
What’s Your Sign? 
Improving Driver Safety with  

Road Sign Recognition 

  
MMiicchhaaeell  KKaayyee  ((mmhhkk@@aannddrreeww..ccmmuu..eedduu))  

AAnnuusshhaa  KKrriisshhnnaakkuummaarr  ((aannuusshhaakk@@aannddrreeww..ccmmuu..eedduu))  
LLoorriiss  SStteehhllee  ((llsstteehhllee@@aannddrreeww..ccmmuu..eedduu))  

  
  

MMaayy  66,,  22000022  

1188--555511,,  SSpprriinngg  22000022  
GGrroouupp  77,,  FFiinnaall  RReeppoorrtt  



18-551, Spring 2002 - 2 - Group 7 
 

 
TABLE OF CONTENTS 

 
 

Section Page 
1.0 Introduction 3 
   
2.0 Project Description 4 
2.1 The Big Picture 4 
2.2 Inputs and Outputs 5 
   
3.0 Potential Problems 7 
   
4.0 Prior Work 9 
4.1 Prior 18-551 Projects 9 
4.2 Methods Used in the Past 9 
4.3 Projects Implemented in a Similar Manner 10 
4.4 Available Code 10 
   
5.0 Comparison to Prior Work 11 
5.1 Morphological Filters 11 
5.2  Assumptions on the Number of Signs in an Image 12 
   
6.0 The Algorithm 13 
6.1 The Car 14 
6.2 The PC 14 
6.3 The EVM 16 

6.3.1 Extracting the Red Areas 16 
6.3.2 Morphological Filtering: Closing Operation 18 
6.3.3 Label Red Areas and Define Rectangular Windows Around Them 19 
6.3.4 Edge Detection 22 
6.3.5 Pass Semi-rectangular Mask 24 
6.3.6 Decision Based on Pseudo-Mahalanobis Distance 26 

   
7.0 Results 29 
7.1 Possible Accuracy Improvements 30 
   
8.0 Memory/Speed/Optimization 32 
8.1 Possible Speed Improvements 33 
   
9.0 Acknowledgements 34 
    
10.0 References 35 



18-551, Spring 2002 - 3 - Group 7 
 

 
INTRODUCTION 

 
 
Driving, especially on unfamiliar roads and highways places a large number of 

demands on the operator of a vehicle.  It is not uncommon for drivers to drive right past a 

road sign without realizing (or realizing too late) that they failed to notice it.  

Overlooking a road sign could have severe, even fatal consequences.   

Driver safety is a predominant concern in America and around the world.  

According to the Pennsylvania Highway Information Association, 1 out of every 34 

Pennsylvanians will be involved in an automobile accident every year [1].  The group 

was inspired by these concerns and decided to implement a road sign recognition 

algorithm to enhance driver safety.   

����



18-551, Spring 2002 - 4 - Group 7 
 

 
PROJECT DESCRIPTION 

 
  
2.1 THE BIG PICTURE 
 

The road sign recognition project is a smaller part of a much larger system.  

Recently, there has been much advancement in the on-board systems of smart vehicles.  

The particular system the group’s work will be an essential part of is the Driver Support 

System (DSS).  This system is designed to help the driver of a vehicle by monitoring the 

current traffic situation and by serving as a beneficial source of information [2].  It also 

assists the driver in avoiding potentially risky situations while on the road. 

The aim of the road sign recognition project is to recognize road signs in a picture 

of a roadside scene and help the driver of a vehicle determine the type of sign that is 

approaching.  The group assumes this picture is taken by a video camera mounted on a 

car.  The camera first takes a long-range shot of the traffic scene, and upon detection of a 

road sign, zooms in to take a close-up.   

The group’s application focuses on three types of road signs: stop signs, do not 

enter signs, and yield signs.  These signs are shown in Figures 1(a), 1(b), and 1(c), 

respectively.  These signs were chosen because overlooking one of these three signs is 

more likely to have serious consequences than overlooking other road signs, such as no 

parking, no U-turn, or divided highway signs.   

����
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(a): Stop 

 

  

(b): Do Not Enter  

 

 

(c): Yield 

 
Figure 1:  Standard American Road Signs. 

 
 
 
2.2 INPUTS AND OUTPUTS 

 
The road sign recognition process consists of a detection stage and a recognition 

stage.  The group’s algorithm extracts potential road sign regions from images of road 

scenes based on their color and size.  The group implemented the algorithm on a Texas 

Instruments TMS320C6701 (C67) evaluation module (EVM). 

The group worked with images of road scenes that were 1600x1200 pixels in size.  

