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2.1 Introduction 
 
In our increasingly mobile society, individuals are prone to doing just about everything 

on the move.  Listening to music is certainly not an exception.  However, when one 

listens to music away from the home, one necessarily has less control over noise 

exposure.  Airplane, bus and car engines are the most common noise distractions as one 

travels.  Lawnmower engines, others’ speech and music are also frequently encountered.  

Surely, there is considerable benefit in obtaining headphones that could perform active 

noise cancellation – be able to filter out noise as one encounters it. 

 

Large electronics manufacturers have not ignored this need.  Indeed, there are several 

products on the market, the most notable of which – Sony® MDR-NC20 Noise 

Canceling Closed Headphones and Bose® QuietComfort™ Acoustic Noise Canceling® 

Headphones – are discussed in section 2.3 in greater detail.  Both products’ noise 

attenuation capability is advertised as up to 10 dB for frequencies below 300 Hz.  

However, frequency analysis of numerous real-life noise signals – even car and airplane 

engines – reveals significant noise (up to 30 dB in a Boeing 7471 and up to 60 dB in the 

cockpit of a Cessna 2102) at up to 3 kHz.   

 

Thus, the products’ peak attenuation is limited to frequencies below 300 Hz 

notwithstanding the considerable desirability of a more comprehensive solution.  

                                                 
1 Boeing planes are sheltered with noise-absorbing coating which reduces the noise present. 
2 Cessna 210 is a small, popularly owned private plane.  If medium-frequency noise attenuating precautions 
are not taken, frequent pilots have up to 41% chance of developing permanent hearing damage according to 
US EPA Report 550/9-73-008. 
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Although it was not feasible to determine the reason for the limitation as neither Sony nor 

Bose has revealed the algorithm used in the companies’ respective products, it seems 

realistic that existing solutions are not effective outside the low-frequency range due to 

some processing constraint.  The limitations on a single-band Least-Mean-Square (LMS) 

algorithm as established by Siravara, et al. in 2002 (hereafter [1]) coincide with product 

constraints as advertised.   The proposed improvement – the new subband LMS algorithm 

examined in section 2.6 – facilitates significant improvement in medium-frequency noise 

attenuation while reducing the computing resources needed to update the adaptive filter. 

 

Although subband LMS is potentially a promising alternative, as of this writing, there are 

no publicly accessible reports regarding a headphone implementation of the algorithm.  

Under these circumstances, writing a DSP implementation of the algorithm and creating 

an active-feedback headphone system may be tangible contributions to the active 

feedback Adaptive Noise Cancellation (ANC) field.   
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2.2 Active Feedback ANC  
 
 

Adaptive Noise Cancellation (ANC) is a widely applicable set of noise attenuating 

techniques.  Unlike simple filtering, ANC techniques attenuate noise through the addition 

of an “anti-noise” signal with 180-degree phase difference, thereby dampening the energy 

of the noise waves.  Active feedback via an embedded microphone facilitates targeted 

noise cancellation without any requisite a priori knowledge about the signal transmitted 

or the noise present.  There are several algorithms used to calculate the “anti-noise” 

signal.  Wideband (single band) and subband (2 or more bands) Least Mean Square 

(LMS) algorithms are analyzed in sections 2.4 and 2.6 respectively. 

 

 

 

 

Fig, 1:  Destructive Interference 

   

 

Fig. 2: Single channel active feedback with 
microphone, headphones, EVM 

 

 

Fig. 3: Sample ANC flowchart with LMS 

LMS Algorithm 

Input Noise feedback 

“Anti-noise”  signal 

Output 
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2.3 Commercial Products 
 

 

 
 
 
Sony® MDR-NC20 Noise Canceling Closed  
 
MSRP: $199 
 
Attenuation up to 10 dB for frequencies up to 300 Hz 
 
Algorithm: wideband LMS [1] 
 
 
 
 
 

 
 
 

 
  

 

 

 

 

 

 

Bose® QuietComfort™ Acoustic Noise Canceling®  
 

 

 

 

 

 

 

 

 

 

MSRP: $299 
 

 

 

 

 

Attenuation up to 10 dB for frequencies up to 300 Hz 
 

 

 

 

 

 

Algorithm: unknown; wideband LMS likely 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5



 

2.4 LMS 
 

The LMS algorithm is comprised of two processes – a filtering process producing the 

output signal and the estimation error, and an adaptive process responsible for the 

automatic adjustment of filter tap weights.  The following definitions and notations will 

be used throughout: 

Input signal:    ( )nu
Desired signal:   ( )nd
Filter tap weights:   ( )nw
Filter output: 

1
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The LMS algorithm is obtained by substituting the instantaneous error approximations 

into the basic steepest-descent Weiner filter algorithm. 
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 LMS filter coefficient adjustment 
      

In the preceding definition, µ – the step size of the algorithm – is essentially the driving 

factor in the coefficient adjustment.  The LMS algorithm can be mathematically shown to 

converge when  
m a x

0 2
< µ <

λ
 where max

1
[ ( ) ( )

M
H

i
i

]E n n
=

< λ =∑λ u u .  Siravara et al. 

show that LMS µ values for practical adaptive noise canceling applications range 

between 0.0002 and 0.04 [1].   Moreover, Principe et al. propose a max

10
µ = λ rule of 

thumb resulting in speedy and accurate convergence suitable for most applications [2]. 
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2.5 Prior CMU Projects 
 

Spring 1999: Group 6 

Ormsby et al. followed a wideband LMS approach in a project titled Noise Canceling 

Headphones: An Adaptive Solution.   The group demonstrated significant noise 

attenuation for some music signals in Matlab with a 64-tap LMS filter.  The results were 

comparable to expected headset performance. 

 

Moreover, Ormsby, et al. determined that real-time attenuation between 7 and 10 dB 

required an LMS filter size of between 128 and 512 taps.  Initially, the group attempted to 

implement a 256-tap solution with 8 kHz signal on the C30 EVM but could not achieve 

real-time noise attenuation.  A 16-tap wideband LMS filter processing an 8 kHz single-

channel (mono) signal was proven to require fewer EVM instruction cycles than were 

permissible between sample inputs, yet noise attenuation on the EVM was not 

demonstrated. 

 

Although, some noise canceling is possible with a 16-tap wideband LMS, a 2-band 16-

tap algorithm allows up to double attenuation and more rapid convergence.  Thus, barely 

audible attenuation of ~4dB is improved to cancel 60-70% of the noise frequency power.  

Using the subband approach on the C67 EVM it becomes possible to construct a stereo 

ANC system capable of processing 44.1 kHz, CD-quality signals. 
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2.6 Subband LMS 
 

The newly proposed subband algorithm calls for parsing the desired and feedback noise 

signals into at least two bands, running the LMS algorithm on each band and finally 

combining the individual band outputs into a single noise-canceling signal. 

y(n) 

LMS FIR 
Band 1 Band 1

• •

d(n)

• •

LMS FIR 
Band n Band n

 

Fig. 4: Subband LMS   
This approach facilitates faster convergence with smaller filter size – w(n) – while 

increasing the maximum noise attenuation possible for constant µ. These advantages 

enable significant real-time noise attenuation for a 44.1 kHz – CD quality – signal on the 

C67 EVM board. 

