18-551, Spring 2003

Group 11, Final Report

Talking Head

Audio/Video Synchronizer

Charlie Butcosk
Ross Kinder

Fred Merkle

May 5, 2003






The Problem

In the world of broadcast video, audio and video infrastructure is separated. Information
flows along separate channels. Eventually, usually just before transmission, the two signals
are combined to flow along the same path. From a video engineering perspective, this is
extremely helpful because it allows broadcast engineers to address problems in video and
audio flow separately. Facilities often process their audio and video in different locations,
so it simply does not make any sense to route all video feeds through audio processing
locations. Similarly, it seldom makes sense for a broadcast audio feed to enter the video
processing portion of a television facility.

The separation of audio and video, however, can create a delay between the two signals.
If the paths are different enough, this delay can become a problem, especially in situations
like news production, where it can be difficult to understand or even watch a program
with a significant delay. As the synchronization of audio and video gets worse, it becomes
more difficult to understand what an on-screen “talking head” is saying. Eventually, a slight
degradation in understanding becomes a near-total inability to pay any attention whatsoever
to what the speaker is saying. This slow decay of understanding is largely due to the fact

that the brain processes audio and video simultaneously in order to comprehend what is



happening in a scene. By using visual cues that directly relate audio and video (the shape
of the lips when we say “ahhh,” for example), our brains can improve understanding and
retention. Additionally, visual context clues are vital to our thorough comprehension of
audio information.

In filmmaking, there is a similar synchronization problem to that of broadcast video.
Often, during an on-location shoot, some amount of background noise will be introduced
into the recorded audio. The source of this noise can vary: it could be as simple as a light
breeze brushing across the microphone element, or it could be as deafening and impossible
to ignore as a plane flying overhead. This noise often can affect the overall quality of the
film, so these portions are typically re-recorded in a studio afterwards, in a process known as
Additional Dialog Recording (ADR). This is accomplished by having the actor repeat his/her
lines while viewing the video portion of the film. Because ADR is recorded after the initial
shooting of the film, the process necessarily introduces a synchronization problem. Due
to variations in stresses and syllable length, ADR is never perfect and is often an arduous
process for the recording engineer overseeing the process. Clearly, there is a need for system
to dynamically adjust the delay between video frames and recorded audio.

Through the mid-90s, Tektronix—who have since divested all their interests in au-
dio/video synchronization—put a significant amount of research into improving the ADR
process. Unfortunately, these systems largely rely on proprietary hardware that has since
been abandoned. Their research—and indeed, part of the reason why Tektronix divested
their motion picture ADR division—was largely conducted by specialists in the audio field

rather than the video field, and so is extremely adept in its research in how the audio can



be manipulated, but somewhat lacking in its video scope..

In video conferencing, designers have solved the problematic cognitive link between au-
dio and video by placing a priority on audio transmission. Rather than degrade the audio
stream, video conferencing codecs rate-limit the video transmission. In order to avoid a
desynchronization of audio and video, the system will drop frames. If end-to-end through-
put seems to be decreasing, most videoconferencing the systems respond by accordingly
degrading the video stream, but not the audio stream. Strictly speaking, this reflects a pri-
ority on “information” content, but perhaps more importantly reflects the development of
video conferencing codecs as an extension to audio conferencing codecs. Yet if there were a
way to ensure synchronization of audio and video at the receiving end, it would be possible
to maintain a high frame rate while still maintaining audio intelligibility. With video con-
ferencing technology increasingly being used to broadcast live battlefield reports, it becomes
critical to make sure that compression technologies are being used to their fullest.

Currently, the industry relies on humans to correct this delay. After a system is installed,
delays between processing locations are determined by sending a test audio and video pulse
through the signal infrastructure and measuring the difference between the two. This solu-
tion is sometimes adequate, but is tedious, expensive, and is problematic for modern routing
infrastructures. Consider the case, for example, of a studio complex with three production
locations: each with a large router to route signals from a machine room, to a minor produc-
tion studio, to the major production studio, and finally to the head-end. Clearly, as routing
infrastructure becomes increasingly complex and computer-controlled, the chances of find-

ing a routing combination that has not been pre-calculated increase. A dynamic solution



to the synchronization problem would clearly allow for a much more complex video routing
infrastructure than currently exist.