The group then used the Adobe Photoshop and ImageMagick applications to resize the 

images and convert them to a different format, respectively.  The resized images were 

280x280 pixels.  They were then converted from their original JPEG format to a ppm 

format since this would be most convenient for the group to work with.  The training set, 

on which the group performed their analyses, consisted of 39 images, whereas the test 

set, on which the group tested their algorithm, consisted of 36 images.  The group 

proceeded to extract the red areas of the image (the details of which are explained in later 

sections), perform various calculations on them, and output the results. 
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Opening a Command Prompt session and calling the PC program with the name 

of the image to be analyzed was the first step in obtaining the final results.  The group 

then ran the program on the EVM side and waited for an output.  The current step that the 

algorithm was performing was displayed in the output window of the Code Composer 

Studio application while the program was running.  The final output in this window was 

the type(s) of sign(s) detected, if any, and the exact location(s) of the red area(s) in the 

image. 
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POTENTIAL PROBLEMS 

 
 
Most of the known recognition systems have been developed for highway traffic 

since this scenario is fairly simple: traffic signs are placed in visible locations, lanes are 

clearly marked, and change in curvature only very slightly, etc [3].  The situation 

becomes much more difficult when driving on urban roads.  Unlike highways, urban 

roads often do not have well-marked lanes, road signs are often very small and frequently 

obscured by trees or bushes, the environment is highly colored, etc. 

For these reasons, the group decided that all of the images in their database could 

not be considered ideal.  Considering non-ideal images also poses further difficulties.  

The group designed their algorithm as best as they could to overcome problems such as 

rotation, clutter, lighting, background noise, blur, damage etc. 

Figure 2(a) shows a yield sign from the group’s training set that is rotated.  This is 

the maximum angle of rotation that appeared in an image used by the group.  The 

algorithm detects the sign correctly even though one side is rotated at a significant angle.  

Figure 2(b) shows clutter, where the main road sign is occluded by another sign not 

relevant to the project.  Figure 2(c) shows a stop sign in a darker area.  Lighting 

conditions outdoors makes it difficult for the group to identify the correct sign because of 

the complexity of various lighting and shaded environments.  However, the algorithm did 

a good job of detecting this sign correctly.  Figure 2(d) depicts a very common situation 

the group incurred in many of the signs in their database: background noise.  The 

algorithm is tuned to detect red areas in the image of the road scene.  As seen in this 

figure, the red building directly beneath the road sign causes problems in detection.  The 

����
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yield sign is detected correctly, but the red building in the background is detected as a 

series of do not enter signs, which is incorrect.  Finally, Figure 2(e) shows blur in a sign, 

where the car was moving so fast, that the image acquired by the camera was not clear.  It 

must be noted that in all of the cases shown in Figure 2, the group’s algorithm detects the 

main sign correctly. 

 
 

 

 

 

 

 
 

(a): Rotation 
 

(b): Clutter 
 

(c): Lighting 
 

 
 

 

 

(d): Background Noise (e): Blur 
 

Figure 2:  Problems associated with sign detection. 
 

 



18-551, Spring 2002 - 9 - Group 7 
 

 
 

PRIOR WORK 
 
 
4.1 PRIOR 18-551 PROJECTS 

 
The group did not find any of the past 18-551 projects to be relevant to the road 

sign recognition project.  Therefore they had to look to other research groups’ work.  

 
4.2 METHODS USED IN THE PAST 
 
 Much of the work in this area has used various methods that the group decided 

was beyond the scope of this class.  Some attempts have been made using the color 

segmentation method to classify candidate regions.  These regions are then grouped by a 

neural network classifier [4].  Other methods have specialized functions to detect signs in 

particular settings. 

One particular group used geometric hashing to specialize in the ability to 

recognize signs in cluttered scenes [5].  Edge detection is performed, contours are 

connected and segmented into straight lines and circular arcs, and identification of these 

closed contours is completed.  Hue Saturation Value (HSV) color space has also been 

employed, where HSV coordinates are calculated from RGB values.  A pixel is defined 

as ‘red’ if its ‘hue’ lies within two thresholds and its ‘saturation’ is higher than another 

threshold.  This method is used specifically to detect signs in adverse lighting conditions 

[6].  Other groups have proposed using a bank of nonlinear filters to obtain a scale 

invariant recognition system [7].  The nonlinearity in the filter bank is able to effectively 

detect the sign for a wide range of distances.  Improvements using correlation techniques 

����
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have been made to this method to specifically account for in-plane and out-of-plane 

rotations of the road sign. 