Frequency of Primary 
Noise Signal 

Wide-band noise 
attenuation 

Subband noise 
attenuation 

0-250 Hz 14.4dB 16dB 
500-750Hz and 1250-1500Hz 5.66dB 10.03dB 

750-1000Hz and 2000-2250Hz 6.31dB 11.9dB 
3000-3250Hz 9.7dB 15.79dB 

Table 1: Subband advantages according to Siravara et al. [1] 

The most tangible advantages are for medium-frequency noise with 500   z zΗ < ƒ < 3250Η

and thus are precisely in the underperforming frequency range targeted for needed 

improvement. 
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3.1 Project Design 
 

We propose to demonstrate the effectiveness of the subband LMS algorithm for a real-

time, active feedback ANC system.  The stereo active feedback will be performed by two 

microphones (one for each ear).   

Koss UR/15 Personal listening headphones 

MSRP: $29.99 

Selected for closed ear design, wide frequency response 

( z z25Η < ƒ < 15000Η ), low distortion and reasonable 

price 

 

 

RadioShack Tie-Clip Omni directional Electret 

MSRP: $24.99 

Selected for small size, wide frequency response (50 z zΗ < ƒ < 16000Η ), low impedance 

and reasonable price. 

 

In order to follow through with the proposal, the authors must (1) establish the subband 

proof of concept, (2) determine real-time, sample-by-sample update capability, and (3) 

demonstrate significant noise attenuation across the frequency spectrum for CD quality 

music in real-time on the C67 EVM board.  Task (1) is most readily accomplished in 

Matlab, task (2) in C and task (3) involves the EVM board. 
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3.2 Matlab 
 

Determination of µ: 

Using the rule of thumb suggested by Principe et al., µ was calculated from a 10-sample 

average of the max eigenvalue [2].  Frequency eigenvalues were calculated for various 

song inputs ranging from Mozart to Eminem, with the average λ , 
max

0.25=

max 0.025
10

µ = =λ .  Thereafter, the calculated µ was tested alongside the 0.0002 to 0.04 

limits [1] in Matlab for LMS convergence and attenuation quality. 

µ 
Iterations until max 

attenuation 
(for Gaussian noise) 

Limitation on 
final quality 

510 ?−>  
0.0002 ~60,000 No 
0.0100 ~8,000 No 
0.0250 ~3,000 No 
0.0400 ~2,400 No 
0.1000 ~1650 Yes 

Table 2: µ-value comparison based on Matlab experimentation 

Setting µ = 0.025 is confirmed to be reasonable with significantly more rapid attenuation 

as compared to much lower values and essentially trivial loss of final accuracy. 

 

Matlab code implementation: 

Using ANSI C code for wideband LMS from Texas Instruments [3], we implemented 

wideband and 2-band Matlab LMS solutions.  The initial transformation was iteratively 

intensive and required almost 10 minutes to process 15 seconds of 8 kHz signals.  The 

Matlab code was thereafter optimized to perform more matrix calculations instead of loop 

iteration.  Most importantly, the TI implementation of LMS was modified to calculate 

e(n) prior to updating the w(n) vector.  This algorithmic change facilitates the transition 
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to sample-by-sample processing as compared to the TI code, which uses buffers.  Adding 

code for 32-tap FFT and IFFT, we successfully created and tested a 2-band 

implementation.  The Matlab code is located in Appendix A at the end of this report. 

Proof of Subband efficacy  

The wideband and 2-band implementations were tested under identical conditions.  All 

signals were sampled at 44.1 kHz. 

 

Desired signal:  first 2 minutes of Mozart’s 4th Concerto 

Noise signal one:  1 .2sin(2 (200)) .3sin(2 (500)) .4sin(2 (900))π π πη = + +  

Noise signal two:  2 .5sin(2 (1300)) .1sin(2 (2200)) .2sin(2 (3100))π π πη = + +  

Noise signal three:   3 1η = η + η2

First band:  1kHzƒ ≤ Second band: kHz kHz1 < ƒ ≤ 4  

 

When  or were tested, the algorithms performed essentially in tandem because the 

two noise signals were chosen to have noise components corresponding to each of the 

two sub bands respectively.  However, for 

1η 2η

3η , which contained noise in both frequency 

ranges, the 2-band algorithm attenuated noticeably faster and achieved significantly 

higher final noise reduction.  The estimation error – ( ) ( ) ( )n n n= −e d y  – for the last 

220500 samples (5 seconds of the clip) was analyzed in GoldWave to determine the 

amplitudes associated with each noise frequency.   
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For each frequency, the achieved attenuation was calculated as follows: 

20log( )r

i

ANdB
A

= −   average residual amplitude  known initial amplitude rA → iA →

Frequency Noise Signal Final wideband noise 
attenuation 

Final 2-band noise 
attenuation 

200 Hz 12.1 dB 13.3 dB 
500 Hz 6.9 dB 10.8 dB 
900 Hz 5.3 dB 7.5 dB 

1300 Hz 7.1 dB 10.4 dB 
2200 Hz 5.4 dB 7.7 dB 
3100 Hz 10.7 dB 12.9 dB 

Table 3: Matlab wideband vs. 2-band attenuation 
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3.3 C 
 

C algorithm: 

In [3], TI provides assembly code for a wideband LMS.  Also included is the ANSI C 

version of the assembly functionality.  However, the C code does not correspond to the 

ASM functionality due to some flaw that was not discovered during debugging.  Instead, 

a modified version of the LMS algorithm was written in C.  Key modifications include 

calculating e(n) prior to updating the w(n) vector and processing the LMS algorithm after 

each sample (as opposed to each 16-sample chunk).  FFT and IFFT with 16 coefficients 

from 18-551 Homework 2A were used to set up the two frequency bands.  The C code is 

located in Appendix B. 

 

Realistic signal testing: 

Minor code optimization reduced the running time of the C code to function real time for 

real audio and noise signals. Realistic noise signals provided by 

http://www.exhaustsoundclips.com [4] and http://physics.nku.edu/asg/noisesamples.html 

[5] were introduced to test one of the algorithm’s primary applications – engine noise 

reduction.  The exhaust of a 1967 Ford Mustang and aircraft noise at the 

Cincinnati/Northern Kentucky International Airport were analyzed using GoldWave, 

having substantial noise components for 0 4kHz< ƒ ≤ .  This range covers most 

commonly experienced, locally periodic noise signals and confirms the original choice 

for band definition.  Eminem’s Without Me raw file (converted from mp3 using 

GoldWave) was the desired signal.  The following figure contains the waveforms played 

during the final oral update. 
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Attenuation results: 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Real-time 2-band LMS noise attenuation.  Top is d(n) – desired signal; middle is u(n) – input 
signal; bottom is y(n) – filter output 
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Algorithm efficacy is readily observed graphically in Figure 5 between 0:00 and 0:05 and 

0:45 and 0:48 where the input signal noise clearly overrides the desired signal.  Filter 

output demonstrates strong attenuation and is almost indiscernible from desired output.  