Finally, a computer-controlled synchronization system would open the door to packet-
based broadcast video facilities. Rather than being tied to one facility wiring structure, a
facility could dynamically route packets across a wide array of paths, allowing for better use
of facility wiring and hardware. Our system would be able to solve the delay problems that

such a scheme would create.



The Solution

We attempted to solve the problem of video and audio synchronization by using face
and speech recognition techniques together in order to determine the basic speech and video
units that comprise each stream. Once we determined the “content” of the audio and the
video—specifically, the presence and order of certain phonemes and visemes and how they
match—we then determined the total delay between the string of audio units and the string
of video units. We planned to implement face tracking and cropping code on the host PC,
with the cropped image being sent to the C67 Evaluation Module (EVM). The EVM was
then to perform the final lip tracking, viseme detection and phoneme detection to determine
the delay between the video and audio signals. Since the main application for this project
would be a very controlled studio environment, we only addressed the situation of so-called
“talking head” video. While this data set is certainly an over-simplistic view of the kind
of video a broadcast facility typically sees, there are algorithms that exist to find a face in
a significant amount of scene noise. Since our project is not intended to directly address
problems of face-tracking and finding in a diverse video stream, we feel our simplifications

to the data set are justified.



The Prior Work

We were unable to find any previous projects involving viseme detection. It appears that
we were the first group to attempt such an implementation. Group 2 in 2002 implemented
a form of face recognition. Group 7 of the same year coded up road sign recognition. These
projects involved forms of pattern recognition that could have sufficed for face tracking and
lip tracking, but were not nearly as efficient as the algorithms we uncovered. Therefore,
though other projects exist that address the problem of face tracking, we spent a significant
amount of our time implementing AV() instead.

There have been a few past projects involving phoneme detection. Past groups had
implemented dynamic time warping code for speech processing. The Hidden Markov Model,
while more accurate, was never implemented due to its complexity, time frame, and algorithm

size with respect to the C67 EVM.



The Algorithms

Human speech is composed of 39 basic audible units that are called phonemes® (Fig 1).

‘ Phoneme ‘ Example H Phoneme ‘ Example H Phoneme ‘ Example ‘

JAA/ | odd JAE/ | at JAH/ | hut
/AO/ | ought JAW/ | cow JAY/ | hide
/B/ be JCH/ | cheese /D/ dee
/DH/ | thee JEH/ | Ed JER/ | hurt
JEY/ | ate /F/ fee /G/ green
/HH/ | he JIH/ | it JIY/ | eat
JJH/ | gee JK/ key /L/ lee
/M/ me /N/ knee /NG/ | ping
JOW/ | oat J/OY/ | toy /P/ pee
/R/ read /S/ sea /SH/ | she
/T/ tea /TH/ | theta JUH/ | hood
JUW/ | two /V/ vee JW/ we
/Y/ yield /Z/ zee /ZH/ | seizure

Figure 1: The 39 phonemes

These phonemes (like the sound “sh”), when strung together, form words. Phoneme
research is an area that is fairly well-defined territory in audio processing. When speaking,
humans create a similar basic visible unit called visemes (Fig. 2). While the total number

and exact kinds of visemes remains in debate, it is generally agreed that there are fewer

!From the CMU Pronouncing Dictionary, http://www.speech.cs.cmu.edu/cgi-bin/cmudict



Figure 2: The 12 visemes

visemes than phonemes.

Using adaptive vector quantization, we track the face across the video frames. Once we
know where the face is, we then use adaptive vector quantization again on the lower half
of where the face is to find the lips. We then compare the features of the lips in the video
frame to a set of stored features to determine which viseme the system is “seeing”.

