50. 

 

Why slower than real-time: 

- Misestimated the amount of calculation needed for block search: Originally, 

we estimated only 288,000 cycles needed to match 10 blocks for each frame. 

However, the actual implementation after paging and unrolling still takes 

about 30,000,000 cycles per frame. Such big difference (about 100 times) is 



caused by paging and more logic in the block matching function than we 

expected. 

- Edge detection taking much longer than expected: Edge enhancement from 

lab 3 took less than 1/100 of a second so we didn’t expect this part to be a 

problem. However, the difference is that when lab3 had blocks paged from 

continuous memory space, our motion blocks are composed of disjoint part of 

the memory. In other words, we had to piece together the 16 by 16 block from 

16 different segments in the original frame. This turned out to slow the edge 

detection down by a factor of 16. 

-  Unaccounted memory manipulation: We missed this part completely in 

estimation. This turned out to be necessary to keep the data flow going. As 

new frames come in and resulting frames being sent back. We need to move 

the frames around on the SDRAM. This turned out to be quite costly as well. 

How we got 50 times faster 

We still improved he speed from the original algorithm in Matlab by 50 times. 

This is done by: 

 

- Fast algorithm: We modified the algorithm to pick the top 10 most interesting 

blocks for motion estimation instead of trying to match the entire 300 blocks. 

We also introduced down-sampling when matching blocks.  

- Pointer Manipulations: We chose to manipulate our memory in the most 

efficient way to minimize movement of data on the SDRAM. Instead of 

moving these data around, we assigned pointers to each fragment and stored 



these pointers on chip. This is done painstakingly but proved to be quite an 

improvement. However, there are still a lot of memory manipulation that can 

not be done by pointers. 

- Paging: We paged relevant data to temporary work space on chip before 

calculating these data. The efficiency of this method is limited because of the 

disjoint memory segments. 

- Unrolling: We unrolled some of the most calculation intensive part of the code 

to enhance pipeline effect. 

- Asynchronous Transfers: Since processing time takes the majority of the 

processing life cycle, we tried to transfer as much data as possible in the 

background. This cuts the total transfer time (back and forth) to 1/50 of a 

second. 

  
EVM Memory 
 
 Memory allocation effects the speed of this project tremendously. However, most 

of the data are so big that they can only fit on the SDRAM. Here are a list of how the 

memory are allocated: 

Onchip Cache: Stack and global variables. (local variables such as counters, pointers, 

smaller arrays.)  

SBSRAM: Program body. 

SDRAM: Variables declared with far. (all the frames including new frame from PC and 

resulting frame sent back to PC as well as a couple other intermediate results.) 



 
 
EVM <-> PC 
 
Here is a graph to demonstrate the interaction between PC and EVM: 
 
 
 
 
 
1. Receiving two frames 
  

2. Process frame while receiving one 
    more frame in the background 
     

- Edge & energy detection 

- Calculating motion vectors 

- Determining global motion 

- Smoothening global motions 

- Correcting global motions 

 

3. Send back resulting frame 

 

(repeat step 2 and 3) 

 
 
 

Time 

EVM          PC 

1. Sending two frames 

2. Sending next frame 

3. Receiving frame 

Idle 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 

(repeat step 2 and 3) 



Conclusion 
 

Implementing video stabilization on EVM with real-time performance turns out to 

be much more challenging than we expected. We were overly optimistic in both the 

algorithmic as well as the run time aspects. While we feel much of the misleading was 

done by Ting’s paper as he claimed to have achieved good results as well as real-time 

performance, much has been done to make his algorithm more robust to the noise present 

in real life data. Also, much has been done in making the algorithm more efficient for a 

faster runtime.  

 We feel this has been a good and fulfilling learning experience although the goals 

we set out in the beginning is not met at the end. We believe with more design changes to 

the algorithm and more effort in optimization will continue to make this project closer to 

the goal while we are not entirely sure if real-time can be achieved given the existing 

hardware in the lab. 
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