Strong attenuation is thus possible even in the first few milliseconds, demonstrating the 

advantage of the 2-band system over a wideband solution. 

 

As detailed in the previous section, decibel attenuation is determined through amplitude 

vs. frequency analysis of the signals’ last 5 seconds.  Because the initial amplitude was 

not user defined, a running average was computed for the last 5 seconds of the noise 

signal.  Thereafter, the following formula was used to compute the attenuation. 

20 log( )r

i

ANdB
A

= −  

rA → average residual amplitude   iA → average initial amplitude 

 

Frequency of 
Noise Signal 

2-band Noise 
Attenuation 

0-1 kHz ~13dB 
1-4 kHz ~7dB 

 

 

 
Table 4: 2-Band attenuation by frequency range 
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3.4 EVM 
 

To port the C code from the previous section to the C67 EVM, 18-551 Lab 1 interrupt 

system was adapted to the current needs.  All processing code (FFT/IFFT, LMS) was 

placed into receiveISR.  The data is then readily transmitted with a single call in 

transmitISR.  Using the sample-by-sample processing methodology and a CD quality 

signal, the EVM code can comprise at most 166 / 44.1 3800MHz kHz ≈ cycles.  Although 

rough, preliminary calculations indicated only 4*640 1000 3560+ = 1 cycles necessary 

for the FFT/IFFT approach, the actual implementation required more and therefore did 

not work real time. 

 

The solution was to replace the FFT/IFFT with 32-tap FIR band-pass filters.  Matlab 

functions firls and remez generated the filter coefficients used.  The FIR filters performed 

sufficiently, with negligible performance error as compared to the FFT/IFFT method. 

Three filters were implemented – low-pass for 1f kHz≤ , band-pass for 1 , 

and high-pass for 

4kHz kHz< ƒ ≤

4f kHz> .  The low-pass and band-pass filters created the bands to be 

processed via the LMS.  The high frequency component is passed to the headphones.  

Much of the noise above this threshold is either negligible in amplitude or inaudible.  

Indeed, there is a very limited advantage to dampening it yet a tangible drawback with 

extra requisite cycles [6].  This current implementation is described in detail in Figures 6 

and 7 on the following page.  The EVM code itself is located in Appendix C. 

                                                 
1 640 cycles for each FFT and IFFT.  For 2 bands, that is 2 FFTs and 2 IFFTs.  1000 cycles for 2 16-tap 
LMS updates, error processing, signal addition and overhead 
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Active feedback processing: 

Audio 
Source 

 
44.1 kHz d(n) EVM    

 44.1 kHz   y(n) 

 

 

 44.1   kHz u(n) 

Modified 
Headphones

 

 

Fig 6: Top-level active feedback LMS ANC flowchart on EVM 

As the input u(n) and d(n) arrive for each n, the EVM performs the following: 
1. Desired d(n) and noise feedback u(n) signals are summed. 
2. The combined signal is divided into three bands 
3. The high frequencies ( 4f kHz> ) are passed through to the headphones 
4. The lower two bands ( 1f kHz≤ , 1 4kHz kHz< ƒ ≤ ) are processed via the 

LMS algorithm (which also receives d(n)) 
5. The LMS outputs are summed and y(n) is passed to the headphones 

 
44.1 kHz d(n) 

 

 

+ ++32-tap low 
pass 

32-tap 
band pass 

32-tap high 
pass 

1 kHz to 4kHz  ≤1 kHz 

LMS LMS 

+
High Freqs   (>4 kHz) 

Lower Band Higher Band 

      y(n) 
44.1   kHz u(n) 44.1   kHz u(n) Headphones  

Fig 7: Low-level active feedback LMS ANC flowchart on EVM 

 17



Testing: 

This “real-time”, active feedback LMS ANC was tested on two adjacent C67 EVM 

boards.  This set up was necessary in order to process the two channels separately and 

demonstrate stereo capability.  Feedback microphones were fixed on the outside of the 

closed ear headphone cups to eliminate feedback interference and insure sufficient input 

amplitudes.  Test signals included the aforementioned 1967 Ford Mustang exhaust, 

aircraft noise at the Cincinnati/Northern Kentucky International Airport, speech and 

outside music.  Although attenuation was achieved for all inputs, in the case of outside 

music the process was gradual and took almost a minute.  This is because outside music 

is a significantly more complex signal and is not always locally periodic. 

Demo: 

The 1967 Ford Mustang exhaust was successfully attenuated by the ANC during the 

demo.  Participants listened to music via the Koss UR/15 Personal listening headphones 

while speakers positioned near the feedback microphones reproduced the Mustang 

ignition and exhaust noise.  In just a few seconds, highly noticeable attenuation was 

achieved.  The LMS did not run until final convergence but improved performance over 

time was demonstrated.  Although the decibel attenuation results were not calculated 

explicitly during the demo, experience with prior testing suggests attenuation between 6 

and 12 dB varying by frequency. 

Optimizations and Profiling: 

After the FFT/IFFT approach replaced in favor of the FIR filter design, we also set the 

optimization level to O3 to optimize for speed.  These two improvements resulted in a 

drastic cycle reduction as is evidenced in Table 5 on the next page. 
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Element Cycles before 
Optimizations 

Cycles after 
Optimizations 

rcvISR 3868 958 
xmitISR: 20 14 

Initialization 43 million 35.5 million 
Table 5: Cycles by element before/after optimization 

 

Element Size 

Globals 568 
Local temp 40 bytes stack 

ONCHIP_PROG 46.5 Kbytes 
ONCHIP_DATA 3196 bytes 

Table 6: Final code data size by element 

 

Because our subband approach utilized sample-by-sample processing, with w(n) updates 

after each sample, memory paging was not necessary.  This approach proved very 

efficient and allowed significant buffer size reductions.  Likewise, heuristic observations 

made from the output of the assembly file suggest that the loops were unrolled by a factor 

of two.   