Our initial intention was to use dynamic time warping in order to determine the phonemes
present in the audio stream, but were unable to make dynamic time warping detect single
phonemes (see later section for details on the dynamic time warping algorithm and its short-
comings in relation to our application). In place of dynamic time warping, we use silence
detection code to separate full words from silence. This simplification makes sense, given
that the duration and length of silence varies between the kind of sentences that a speaker
is saying. This means that the duration, number, and position of silences in human speech

creates a relatively unique string that we could use much like we planned to use the string of



phonemes. Luckily, most speakers have a specific lip position associated with silence, mean-
ing we can create a unique string of video and a unique stream of audio in our matching

procedure.

Adaptive Vector Quantization

In order to determine which viseme was present in a frame, our synchronizer had to find
the location of the face and lips in the image. This was accomplished by the implementation
of a technique called Adaptive Vector Quantization?. We chose the algorithm due to its
minimal training requirements and accuracy. We were unable to find any code for the above
process, so we wrote our own implementation. The face tracking process begins with training

on a single full-color 640 x 480 pel frame. (Fig. 3)

Figure 3: Input frame

2“Face and lip tracking using chromatic based AVQ,” S. Lucey, S. Sridharan, and V. Chandran, Technical
Report

10



This training frame is then downsampled to an 80 x 60 pel image (Fig. 6). The smaller

image size allows the face tracking training process to be completed in less time, albeit with

less accuracy. Additionally, the downsampling helps to make the nose and mouth less visible

to the face tracking code. Each pixel (4,7) in the downsampled image is assigned a vector

based on four equations (Fig. 4).

" R+G+B

G

I R+G+B

SD(i,j) = \l Ypti-a Vit 3[4g j) — AI(P,q)P?

.. R, . o
DI(Zvj):E(Zvj)_AI(Zaj)
where

3
_5E s s E9)

Figure 4: Vector dimensionality equations

These vectors are compared to a set of four code vectors hardcoded into the algorithm.

Each pixel in the image is classified into one of four regions depending on minimum distance,

based on the minimum squared error (Fig. 5), from the code vectors.

Then, for each region, the average of each vector (based on a pixel in the image) is taken.

11



d(z,y) = |z -y’
Figure 5: Minimum squared error (MSE)

This average becomes the new code vector. This process is repeated for 5 times, after which
our code vector set has mostly converged. This set returned by the training code, becomes

the set of code vectors to which all further input frames will be compared.

Figure 6: Downsampled version of input frame

After determining the code vectors, each frame thereafter requires limited processing.
Again, we input a 640 x 480 pixel image and downsample it to 60 x 80 pixels. Each pixel in
this image is also assigned a vector based on the the equations in figure 4. A new grayscale
value is chosen for this pixel based upon the code vector to which it is nearest (Fig. 7).

The output of the vector quantization process makes finding the face and lips very simple.
The image is scanned pel by pel until the first nearly black pel is found. This is the beginning
of the face. Using facial heuristics, such as the fact that a person’s lips are generally located

12



Figure 7: Input frame after downsampling and quantization

in the lower half of the facial area, the fullsize (640 x 480) image is cropped such that the

lips are separated from the rest of the face (Fig. 8).

Figure 8: Input frame after lip cropping

The first image of cropped lips is used to train the lip tracking portion of the code. This
code is the same AVQ code as used to track the face, however it starts with a different

13



set of initial code vectors. For lip tracking the initial code vectors are chosen by picking
the first pel in the image and the next three pels a distance of ten pixels diagonally from
the previous pel. The training process is repeated a nominal number of times. For each
successive frame, the codevectors determined by this training sequence are used to quantize

the images similarly to the face tracking algorithm (Fig. 9).

Figure 9: Cropped and quantized input frame

The lips can be easily tracked based on a vector consisting of the width, height, and area

of the lips found by the lip tracking algorithm.

Dynamic Time Warping

For the audio side of our solution, we initially thought that we would use some sort of
speech recognition system to generate a sequence of phonemes. This sequence of phonemes

would then be compared to the sequence of visemes generated by the viseme-recognition

14



portion of the project.

Of the various speech recognition algorithms available, the two leading algorithms are
Dynamic Time Warping (DTW) and the Hidden Markov Model (HMM). The Hidden Markov
Model, which is what is used in the CMU Sphinx 3 speech system, requires a very large
database and is computationally expensive. Dynamic Time Warping, on the other hand,
requires a much smaller database at the expense of recognition accuracy. Initially, we chose
the Dynamic Time Warping algorithm for the audio portion of our solution.

