
1

18-551 Final Project Report

Karaoke Coach
A pitch detection/pitch correction approach

Bryan Wang (bsw)
Seung Hyo Lee (seung)

Yedeh Ying (ypy)

2

TABLE OF CONTENTS

1.0 Introduction ……………………………………………………………………. 3

2.0 Method …………………………………………………………………………. 4

2.1 Signal Flow ……………………………………………………………. 5
2.2 Algorithms …………………………………………………………….. 5

2.2.1 Pre-Processing ………………………………………….... 5
2.2.2 Main Processing ………………………………………….. 6

2.2.2.1 Pitch Detection ………………………………… 6
2.2.2.2 Pitch Correction ………………………………. 8

2.2.3 Post Processing ………………………………………….. 9

3.0 Results and Conclusions ………………………………………………….... 10

3.1 Sinusoidal Tone ………………………………………………………. 10
3.1.1 300 Hz Sine Wave …………………………………………. 10
3.1.2 605 Hz Sine Wave …………………………………………. 11
3.1.3 200 Hz, 300 Hz 450 Hz Sine wave tones ……………….11

3.2 Piano …………………………………………………………………….12
3.3 Voice ……………………………………………………………………. 14

3.3.1 Held Note ……………………………………………………14
3.3.2 Sung Word…………………………………………………..15

4.0 Memory Paging & Profile Results …………………………………………. 19

5.0 References …………………………………………………………………….. 20

3

1.0 INTRODUCTION

As we enter into an era where people have more and more money, the

entertainment industry and lifestyle has changed dramatically over the years.

People go out and spend money frivolously on movies, games and several

other forms of entertainment. Karaoke has been one of the fastest growing

entertainment industries in this generation. Our project attempts to capture

the qualities of the karaoke as well as enhance its use.

People have been flocking to karaoke bars in more recent times. The main

reason of the large karaoke industry surge would be the want to show of their

vocals to the newest songs, and just hanging out with friends. The machines

used in the karaoke bars have expensive equipment, extensive music

collections as well as several other amenities. When we approached this

project, all of these could easily have been incorporated to home use with a

computer, DSP chip, and speakers. The music collection can be easily

downloaded off the web through mp3 sites or other forms of media. All this

would be obtained for a significantly lower price, and become affordable to

the average college student.

Not only would you be able to sing along with the songs that you download

off the internet, the main focus of our project would be to allow the user to

sing to the song of their choice but have it correct their voice so that they

would sound as close as possible to the pitch of the original singer.

4

2.0 METHOD
In order to make this project possible there are two main concepts. The

applications of pitch detection as well as pitch correction are some interesting

concepts that we desired to explore. The user would be able to select a piece

to sing to, and at the same time record their voice into a file. From that file,

we would run it through the DSP chip and have it extract the pitches of the

singers voice over a continuous sample. From the original music piece, we

would also extract the pitches of the piece from a source file perhaps

containing the singer’s voice, or main notes of the piece. Comparing the two

files with each other, every incorrect note will be flagged and corrected or

shifted to the correct pitch. The output of the project would be a corrected

voice of how the song ‘should’ have been sung, thus giving the singer a

reference on how to sing for future songs.

Further research on polyphonic pitch detection is still very difficult to do, and

hardly anyone has even had a successful algorithm that would allow us to

detect the pitches of a highly intricate music piece. The easiest answer to our

problem would be to just detect the singer’s voice. Having the singer singing

and a pitch detection algorithm running in the background, we would be able

to accurately grab the pitches of the sung piece. Then having the an actually

reference to the file where we would thus be able to compare the piece with

the actual sung pitch.

5

2.1 SIGNAL FLOW

2.2 ALGORITHMS
The two algorithms we went with for this project was to actually implement the

pitch detection using an autocorrelation window, and implementing the pitch

shifting using a simple time stretching method and then re-sampling the new

signal at the desired rate in order to give a new frequency.