 
Although only 30-40% of the code was parallelized given the utilized build options, most 

implicit advantages in cycle performance vis-à-vis size of code drawbacks are likely to be 

acceptable. 
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4.1 Conclusion and Future Work  
 
Whereas most readily encountered noise signals contain medium range and higher 

frequency components (500Hz Hz< ƒ ≤ 4000 ), commonly available noise canceling 

headphone products provide up to 10 dB attenuation – 70-80% dampening – only for 

frequencies below 300 Hz.  The cause of the predicament likely lies in the algorithm 

chosen for at least some of these products – the wideband LMS.  Instead of wideband, we 

show that a new subband approach initially proposed by Siravara et al. in 2002 allows for 

greatly improved attenuation over a large range of frequencies .  The 

following has been successfully demonstrated in meeting the specification of our 

proposal: 

0 4kHz< ƒ ≤

1. A “real-time” active feedback subband LMS ANC system can 

process 44.1 kHz stereo signals on the TI C67 EVM board. 

a. C code for the algorithm is provided 

b. EVM setup code is likewise made available 

2. Even a 2-band system is at least 20-50% more effective at adaptive 

noise canceling for various frequency bands. 

Additionally, subband Matlab code has been created, with repeat testing placing further 

emphasis on the advantages of the subband system. 

 

Naturally, follow-up work is necessary in order to more clearly identify the additional 

benefits of 4-band and 6-band systems.  Whereas a 4-band system can most likely be 

implemented on the C67 board, a 6-band may require too much processing power.  

Scaling the input signal to 22050 Hz mono should accommodate this complication.  Most 
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importantly, actual dB attenuation and time to attenuation for 4- and 6-band systems 

should be ascertained in order to knowledgeably determine solutions to particular noise 

canceling applications.  Likewise, given further occasion, we would determine the source 

of LMS irregularities and high interference noticed when feedback microphones were 

located inside the closed-ear headphones.   

 

Hopefully, the contribution made by making these findings publicly available may 

stimulate further research possibly culminating in a commercial product, which would be 

more adept at broad frequency range noise attenuation.  Moreover, ameliorated 

processing requirements – due to a reduction in the LMS filter size that is made possible 

by the subband algorithm – may in turn also facilitate a reduction in product cost. 
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5.1 Appendix A—Matlab Code 
 

% Script file for subband LMS 
% Assumes desired.wav and noise.wav exist 
% Returns output, the real portion of which is playing using 
soundsc(real(output)); 
 
temp_d = wavread('desired.wav'); 
d = temp_d(:, 1); 
    
temp_x = wavread('noise.wav'); 
x = temp_x(:,1); 
 
 
% Sets the length to the smaller number of samples 
if (length(d) < length(x)) 
    len = length(d); 
else     
    len = length(x); 
end 
     
i = 1:len; 
% initialize coefficients to 0, and buffers to 0 
W1 = zeros(16,1);  
W2 = zeros(16,1);  
buffer_input = [zeros(16,1)]; 
buffer_desire = [zeros(16,1)]; 
 
% Run through for each sample available 
for t = 1:len 
    % Add the new values to the end of the buffers 
    buffer_input = [buffer_input(2:16);(x(t) - d(t))]; 
    buffer_desire = [buffer_desire(2:16);(-(x(t) - d(t)))];  
 
    % Calculate the fft of the input buffer to see where the noise lies 
    fft_buffer_input = fft(buffer_input,16); 
 
    % Split it into two different bands 
    input1 = [fft_buffer_input(1:8);zeros(8,1)]; 
    input2 = [zeros(8,1);fft_buffer_input(9:16)]; 
     
    % Take the IFFT to change it back to time domain 
    ifft_input1 = ifft(input1, 16); 
    ifft_input2 = ifft(input2, 16); 
 
    % Calculate the fft of the desire buffer 
    fft_buffer_desire = fft(buffer_desire, 16); 
     
    % Split into two bands 
    desire1 = [fft_buffer_desire(1:8);zeros(8,1)]; 
    desire2 = [zeros(8,1);fft_buffer_desire(9:16)]; 
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    % Take IFFT to get back actual samples 
    ifft_d1 = ifft(desire1, 16); 
    ifft_d2 = ifft(desire2, 16); 
     
    % Calculate output and error for first subband 
    output1_temp = W1'*ifft_input1; 
    e1 = ifft_d1(16) - output1_temp; 
     
    % Update coefficients 
    W1 = W1 + .025*ifft_input1*conj(e1); 
     
    % Calculate output and error for 2nd subband 
    output2_temp = W2'*ifft_input2; 
    e2 = ifft_d2(16) - output2_temp;  
     
    % Update coefficients 
    W2 = W2 + .025*ifft_input2*conj(e2);  
     
    % Final output is just sum of subband outputs 
    final_output(t) = output1_temp + output2_temp; 
end 
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5.1 Appendix B—C Code 
 
/* 
 * C Code to implement ANC  
 * Group 10, Spring 2003 
 * Prasanna Malaiyandi, David Mitchell, Samir Sahu 
 * Files expected in directory: Noise files, desired files, fftn.h, 
fftn.c 
 * Usage: saturday  noise#  noise_amplitude  desired#  sampling 
 * Sampling does not work, should always be set to 1. 
 *  
*/ 
 
#include <stdio.h> 
 
#include <stdlib.h> 
 
#include <math.h> 
 
#include "fftn.h" 
 
#include <string.h>     
 
 
 
#define mu .01 
 
#define pi 3.1415926 
 
 
 
int dims[1];     // Used to store the FFT-Size, used by fftn() 
 
double *x;       // Used to store the noise signal 
 
double *x_temp;   
 
double *d;       // Used to store the desired signal 
 
double *d_temp; 
 
double *output_real;  // Used to store the real values of the output 
 
double *output_imag;  // Used to store the imag values of the output 
 
 
 
double output1_temp_real;  // Used for real values of the output of 
subband 1 
 
double output1_temp_imag;  // Used for imag values of the output of 
subband 1  
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double output2_temp_real;  // Used for real values of the output of 
subband 2 
 
double output2_temp_imag;  // Used for imag values of the output of 
subband 2 
 
 
 
double e1_real;  // Used to store the real value of the error for 
subband 1 
 
double e1_imag;  // Used to store the imag value of the error for 
subband 1 
 
double e2_real;  // Used to store the real value of the error for 
subband 2 
 
double e2_imag;  // Used to store the imag value of the error for 
subband 2 
 
 
 
double buffer_input[16];  // Used to store the last 16 values of the 
input signal 
 
double buffer_desire[16]; // Used to store the last 16 values of the 
desired signal 
 
 
 
double W1_real[16];  // Used to store the real values of the filter 
coefficients for subband 1 
 
double W1_imag[16];  // Used to store the imag values of the filter 
coefficients for subband 1 
 
double W2_real[16];  // Used to store the real values of the filter 
coefficients for subband 2 
 
double W2_imag[16];  // Used to store the imag values of the filter 
coefficients for subband 2 
 
 
 
double fft_buffer_input_real[16];   // Used to store the real values 
from the fft of the input buffer 
 
double fft_buffer_input_imag[16];   // Used to store the imag values 
from the fft of the input buffer 
 
 
 
double fft_buffer_desire_real[16];   // Used to store the real values 
from the fft of the desire buffer 
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double fft_buffer_desire_imag[16];   // Used to store the imag values 
from the fft of the desire buffer 
 