Human speech is an extremely time dependent process, in that the same utterance may
have a different duration each time it is uttered. In order to determine the difference be-
tween two utterances, and thus determine which database member most closely matches the
utterance, they must be aligned in time?*.

We can imagine the Dynamic Time Warping process on a grid. The horizontal axis
represents the features of the given utterance, and the vertical axis represents the database
utterance. The goal is to find the shortest path through the grid, which represents the
distance between the two samples(Fig. 10).

In order to find the the minimum distance we impose the following constraints:

e Paths cannot go backwards in time

e Every frame in the input must be used in a matching path

e Local distance scores are combined by adding to give a global distance.

We will use Dynamic Programming to find the minimum distance. If D(i,7) is the

3The CMU Speech group is at http://www.speech.cs.cmu.edu/
*http://www.dcs.shef.ac.uk/ stu/com326/

15



—

Tine
E
N

Tima =

Figure 10: Time alignment path for D'TW

distance up to the point (,j) and the local distance at (i, 5) is given by d(i, j), then

D(i,j) =min[D(i— 1,7 —1),D(i —1,3), D(i,j — 1)] + d(4, 5)

We now have an efficient way of calculating D(n, m) where the point (n,m) is the upper
right hand corner of the matrix. In this way, differences in the duration of features within
an utterance do not affect the recognition of the sequence.

Dynamic Time Warping represents an efficient way to recognize single words, and is
widely and effectively used in that context. In order to use Dynamic Time Warping for
a sequence of words, the input audio stream must be separated into segments, each of
which represent an individual character. In many applications, silence detection is used to

determine word boundaries. We realized that silence detection would give us just as good an

16



indication of the beginning and ending of words as would actually performing the dynamic

time warping.

Silence Detection

The silence detection algorithm is derived from one used by many DTW silence detection
systems. Whenever the input signal drops below a specified threshold, a word is considered to
have ended, and whenever it rises above that threshold, a word is considered to have begun.
Because the threshold is fixed, differing sound levels may cause certain word boundaries to
be missed. By experimentation, we determined that the algorithm was invariant to threshold
changes of plus or minus 10 dB. That is to say, that we picked -80dB as out threshold, but

-90dB or -70dB would have worked equally well.

17



The Test and Training Files

The training data consists of a series of words that contain most of the visemes present

in human speech. Our training video consists of the following words:

One, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen,
fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, thirty, forty, fifty,
sixty, seventy, eighty, ninety, hundred, thousand, million, billion, January, Febru-
ary, March, April, May, June, July, August, September, October, November,
December Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday,
Morning, noon, afternoon, night, midnight, evening, AM, PM, now, next, last,
yesterday, today, tomorrow, ago, after, before, from, for, through, until, till, that,

this, day, month, week, year 5

These words contain all of the phoneme set and all of the viseme set—no matter whose
definition of viseme we use. We then used Final Cut Pro to create still TIFF images and
de-interlace the images for use in traditional whole-frame algorithms. We chose a set of 12

visemes, based on Faruquie’s work in the field®. This gave us a training set (Fig. 2).

5Taken from Carnegie Mellon University’s Advanced Multimedia Processing group, “Audio-Visual Speech
Processing,” http://amp.ece.cmu.edu/projects/AudioVisualSpeechProcessing/

6«Audio Driven Facial Animation for Audio-Visual Reality”, T. A. Faruquie, A. Kapoor*, R. Kate*, N.
Rajput, L.V. Subramaniam, 2001 IEEE International Conference on Multimedia

18



Viseme feature data is unique to each person’s face, so each test set is matched to a
training set. These images of Ross, obviously, will only work in our system if we have a test
set, which is also of Ross. We did not create a sound training set, since the silence detection
code is largely based on energy analysis which is not person-specific.

The test data consisted of Ross saying a sentence. Had we gotten more of the project
working, it would have been useful to have Ross say a few different sentences under a varying
set of lighting/set conditions. In order to bring the test data into our host program at a
reasonable size, we used Final Cut Pro to convert the video to a non-interlaced format and

a smaller resolution (see “Video Formats Used”).