2.2.1 Pre-Processing

The user first must obtain a sound file in which the format would be a

wave file. This file will be the reference file that we will be able to obtain

the pitches of the note to be sung at specific instances. A second wave

file must be obtained from the users voice of the sung piece. This file will

be the actual file that will be modified in order to have the user be able to

tell how well she/he has sung to the music. A sampling rate of 11025 Hz

was chosen since this would allow a great number of samples to be taken

and hopefully be able to keep the quality of the sung samples.

Obtain Voice from

MIC
(PC side)

Pitch Shift Voice

(EVM side)

Obtain Voice from

MIC
(PC side)

Pitch Detect Voice

(EVM side)

Compare Pitch

With Notes
(EVM side)

6

2.2.2 Main Processing
2.2.2.1 Pitch Detection

Unlike detecting the pitch of speech voice, detecting the pitch of the

playing instruments is very hard because musical instruments have an

extremely large frequency range, so the pitch detection algorithm must

be able to process a very wide bandwidth. However, detecting the

pitch of singing voice is even harder than that of instruments. It is

because singing voice fluctuates so many times even within one time

segment that it is hard to detect the ‘correct’ pitch that the singer is

trying to sing. Instruments raise the pitch at the very beginning and

then slowly fade away until the next segment of ‘attack’ follows and get

mixed with the previous segment. In other words, the sound of

instruments are very harmonic and less variant whereas the singing

voice is less harmonic and has many attacks in the same amount of

time.

There is handful of existing pitch-detecting algorithms. These

algorithms are categorized in two. The first one is spectral-domain

based algorithms like Cepstrum, Maximum Likelihood, and

Autocorrelation methods. The other one is time-domain based. We

decided to go with Autocorrelation method because it was proven to

work in some previous projects in the course. Our first attempt was to

find any prior working source or algorithm on signal processing of

autocorrelation on the Internet. After searching the website for a while,

we found out that Mississippi State University had a handful of C++

source on Autocorrelation including autocorrelation.h which was

functions for autocorrelation [1]. However, we could not port it onto our

EVM board for some unknown reason. It could have been that some

of the functions were not compatible with C compilers of EVM, but we

were not able to pin-point and resolve the problems. So rather than

tinkering around with unreliable resources, we decided to write our own

7

autocorrelation program based on the labs we did in the early part of

class.

Our pitch detection algorithm has two main parts: slicing the signal into

fixed sliding window size and then processes each window with

multiplications and summation with sliding window size of 100 and 8

KHz of sampling rate. We placed these two parts in FOR loops and

assigned our sliding window size to be 100. So for every 100 samples,

multiplied samples and then added together. We kept on moving the

windows until the end of the signal. Autocorrelation is known to be able

to detect peaks even in the noisy data so we thought this would enable

us to detect the correct pitch. For detecting peaks in the

autocorrelation, as we looped the process, we looked for a point where

the point changed from positive to negative. In order to check that the

detected peak was the ‘meaningful’ peak that we were looking for, we

also checked peaks nearby samples from the given peak at the same

time. If the given peak was lower than the peaks around it, the peak

was not counted as one of our ‘meaningful’ peaks to calculate the

fundamental frequencies. [2]

Our first attempt was to increase the window size and the sampling

rate. The window size was incremented by 100 to the size of 200, but

the detection of speech voice was not good enough. Even our

recorded instrument (piano) playing at one tone was not detected well.

Considering that the instrument has much less vibration than human

voice, we were expecting to have much better pitch detection, but the

resulted pitch detection was varied from as little as 5 Hz to over 200

Hz. After boosting up the window size to 400, and the sampling rate to

11.574 KHz, we were able to detect the pitches reasonably well. With

larger window size, the peaks in the autocorrelation were much bigger

and less while the peaks with smaller window size had many low

8

peaks – which could have caused bad pitch detection. Now the

detected pitch variance was less than 10 Hz except a few extreme

cases. However, this was not as consistent as we expected. We were

able to detect the pitches for some wave files but some wave files with

similar conditions did not give us the right pitch rating.