 
 
double input1_real[16];  // Used to store the real values of subband 1 
for the input 
 
double input1_imag[16];  // Used to store the imag values of subband 1 
for the input 
 
double input2_real[16];  // Used to store the real values of subband 2 
for the input 
 
double input2_imag[16];  // Used to store the imag values of subband 2 
for the input 
 
 
 
double desire1_real[16]; // Used to store the real values of subband 1 
for the desire 
 
double desire1_imag[16]; // Used to store the imag values of subband 1 
for the desire 
 
double desire2_real[16]; // Used to store the real values of subband 2 
for the desire 
 
 
double desire2_imag[16]; // Used to store the imag values of subband 2 
for the desire 
 
 
 
double ifft_input1_real[16]; // Used to store real values of the ifft 
of subband 1 for the input 
 
double ifft_input1_imag[16]; // Used to store imag values of the ifft 
of subband 1 for the input 
 
double ifft_input2_real[16]; // Used to store real values of the ifft 
of subband 2 for the input 
 
double ifft_input2_imag[16]; // Used to store imag values of the ifft 
of subband 2 for the input 
 
 
 
double ifft_d1_real[16]; // Used to store real values of the ifft of 
subband 1 for the desire 
 
double ifft_d1_imag[16]; // Used to store real values of the ifft of 
subband 1 for the desire 
 
double ifft_d2_real[16]; // Used to store real values of the ifft of 
subband 1 for the desire 
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double ifft_d2_imag[16]; // Used to store real values of the ifft of 
subband 1 for the desire 
 
 
 
 
 
 
 
 
int main(int argc, char ** argv) 
 
{ 
 
 int i, j, ret; 
 
 long size1, size2; 
 
 int num, temp; 
 
 double amplitude; 
 
 int sampling; 
 
 FILE *out; 
 
 FILE *noise; 
 
 FILE *desire; 
 
 FILE *dfile; 
 
 FILE *nfile; 
 
 
 // Open up files in which the outputs will be written to 
 
 out = fopen("output.txt", "wb"); 
 
 noise = fopen("noise.txt", "w"); 
 
 desire = fopen("desire.txt", "w"); 
 
 
 
 if (argc != 5) 
 
 { 
 
  printf("Usage: saturday  noise#  noise_amplitude  desired#  
sampling\n"); 
 
  exit(1); 
 
 } 
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 amplitude = atof(argv[2]); 
 
 sampling = atoi(argv[4]); 
 
 
 
 if (strcmp(argv[1],"noise1") == 0) 
 
  nfile = fopen("noise1.snd", "rb"); 
 
 else if (strcmp(argv[1], "noise2") == 0) 
 
  nfile = fopen("noise2.snd", "rb"); 
 
 else if (strcmp(argv[1], "noise3") == 0) 
 
  nfile = fopen("noise3.snd", "rb"); 
 
 else 
 
  nfile = fopen("noise1.snd", "rb"); 
 
 
 
 fseek(nfile, 0, SEEK_END); 
 
 size1 = ftell(nfile);   // Figure out the number of elements in 
the noise file 
 
 rewind(nfile); 
 
 
        // Read in the noise file into x_temp 
 
 x_temp = (double *) malloc (size1); 
 
 fread(x_temp, 8, size1/8, nfile); 
 
 fclose(nfile); 
 
 
 
 
 
 if (strcmp(argv[3],"desire1") == 0) 
 
  dfile = fopen("desire1.snd", "rb"); 
 
 else if (strcmp(argv[3], "desire2") == 0) 
 
  dfile = fopen("desire2.snd", "rb"); 
 
 else if (strcmp(argv[3], "desire3") == 0) 
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  dfile = fopen("desire3.snd", "rb"); 
 
 else 
 
  dfile = fopen("desire1.snd", "rb"); 
 
 
 
 fseek(dfile, 0, SEEK_END); 
 
 size2 = ftell(dfile); 
 
 rewind(dfile); 
 
 
 
 d_temp = (double *) malloc (size2); 
 
 fread(d_temp, 8, size2/8, dfile); 
 
 fclose(dfile); 
 
 
 
 if (size1 < size2) 
 
  num = (int)size1/(8*sampling); 
 
 else 
 
  num = (int)size2/(8*sampling); 
 
 
        // Initialize the output arrays 
 
 output_real = (double *) malloc (num*sizeof(double)); 
 
 output_imag = (double *) malloc (num*sizeof(double)); 
 
 
 
        // The FFT Size        
 dims[0] = 16; 
 
 printf("d=%d  x=%d\n", size1/8, size2/8); 
 
 
        // Create the actual noise input 
 
 x = (double *) malloc (num*sizeof(double)); 
 
 j = 0; 
 
 for (i = 0; i < num; i=i+sampling) 
 
 { 
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  x[j] = amplitude*x_temp[i] + d_temp[i]; 
 
  j++; 
 
 } 
 
 free(x_temp); 
 
 printf("Done Creating Noise\n"); 
 
 
        // Create the actual desired input 
 
 d = (double *) malloc (num*sizeof(double)); 
 
 j = 0; 
 
 for (i = 0; i < num; i=i+sampling) 
 
 { 
 
  d[j] = d_temp[i]; 
 
  j++; 
 
 } 
 
 free(d_temp); 
 
 printf("Done Creating Desire\n"); 
 
  
 
 
        // Initialize all the coefficients and buffers to 0 
 
 for( i = 0 ; i < 16 ; i++) 
 
 { 
 
  buffer_input[i] = 0.0; 
 
  buffer_desire[i] = 0.0; 
 
  W1_real[i] = 0.0; 
 
  W1_imag[i] = 0.0; 
 
  W2_real[i] = 0.0; 
 
  W2_imag[i] = 0.0; 
 
 } 
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        // Run loop till there are no more samples left 
 
 for( i = 0 ; i < num ; i++ ) 
 
 { 
 
 
  // Store the next input and desire value into the end of 
the buffers 
  for( j = 0 ; j < 15 ; j++) 
 
  { 
 
   buffer_input[j] = buffer_input[j+1]; 
 
   buffer_desire[j] = buffer_desire[j+1]; 
 
  } 
 
  buffer_input[15] = x[i]; 
 
  buffer_desire[15] = d[i]; 
 
 
 
 
 
 
  // Find the fft of the input buffer 
 
  for (j = 0; j < 16; j++) 
 
  { 
 
   fft_buffer_input_real[j] = buffer_input[j]; 
 
   fft_buffer_input_imag[j] = 0.0; 
 
  } 
 
  ret = fftn(1, dims, fft_buffer_input_real, 
fft_buffer_input_imag, 1, 0.0); 
 
 
 
 
 
 
 
 
 
  // Split the fft values into 2 subbands, zero padding 
subband 1 at the end 
 

 32



  for (j = 0; j < 8; j++) 
 