19



The Video Formats

All of our test and training data was shot on DVCAM tape, later captured to Quicktime,
and eventually converted to a non-interlaced video format with a smaller resolution and
lower audio sample rate. Natively, DVCAM records an interlaced, intra-frame compressed
format at 720 pixels by 480 pixels and non-square pixels. While an intra-frame compressed
format is not problematic, interlaced video is. For our application, non-square pixels are
not a problem, provided that all of our test and training data is consistent: if we train on
non-square pixels, we have to test on non-square pixels and vice-versa.

In order to simplify our project’s video ingest, we used an external program to convert
the captured video from 720 by 480 to 640 by 480, with square pixels. We saved this file as
an AVI using the Cinepak codec. AVI, much like Quicktime, is largely used as a wrapper
for a variety of video formats on Windows PCs. AVI has the added advantage, however, of
being supported by Visual C++ Studio.

Interfacing with AVI’s codecs is reasonably straightforward. Following the directions we
found on the web” which had code available to access AVI Files and display them, but we

modified the code in order to pass each frame to the adaptive vector quantization code.

"http:/ /homespages.msn.com/RedmondAve/darrennix

20



Using Microsoft’s API to interface with AVI files has the advantage of being moderately
easy to use, especially in terms of using strange codecs. The Windows libraries manage
all video codec implementation details, which allowed us to operate on a more abstracted
level—motably at the frame and stream/file level. Unfortunately, in allowing us a high level
of abstraction, it obscured some of the frame-level details that are pertinent. Specifically,
we might be able to improve the way that we operate our vector coding by having access to
the color space data, but the Windows implementation of this code was so complex that it

became difficult to find how to access this information.

21



The Implementation Details

Unfortunately, we were unable to make the project work on the EVM. We have working
implementations of the Adaptive Vector Coding and the Silence Detection, and we imple-
mented AVI video ingest on the PC-side. Though all of these components work, our last
push to get the code working on the EVM was unsuccessful. This seemed to be due to a
variety of issues, including but not limited very limited time schedule. We had spent so much
time fine-tuning our vector coding algorithm and our silence detection implementation that
we only left about a week and half to implement our code on the EVM.

Unfortunately, the EVM did not co-operate in our rigorous time scheduling. The first
issue that we encountered was a byte length/word length standard on the host PCs differing
from the Linux boxes on which we wrote the original code. The EVM consistently gave us
the wrong output—especially in the first 10 lines—and it seemed to be due to a difference
between what Linux thought a bitmap’s word size was versus the Windows API’s definition
of the same.

The second issue that we hit head-on was that the EVM simply was not fast enough
to do all of the Adaptive Vector Coding itself. Codebook generation—easily the longest

part of the initialization phase—would have taken an inordinate time on the EVM, so it

22



became necessary to segment our processing: initialization and some vector coding on the
host PC, the rest of the vector coding and all of the sound processing on the EVM. Given
the restricted time schedule—when we scheduled initially, we seem to have forgotten that
all of our other classes would demand a significant amount of effort as well—rewriting our
code to reflect this split became impossible to do before the demo.

We fell confident, however, that had we been able to implement our individual algorithms
on the EVM, they would have worked very well in concert. The adaptive vector coding was
very good at finding the test subject’s head, and it worked equally well for the lips on the
cropped image. The silence detection code, similarly, was able to cut off words nearly at
nearly the first possible audio frame, meaning that our accuracy for knowing when our test
subject was speaking was very good.

Having done so much leg work in the area of head/lip tracking, we feel that if another
group attempted this project, they would have no problem completing before the deadline.
In retrospect, it would have probably been a good idea to further restrict our project in order
to make sure it was not such a multi-faceted project. While it seemed interesting to create
a project that worked nearly as it would in a real-life situation, it would have been a better
idea to create a project that would work as a single part of a larger system. We could, for
instance, assume that the head had already been found or that we only get an image of the
lips. Having received this image, we would have to calculate the features, etc, in order to

find the viseme.

23