2.2.2.2 Pitch Correction
Our method of pitch detection was a simple way that Professor Sullivan

told us should work. It would be to stretch the sample in the time domain

and then to actually resample that sample at the new desired frequency.

So assuming that we had a ratio of ‘x’ between the frequencies, we would

time stretch the given sample to ‘x’ times the original size, and then

resample the new signal at a new rate ‘x’ times the normal sampling rate.

[3]

A very efficient method of time stretching our samples would be to use the

synchronized overlap-add method. This is very simple computationally,

and if it had been possible this algorithm would have been ideal for a real

time application. The method actually consists of shifting the beginning of

a new speech segment over the end of a preceding segment in order to

find the point of the highest cross correlation. At this point the points are

overlapped and averaged together. In this way we are able to preserve

the time-dependant pitch, magnitude and phase of the signal. The graphic

below may actually give a better representation of the algorithm than

stated in words.

9

In order to smooth the signals in between segments we used a windowing

function in order to cross fade between the two segments. This would

help to produce fewer artifacts than regular sampling techniques.

From the new stretched time sample, would we actually be able to extract

a new pitch depending on how we now resample the signal. Hopefully this

would be able to provide a robust enough algorithm to actually shift the

voice of the user up or down, with out having a problem with intelligibility

of the actually spoken words. Intelligibility meaning that the sung word still

actually sounded like the original singer’s voice and having it still be a new

pitch.

2.2.3 Post-Processing
After the signals have been pitch detected and pitch corrected, the

outputted data is put into a text file. The actual format of this text file is a

table of floats containing the frequency of the note at each sample. Since

there are From there on the PC side, we will be able to read this into a

wave file format and output the new file through the sound card.

10

3.0 RESULTS & CONCLUSIONS
In order to see if our algorithm actually worked in the real settings, we had to

test it in a sequential order. Each level of testing actually had to be passed

before we were able to proceed on to the next set of test data. For each

level, we would process signals of increasing difficulty. For example we

started off with a simple sinusoidal curve that would produce a constant tone.

From their we hoped to progress to a singer actually singing a musical piece.

3.1 SINUSOIDAL TONE
For this part of the testing, we just read in files that contained values for a

300 Hz sine wave, 605 Hz sine wave, and a succession of sine waves at

200 Hz, 300 Hz, and 450 Hz. These three test cases were needed to see

if our pitch detection actually worked on a simple signal. We expected

decent results with these signals.

3.1.1 300 Hz SINE WAVE
The detection of this signal actually was a lot better than we had

imagined. From the results of the output, we detected the sine wave

within 1 Hz of the actual signal. From that detected signal we tried to

shift the signal down to 293 Hz. Looking at those results, we were able

to see that it actually shifted the signal quite well within 2 Hz of the

desired pitch. Below is one window of the sine curve.

11

3.1.2 605 Hz SINE WAVE
This signal was to show the detection and up-shifting of a signal,

whereas the previous signal was to show how well our algorithm would

shift it down. The desired shift was to make the signal go up to a

frequency of 621 Hz. This also was quite accurate and the shifted

signal was within a range of 2 Hz of the desired pitch.

3.1.3 200 Hz, 300 Hz , and 450 SINE WAVES
This case would actually be for us to see if our pitch detection

algorithm would be able to detect a series of notes. Having this would

be the first major step in order to detect a multitude of frequencies. We

were hoping that this would actually be able to simulate a wave file in

which the singer was able to sing a multitude of different pitches and

have it corrected to the desired pitch as well.

As we had seen earlier, we were able to detect single tones very well

and shift them to whatever desired frequency with little problem. When

it came to the detection of the signal with 3 different tones the pitch

detection algorithm was just as flawless. The pitch was detected within

1 Hz of the given frequencies through out the signal. The pitch shifting

was almost as good as well. The qualitative values of the pitch that it

was shifted was actually within 2 Hz as well, but from the listening

stand point, the actual sound of the signal was a little bit clipped in

between the changing of the tones.