  { 
 
   input1_real[j] = fft_buffer_input_real[j]; 
 
   input1_imag[j] = fft_buffer_input_imag[j]; 
 
   input1_real[j+8] = 0.0; 
 
   input1_imag[j+8] = 0.0; 
 
  } 
 
 
 
  // Subband 2, zero padded at the beginning 
 
  for (j = 0; j < 8; j++) 
 
  { 
 
   input2_real[j] = 0.0; 
 
   input2_imag[j] = 0.0; 
 
   input2_real[j+8] = fft_buffer_input_real[j+8]; 
 
   input2_imag[j+8] = fft_buffer_input_imag[j+8]; 
 
  } 
 
 
 
  // Take the ifft of subband 1 to get real values in time 
domain 
 
  ret = fftn(1, dims, input1_real, input1_imag, -1, 16.0); 
 
   
 
  // Take the ifft of subband 2 to get real values in time 
domain 
 
  ret = fftn(1, dims, input2_real, input2_imag, -1, 16.0); 
 
   
 
 
   
 
  // Take the fft of the buffer for desire 
 
  for (j = 0; j < 16; j++) 
 
  { 
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   fft_buffer_desire_real[j] = buffer_desire[j]; 
 
   fft_buffer_desire_imag[j] = 0.0; 
 
  } 
 
  ret = fftn(1, dims, fft_buffer_desire_real, 
fft_buffer_desire_imag, 1, 0.0); 
 
 
 
   
 
             // Split desire into 2 subbands, just like the input 
buffer 
 
  for (j = 0; j < 8; j++) 
 
  { 
 
   desire1_real[j] = fft_buffer_desire_real[j]; 
 
   desire1_imag[j] = fft_buffer_desire_imag[j]; 
 
   desire1_real[j+8] = 0.0; 
 
   desire1_imag[j+8] = 0.0; 
 
  } 
 
 
 
  for (j = 0; j < 8; j++) 
 
  { 
 
   desire2_real[j] = 0.0; 
 
   desire2_imag[j] = 0.0; 
 
   desire2_real[j+8] = fft_buffer_desire_real[j+8]; 
 
   desire2_imag[j+8] = fft_buffer_desire_imag[j+8]; 
 
  } 
 
 
 
 
 
 
 
  // Take the ifft of each band to get values in the time 
domain 
 
  ret = fftn(1, dims, desire1_real, desire1_imag, -1, 16.0); 
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  ret = fftn(1, dims, desire2_real, desire2_imag, -1, 16.0); 
 
 
 
 
  // ifft returns values that are conjugates, so you need to 
take the inverse of the imaginary values 
 
  for (j = 0; j < 16; j++) 
 
  { 
 
   desire1_imag[j] = -desire1_imag[j]; 
 
   input1_imag[j] = -input1_imag[j]; 
 
   desire2_imag[j] = -desire2_imag[j]; 
 
   input2_imag[j] = -input2_imag[j]; 
 
  } 
 
 
 
 
 
 
 
  // Calculate the output, which is sum of w(n)*i(n) 
 
  output1_temp_real = 0.0; 
 
  output1_temp_imag = 0.0; 
 
  for (j = 0; j < 16; j++) 
 
  { 
 
   output1_temp_real += (W1_real[j]*input1_real[j] + 
W1_imag[j]*input1_imag[j]); 
 
   output1_temp_imag += (W1_imag[j]*input1_real[j] - 
W1_real[j]*input1_imag[j]); 
} 
 
 
 
 
 
          // Error is equal to the last desired minus the output 
calculated above  
    e1_real = desire1_real[15] - output1_temp_real; 
 
  e1_imag = -desire1_imag[15] - output1_temp_imag; 
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  // Update the coefficients. w(n) = w(n) + 
mu*ifft_input1*conj(e1) 
  for (j = 0; j < 16; j++) 
 
  { 
 
   W1_real[j] += mu * (input1_real[j]*e1_real - 
input1_imag[j]*e1_imag); 
 
   W1_imag[j] += mu * (input1_imag[j]*e1_real + 
input1_real[j]*e1_imag); 
 
  } 
 
 
 
 
 
         // Repeat calculations for output, error, and 
coefficients for subband 2 
 
  output2_temp_real = 0.0; 
 
  output2_temp_imag = 0.0; 
 
  for (j = 0; j < 16; j++) 
 
  { 
 
   output2_temp_real += (W2_real[j]*input2_real[j] + 
W2_imag[j]*input2_imag[j]); 
 
   output2_temp_imag += (W2_imag[j]*input2_real[j] - 
W2_real[j]*input2_imag[j]); 
 
  } 
 
     
 
  e2_real = desire2_real[15] - output2_temp_real; 
 
  e2_imag = -desire2_imag[15] - output2_temp_imag; 
 
 
 
  for (j = 0; j < 16; j++) 
 
  { 
 
   W2_real[j] += mu * (input2_real[j]*e2_real - 
input2_imag[j]*e2_imag); 
 
   W2_imag[j] += mu * (input2_imag[j]*e2_real + 
input2_real[j]*e2_imag); 
 
  } 
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  // Final output is the sum of the real output for the two 
subbands 
 
  output_real[i] = output1_temp_real + output2_temp_real; 
 
  output_imag[i] = -output1_temp_imag + -output2_temp_imag; 
 
 
 
 
 } 
 
 
 // Done calculating all the outputs 
 
 printf("Done With output"); 
 
 
 // Store the outputs, the desired sound, and the input sound into 
files 
 
 for (i = 0; i < num; i++) 
 
 { 
 
  fprintf(out, "%f\n", output_real[i]); 
 
  fprintf(desire, "%f\n", d[i]); 
 
  fprintf(noise, "%f\n", x[i]); 
 
 
 
 } 
 
 fclose(out); 
 
 fclose(desire); 
 
 fclose(noise); 
 
 free(output_real); 
 
 free(output_imag); 
 
 free(x); 
 
 free(d); 
 
 return 0; 
 
} 
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5.3 Appendix C—EVM Code 
 
/* 
 * EVM to implement subband ANC 
 * Group 10, Spring 2003 
 * Prasanna Malaiyandi, David Mitchell, Samir Sahu 
 * Code is used to handle one channel of audio. Therefore, 2 EVMs 
needed to actually 
 * implement stereo solution. Only output changes for the difference 
between  
 * left channel and right channel. Assuming that audio is already split 
at source 
 * before entering EVM. 
*/ 
 
 
 
#include <stdlib.h> 
 
 
 
#include <mcbsp.h>              /* mcbsp devlib */ 
 
#include <common.h> 
 
#include <mcbspdrv.h>           /* mcbsp driver */ 
 
#include <board.h>              /* EVM library */ 
 
#include <codec.h>              /* codec library */ 
 
#include <mathf.h>              /* math library */ 
 
#include <intr.h>               /* interrupt library */ 
 
#include <linkage.h> 
 
 
 