After all these fixing and updating, the final version of our pitch detection

algorithm was able to handle almost all the incoming wave files. Now it

detected the various sine waves within the variance of 1 Hz, and it was also

able to detect stair-step series of sine waves without a problem. With the

stair-step series of sine waves, we put together 3 sine waves with each step

12

increased the frequency 150 Hz, and the program detected each sign waves

within 1 Hz of error.

3.2 PIANO
The sample for this was actually a piano playing a few notes and recorded

as a wave file. We knew that real life signals would not be as perfect as

sine waves all mashed together, so we hoped that our algorithm would

have been robust enough to handle the mixing of pitches in between notes

of a piano. The played sampled was actually a grand piano playing two

notes at B and A. The expected frequencies for these two notes would be

at 493.9 Hz and 440 Hz respectively.

One window of piano wave

Spectrum of the piano wave

13

The detected pitches were not as close as before, but these errors could

be attributed to noise, as well as the intermixing of the different notes. For

example when the B notes was played, the A noted would be played

shortly there after and there would be a mixing of the two waves together

before the B note actually faded out. The detected pitches were within

3.02 Hz of the actual notes, which was pretty good in our opinion. When

we attempted to shift the pitch back up to the normal pitch from eh

detected values, the variance got higher, but still was within 5 Hz of the

desired frequencies. The actual output of the wave file no discernable

difference could be made from the wave files that we outputted in terms of

pitch, but that was expected since the piano should have been playing the

notes at either exactly the right note or at least near it, assuming that the

piano itself was in tune. The only noticeable thing was when we hear the

clipping in between the changing of the notes; we were unable to

determine the actual reason for this.

Pitch Detected (Hz) Pitch Detected (Hz)
pitch before shift : 510.416687 pitch after shift : 491.212891
pitch before shift : 496.125031 pitch after shift : 491.212891
pitch before shift : 493.656738 pitch after shift : 496.125031
pitch before shift : 493.656738 pitch after shift : 493.656738
pitch before shift : 491.212891 pitch after shift : 498.618103
pitch before shift : 488.793121 pitch after shift : 498.618103
pitch before shift : 491.212891 pitch after shift : 496.125031
pitch before shift : 488.793121 pitch after shift : 501.136383
pitch before shift : 493.656738 pitch after shift : 496.125031
pitch before shift : 493.656738 pitch after shift : 493.656738
pitch before shift : 493.656738 pitch after shift : 493.656738
pitch before shift : 496.125031 pitch after shift : 491.212891
pitch before shift : 491.212891 pitch after shift : 493.656738
pitch before shift : 496.125031 pitch after shift : 491.212891
pitch before shift : 369.966431 pitch after shift : 508.846161
pitch before shift : 316.810333 pitch after shift : 434.482788
pitch before shift : 459.375000 pitch after shift : 446.959473
pitch before shift : 330.750031 pitch after shift : 441.000031
pitch before shift : 443.216095 pitch after shift : 438.805969
pitch before shift : 443.216095 pitch after shift : 438.805969
pitch before shift : 443.216095 pitch after shift : 437.500000
pitch before shift : 329.104492 pitch after shift : 330.750031
pitch before shift : 441.000031 pitch after shift : 441.000031

14

Spectrum of piano wave

3.3 VOICE
For this part of the testing we were hoping to see what our algorithm

would be like if we actually tested it with a human voice. The first sample

was actually of a person singing and holding a specific note. From that we

would be able to tell if our algorithm actually worked with voice even with

all the background noise. After that we were hoping to test the algorithm

of with an actual sung piece.