#define fs 44100  // Sampling rate 
 
#define mu .025  // Value for the LMS algorithm 
 
#define pi 3.1415926 
 
 
 
int output;    // Output value 
 
float buffer_input1[16];  // Buffer for input subband 1 
 
float buffer_input2[16];  // Buffer for input subband 2 
 
float desire[33];  // Buffer for desire signal 
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float input[33];   // Buffer for input signal 
 
float W1[16];  // COefficients for subband 1 
 
float W2[16];  // coefficients for subband 2 
 
 
// Filter coefficients for 0-1kHz 
float filter1[33] = {0.0135, 0.0165, 0.0196, 0.0227, 0.0258, 0.0288, 
0.0317, 0.0344,  
 
      0.0370, 0.0393, 0.0414, 0.0433, 0.0448, 
0.0460, 0.0469, 0.0474, 
 
         0.0476, 0.0474, 0.0469, 0.0460, 0.0448, 
0.0433, 0.0414, 0.0393, 
 
         0.0370, 0.0344, 0.0317, 0.0288, 0.0258, 
0.0227, 0.0196, 0.0165, 
 
         0.0135}; 
 
// Filter coefficients for 1-4 kHz 
float filter2[33] = {-0.0123, -0.0040,  0.0008, -0.0010, -0.0107, -
0.0271, -0.0468, -0.0646, 
 
         -0.0748, -0.0725, -0.0553, -0.0239,  
0.0177,  0.0625,  0.1026,  0.1302, 
 
          0.1401,  0.1302,  0.1026,  0.0625,  
0.0177, -0.0239, -0.0553, -0.0725, 
 
         -0.0748, -0.0646, -0.0468, -0.0271, -
0.0107, -0.0010,  0.0008, -0.0040, 
 
         -0.0123}; 
 
// Filter coeffcients for > 4 kHz 
 
float filter3[33] = {-0.0081, -0.0176, -0.0226, -0.0209, -0.0119,  
0.0028,  0.0194,  0.0332,  
 
      0.0388,  0.0325,  0.0123, -0.0206, -
0.0619, -0.1054, -0.1436, -0.1698,  
 
      0.8209, -0.1698, -0.1436, -0.1054, -
0.0619, -0.0206,  0.0123,  0.0325,  
 
 
      0.0388,  0.0332,  0.0194,  0.0028, -
0.0119, -0.0209, -0.0226, -0.0176,  
 
     -0.0081}; 
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/************************ FUNCTIONS *****************************/ 
 
 
 
/**************************************************************** 
 
 *    Name: rcvISR 
 
 *  Inputs: none 
 
 *  Output: none 
 
 * Purpose: Interrupt vector to be called whenever a single  
 
 *  sample of data is ready to be read.  For each sample, we  
 
 *  simply store it in a buffer and increment the index into the  
 
 *  buffer.  
 
 ****************************************************************/ 
 
interrupt void rcvISR(void) {        
 
 int j;   
 
 float output_temp1, output_temp2, desire_b1, desire_b2, input_b1, 
input_b2, input_b3, error1, error2; 
 
 
 
 output_temp1 = MCBSP0_DRR; 
 
 
 
        // Shift the buffer to the left to make room for the new input 
and desire value 
 
 for (j = 0; j < 32; j++) 
 
 { 
 
  desire[j] = desire[j+1]; 
 
  input[j] = input[j+1]; 
 
 } 
 
 
 // Mask out the input and desired from the serial port register. 
Input is the top 16 bits, desired is the bottom 16 bits. Normalize to -
1 -> 1 
 input[32] = (float)((signed short int)(((MCBSP0_DRR) & 
0xffff0000) >> 16))/32768;  
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 desire[32] = (float)((signed short int)((MCBSP0_DRR) & 
0x0000ffff))/32768;   
 
 input[32] += desire[32];  // Add the noise to the input 
 
 
 
 
 
 
 
 
 // Initialize the input arrays to 0 
 
 input_b1 = 0.0; 
 
 input_b2 = 0.0; 
 
 input_b3 = 0.0; 
 
  
 // Calculate the inputs to the subbands, doing FIR filtering 
 
 for (j = 0; j < 33; j++) 
 
 { 
 
  input_b1 += filter1[j]*input[j]; 
 
  input_b2 += filter2[j]*input[j]; 
 
  input_b3 += filter3[j]*input[j]; 
 
 } 
 
  
 
 // Create room in the buffer arrays for the new inputs, then add 
them to the end 
 for( j = 0 ; j < 15 ; j++) 
 
 { 
 
  buffer_input1[j] = buffer_input1[j+1]; 
 
  buffer_input2[j] = buffer_input2[j+1]; 
 
 }   
 
 buffer_input1[15] = input_b1; 
 
 buffer_input2[15] = input_b2; 
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 // Calculate the desired for the subbands 
 desire_b1 = 0.0; 
 
 desire_b2 = 0.0; 
 
 for (j = 0; j < 33; j++) 
 
 { 
 
  desire_b1 += filter1[j]*desire[j]; 
 
  desire_b2 += filter2[j]*desire[j]; 
 
 } 
 
  
 
 // Calculate the outputs based on the coefficients times the 
input buffer 
 
 output_temp1 = 0.0; 
 
 for (j = 0; j < 16; j++) 
 
 { 
 
  output_temp1 += (W1[j]*buffer_input1[j]); 
 
 }  
 
 
 // Calculate the error based on desired minus output 
 
 error1 = desire_b1 - output_temp1; 
 
  
 
 // Update the coefficients 
 for (j = 0; j < 16; j++) 
 
 { 
 
  W1[j] += mu * (buffer_input1[j]*error1); 
 
 } 
 
 
 
 // Do the same things as above for the 2nd subband 
 
 output_temp2 = 0.0; 
 
 for (j = 0; j < 16; j++) 
 
 { 
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  output_temp2 += (W2[j]*buffer_input2[j]); 
 
 } 
 
  
 
 error2 = desire_b2 - output_temp2; 
 
  
 
 for (j = 0; j < 16; j++) 
 
 { 
 
  W2[j] += mu * (buffer_input2[j]*error2); 
 
 } 
 
  
 
 // Output is just the sum of the outputs, plus input_b3 which is 
the high frequency.  Uncomment appropriate line 
 // output = (((short 
int)((output_temp1+output_temp2+input_b3)*32768)<<16)&0xffff0000);    
 // Left Channel 
 // output = (((short 
int)((output_temp1+output_temp2+input_b3)*32768))&0x0000ffff);             
// Right Channel 
 
} 
 
 
 
                
 
/**************************************************************** 
 
 *    Name: xmitISR 
 
 *  Inputs: none 
 
 *  Output: none 
 
 * Purpose: Interrupt vector to be called whenever the serial  
 
 *  port is ready for a sample to be written.   
 ****************************************************************/                     
 
interrupt void xmitISR(void) {  
 
 
  // Write the output to the serial port register   
  MCBSP0_DXR=output;  
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} 
 