3.3.1 SUNG NOTE
The test file was made by having a person sing a know note with

known frequency using a low quality microphone. We hoped that the

noise from the background/wiring would be picked up along with the

actual sung note. We had the person sing a high C note. The

corresponding frequency for this note would be at 523.3 Hz.

15

Our pitch detection algorithm detected this singer’s voice at an average

of 510 Hz. We took this to be within the reasonable range of the

desired pitch, as the variance of this detected frequency was around 4

Hz. When we applied the pitch correction of the voice, sine they were

off key slightly, it corrected it to the desired 523.3 Hz frequency with

greater accuracy at a variance of 2 Hz.

3.3.2 SUNG WORD
We had a user sing into the microphone a song that was well known.

From that we analyzed the results from a clip of that where one of the

words was analyzed with our pitch detection and shifting algorithms.

Since we had first tested our algorithm with code-generated sine wave,

we were confident that it was working properly. The results were

satisfactory given that the resulted pitch was less than 1 Hz different.

So we decided to move on with the voice. Using in-lab microphone and

soundcard, we recorded our own speech voice and saved it as wave

Pitch Detected (Hz) Pitch Detected (Hz)
pitch before shift : 511.469086 pitch after shift : 522.511841
pitch before shift : 514.119141 pitch after shift : 520.047180
pitch before shift : 511.469086 pitch after shift : 525.000000
pitch before shift : 514.119141 pitch after shift : 520.047180
pitch before shift : 511.469086 pitch after shift : 525.000000
pitch before shift : 514.119141 pitch after shift : 522.511841
pitch before shift : 516.796875 pitch after shift : 522.511841
pitch before shift : 511.469086 pitch after shift : 522.511841
pitch before shift : 511.469086 pitch after shift : 525.000000
pitch before shift : 508.846161 pitch after shift : 522.511841
pitch before shift : 508.846161 pitch after shift : 525.000000
pitch before shift : 511.469086 pitch after shift : 522.511841
pitch before shift : 508.846161 pitch after shift : 525.000000
pitch before shift : 511.469086 pitch after shift : 522.511841
pitch before shift : 511.469086 pitch after shift : 522.511841
pitch before shift : 511.469086 pitch after shift : 522.511841
pitch before shift : 511.469086 pitch after shift : 522.511841
pitch before shift : 511.469086 pitch after shift : 522.511841
pitch before shift : 508.846161 pitch after shift : 522.511841
pitch before shift : 508.846161 pitch after shift : 525.000000
pitch before shift : 511.469086 pitch after shift : 522.511841

16

file. When we tried to run the pitch detecting program with the

recorded voice, we found out that our algorithm was not able to detect

the pitch right. At first we thought that it could be caused by the

fluctuating voice even if it was simple speech voice. After trying several

times with different voice files and continuous failures of detecting

pitches (inconsistent pitch detection), we concluded that our algorithm

was not robust enough to handle speech voice.

One window of sung word

Spectrum of the sung word

The pitch detection at this point seemed to break down when there

was a syllable being pronounced through out the song. At any point

17

there was a change in the syllables of the word, the pitch detection of

that word just dropped off with large changes in frequencies and it was

not able to track it as well as it had been previously. However it

seemed as the voice stabilized, the pitch detection worked again. For

example in the word ‘Mary’, the first part of the word being pronounced

would be ‘Ma’. The pitch detection algorithm actually worked for this

part of the signal. When the user proceeded to sign the ‘ry’ part of the

word, the transition between the symbols produced a lot of garbage in

terms of pitch. But as the time went on, and the syllable ‘ry’ was held,

the pitch detection stabilized again, and a correct pitch was detected.

The pitch correction part of this algorithm was not implemented since

the pitch of the sung words could not be detected accurately enough to

give the user a accurate correction of the desired pitch.

18

Looking at this table, we can see from approximately where the

pronunciation of the first syllable of the word is being sung which is the

first 10 or so cells. As the second syllable of the word is being

pronounced the pitch detection just varies too much for any change to

be made.

Pitch Detected (Hz) Pitch Detected (Hz)
pitch before shift : 136.111115 pitch after shift : 136.111115
pitch before shift : 131.250000 pitch after shift : 131.250000
pitch before shift : 131.250000 pitch after shift : 131.250000
pitch before shift : 141.346161 pitch after shift : 141.346161
pitch before shift : 136.111115 pitch after shift : 136.111115
pitch before shift : 137.812500 pitch after shift : 137.812500
pitch before shift : 137.812500 pitch after shift : 137.812500
pitch before shift : 137.812500 pitch after shift : 137.812500
pitch before shift : 139.556961 pitch after shift : 139.556961
pitch before shift : 142.258072 pitch after shift : 142.258072
pitch before shift : 141.346161 pitch after shift : 141.346161
pitch before shift : 408.333344 pitch after shift : 214.077682
pitch before shift : 255.208344 pitch after shift : 146.026489
pitch before shift : 216.176483 pitch after shift : 416.037750
pitch before shift : 318.641632 pitch after shift : 277.358490
pitch before shift : 304.558014 pitch after shift : 258.802826
pitch before shift : 139.556961 pitch after shift : 139.556961
pitch before shift : 117.287239 pitch after shift : 117.287239
pitch before shift : 237.096786 pitch after shift : 264.071869
pitch before shift : 271.106567 pitch after shift : 243.646408
pitch before shift : 117.914444 pitch after shift : 117.914444
pitch before shift : 117.287239 pitch after shift : 117.287239
pitch before shift : 237.096786 pitch after shift : 158.633087
pitch before shift : 351.861725 pitch after shift : 266.733887
pitch before shift : 117.287239 pitch after shift : 117.287239
pitch before shift : 116.052635 pitch after shift : 116.052635
pitch before shift : 234.574478 pitch after shift : 206.718750
pitch before shift : 266.733887 pitch after shift : 260.433075

19

4.0 MEMORY & PAGING RESULTS
Originally we had though that we would have to load the entire clip of the

song into the buffer requiring a lot of memory to be transferred too and from

the DSP chip. That would also hinder the speed of the actually process since

the communication would happen on board. However we were able to keep

everything on chip since we just had the EVM communicate with the PC in

order to grab the windows of data for each pitch detection frame.

So basically our whole program for the EVM side fit onto on chip memory and

actually only occupied about 10 K. On the PC side, our code was whatever

about the same as one of the labs where we were trying to get the board to

communicate with the PC.

At the time we were also worried about having our code run really slowly. We

were auto-correlating 400 samples for indefinite lengths of songs and music.

With each song being sampled at 11025Hz, which would be a lot of windows

to be correlating not to mention the math that would have to be involved. But

once we ran it, it ran surprisingly quick and we actually didn’t worry too much

about it. Before optimization our code ran at 1,102,597 cycles for one

correlated window. This also included pitch shifting and re-detecting the new

pitch shifted window.

We then set out to do the loop unrolling and have it parallelize the

autocorrelation. When we finished doing this, we were actually able to get the

speed to improve by a little bit. The final number of cycles for our project was

724,149.

20

5.0 REFERENCES
1. Mississippi State University – Code for autocorrelation methods.

(http://www.isip.msstate.edu/projects/speech/software/tutorials/tutorial_archiv

e/c++/html/page_01.html)

2. Pitch Period Estimation Using Auto-Correlation pg 150 – 154 Digital

Processing of Speech Signals.

3. Professor Tom Sullivan, ECE Dept Carnegie Mellon University.

4. http://kt-lab.ics.nitech.ac.jp/~tokuda/SPTK/ just for learning about speech

signals, some reference code was looked at.

Some previous projects were that covered Pitch detection was slightly

different from ours, but their reports were helpful in helping us understand

exactly what had to be done for the project. We believe ours is the first to

actually try to pitch detect and Pitch shift it to a desired pitch.