 
 
/**************************************************************** 
 
 *    Name: main 
 
 *  Inputs: none 
 
 *  Output: none 
 
 * Purpose:  
 
 ****************************************************************/ 
 
int main(void) { 
 
  Mcbsp_dev dev;                /* Serial port device */ 
 
  int i; 
 
 
 
  evm_init();                   /* Standard board initialization */ 
 
  mcbsp_drv_init();             /* Call this before using McBSP 
functions */ 
 
                              
 
  /* Open serial port */                              
 
  if (!(dev=mcbsp_open(0))) { 
 
    return(ERROR); 
 
  }   
 
  /* Configure McBSP */ 
 
  mcbsp_setup(dev);   /* See bottom of this file */                          
 
   
 
  /******************** configure CODEC **********************/ 
 
  /* EXIT_ERROR is a macro which jumps to exit_err if the function 
 
     returns an ERROR */ 
 
  EXIT_ERROR(codec_init()); 
 
  codec_change_sample_rate(fs, TRUE); 
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  EXIT_ERROR(codec_adc_control(LEFT,20.0,FALSE,MIC_SEL));     // Put 
noise on the left channel 
 
  EXIT_ERROR(codec_adc_control(RIGHT,20.0,FALSE,LINE_SEL));   // 
Desired on the right channel 
 
  /* mute (L/R)LINE input to mixer */ 
 
  EXIT_ERROR(codec_line_in_control(LEFT,MIN_AUX_LINE_GAIN,TRUE)); 
 
  EXIT_ERROR(codec_line_in_control(RIGHT,MIN_AUX_LINE_GAIN,TRUE)); 
 
  /* D/A 0.0 dB atten, do not mute DAC outputs */  
 
  EXIT_ERROR(codec_dac_control(LEFT, 0.0, FALSE)); 
 
  EXIT_ERROR(codec_dac_control(RIGHT, 0.0, FALSE)); 
 
 
 
 
 
  /**************** initialize coefficients and buffer *********/ 
 
   for( i = 0 ; i < 16 ; i++) 
 
 { 
 
  buffer_input1[i] = 0.0; 
 
  buffer_input2[i] = 0.0; 
 
  W1[i] = 1.0; 
 
  W2[i] = 1.0; 
 
 } 
 
 output = 0.0; 
 
  
 
 for ( i = 0; i < 33; i++) 
 
 { 
 
  input[i] = 0.0; 
 
  desire[i] = 0.0; 
 
 } 
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  /**************** setup interrupt routines *******************/ 
 
 
 
  intr_init();                
 
  /* Hook up serial transmit interrupt to CPU Interrupt 14 */ 
 
  /* Repeat the same process for the receive interrupt */ 
 
  intr_map(CPU_INT15,ISN_RINT0); 
 
  INTR_CLR_FLAG(CPU_INT15); 
 
  intr_hook(rcvISR,CPU_INT15); 
 
  intr_map(CPU_INT14,ISN_XINT0); 
 
  INTR_CLR_FLAG(CPU_INT14);     /* Clear any old interrupts */ 
 
  intr_hook(xmitISR,CPU_INT14); /* Hook our own xmitISR into chain for 
14 */ 
 
  /* Enable all necessary interrupts */   
 
  INTR_ENABLE(CPU_INT_NMI);     /* Non-maskable interrupt */ 
 
  INTR_ENABLE(CPU_INT15); 
 
  INTR_ENABLE(CPU_INT14);   
 
  INTR_GLOBAL_ENABLE();         /* Controls whether ANY interrupts 
function */ 
 
 
 
  /******************* Turn on the serial port ***********************/ 
 
  MCBSP_ENABLE(dev->port,MCBSP_RX|MCBSP_TX); 
 
   
 
  /* At this point, the program leaves main and enters an infinite 
 
   *  idle loop.  Interrupts continue to function */ 
 
  while(1); 
  exit_err:   
 
  return(ERROR); 
} 
 
 
 
/**************************************************************** 
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 *    Name: mcbspSetup 
 
 *  Inputs: Mcbsp_dev 
 
 *  Output: none 
 
 * Purpose: McBSP stands for Multi-Channel Buffered Serial Port.   
 
 *  It is build onto the C67 processor itself, and is how the  
 
 *  codec communicates with the processor.  This function sets  
 
 *  up the serial port for communication with the codec, and  
 
 *  should never need to be modified. 
 
 ****************************************************************/                      
 
int mcbsp_setup(Mcbsp_dev dev) { 
 
  /* Structure with all configuration parameters for serial port */ 
 
  Mcbsp_config mcbspConfig;      
 
  memset(&mcbspConfig,0,sizeof(mcbspConfig)); /* Initialize everything 
to 0 */ 
 
 
 
  mcbspConfig.loopback              = FALSE; 
 
  mcbspConfig.tx.update             = TRUE; 
 
  mcbspConfig.tx.clock_polarity     = CLKX_POL_RISING; 
 
  mcbspConfig.tx.frame_sync_polarity= FSYNC_POL_HIGH;  
 
  mcbspConfig.tx.clock_mode         = CLK_MODE_EXT; 
 
  mcbspConfig.tx.frame_sync_mode    = FSYNC_MODE_EXT; 
 
  mcbspConfig.tx.phase_mode         = SINGLE_PHASE; 
 
  mcbspConfig.tx.frame_length1      = 0; 
 
  mcbspConfig.tx.word_length1       = WORD_LENGTH_32; 
 
  mcbspConfig.tx.frame_ignore       = FRAME_IGNORE; 
 
  mcbspConfig.tx.data_delay         = DATA_DELAY0; 
 
 
 
  mcbspConfig.rx.update             = TRUE;             
 
  mcbspConfig.rx.clock_polarity     = CLKR_POL_FALLING; 
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  mcbspConfig.rx.frame_sync_polarity= FSYNC_POL_HIGH; 
 
  mcbspConfig.rx.clock_mode         = CLK_MODE_EXT; 
 
  mcbspConfig.rx.frame_sync_mode    = FSYNC_MODE_EXT; 
 
  mcbspConfig.rx.phase_mode         = SINGLE_PHASE; 
 
  mcbspConfig.rx.frame_length1      = 0; 
 
  mcbspConfig.rx.word_length1       = WORD_LENGTH_32; 
 
  mcbspConfig.rx.frame_ignore       = FRAME_IGNORE; 
 
  mcbspConfig.rx.data_delay         = DATA_DELAY0; 
 
   
 
  /* Pass entire structure to mcbsp_config, a library function which 
 
   *  sets registers according to the contents of the structure */ 
 
  if(mcbsp_config(dev,&mcbspConfig) != OK) { 
 
    return(ERROR); 
 
  }   
 
  return(OK); 
 
} 
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