 
4.3 PROJECTS IMPLEMENTED IN A SIMILAR MANNER 

 
The 18-551 group launched their efforts by basing their project on a very similar 

project carried out by two members of the Department of Electrical Engineering at Texas 

A&M University.  The members of this group, Leonardo Estevez and Nasser 

Kehtarnavaz, had implemented all their modules on a Texas Instruments TMSC320C40 

Digital Signal Processor [8]. 

Much of the methodology used by Estevez and Kehtarnavaz was also used by the 

18-551 group.  A foundation for the group’s algorithm was obtained using the research 

conducted by these engineers.  These methods are explained in more detail in later 

sections.  This group however had room in their algorithm for better detection and 

identification of the road sign.  It was up to the 18-551 group to decide the factors 

needing improvement. 

 
 
4.4  AVAILABLE CODE 

 
Unfortunately, the group was not able to obtain copies of previous code that could 

be used in the detection and identification stages.  Thus, the group developed all of the C 

code and MATLAB code related to the algorithm from scratch.   

The C code used for extracting the RGB vectors from the ppm-formatted imaged 

was obtained from the 18-798 class in the Department of Electrical and Computer 

Engineering at Carnegie Mellon University.  The C code used for communication 

between the PC and the EVM was obtained from Lab 3 in the 18-551 class. 
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COMPARISON TO PRIOR WORK 

 
 
 The algorithm implemented by the 18-551 group contains procedures to further 

improve the detection and identification stages.  Most importantly, morphological filters 

were used to merge red areas that should be considered as one large distinct zone.  

 

5.1 MORPHOLOGICAL FILTERS 
 
 Figure 3 shows an example of why morphological filters should be used.  Figure 

3(a) is an image of a stop sign to be detected by the algorithm.  This stop sign is obscured 

by the branches of a nearby tree.  In Figure 3(b), without the morphological filter, the 

algorithm detects a small number of red areas and does not output a result.  However, 

with the addition of a morphological filter to the group’s algorithm, the stop sign in 

Figure 3(c) is detected as one big red area and outputs the correct result. 

 
 

 
 

 

 

 

 

(a): Original image (b): No Morphological 
Filter 

(c): With Morphological 
Filter 

 
Figure 3: Differences in output obtained when using a morphological filter. 
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5.2 ASSUMPTIONS ON THE NUMBER OF SIGNS IN AN IMAGE 
 
 Another way in which the group’s algorithm differs from many other prior 

algorithms is the assumption the group makes about the number of road signs in a given 

image.  The group assumes that, as well as being able to handle only one road sign in the 

image, the algorithm is able to handle either no signs in the image, or multiple signs in 

the image. 

 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 shows an image with a stop sign 

in the foreground, a do not enter sign in the 

background, and a ‘no right turn’ sign directly 

underneath the stop sign.  As well as being able to 

determine the stop and do not enter signs correctly, 

the algorithm designed by the group detects the 

‘no right turn’ sign as a ‘no sign.’  

 
Figure 4:  Three signs in one image. 
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THE ALGORITHM 

 
  

The group worked with roadside scene images in three different environments: a 

car, a personal computer, and on the EVM.  The images that were used as inputs to the 

algorithm were taken from a car with a digital camera, converted to a processing-friendly 

size and format on a personal computer (PC), and then sent to the EVM for analysis.  A 

data flow chart is shown in Figure 5 and the details of each step are described below. 

   

Figure 5: This data flow chart shows the details of the three 
stages of the road sign recognition project. 

Resize JPEG images in 
Photoshop 

XOR every pixel in RED 
with its preceding pixel 

Perform RGB 
Differencing to account 

for color bleeding 

Perform Maxima Edge 
Detection 

Pass semi-rectangular 
mask over sufficiently 

large red areas and update 
features’ values 

Display output 

Convert JPEG images into 
ppm images with 

ImageMagick 

Extract RGB vectors with 
18-798 code 

Create a binary image 
(RED) of the red pixels 

Perform closing operation 
with morphological filter 

Label all red areas in the 
image 

Determine coordinates 
and area of each red zone 

Calculate “pseudo-
Mahalanobis” distance to 

each sign and find 
minimum distance 

PC 

Detection Stage 

Recognition Stage 

 1600x1200 
JPEG images CAR 

EVM 

HPI Transfer 
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6.1 THE CAR 

 An Olympus D510 digital camera was used to take 1600x1200 JPEG images of 

roadside scenes.  They were either taken by a member of the group who was sitting in the 

passenger seat of a car as it was being driven on a road or by a group member who was 

standing on the road where a car would normally be if it were being driven on that road.  

Thus, the images in the training and test sets are representative of the types of pictures 

that would be taken by a video camera mounted on a car, which is how the pictures 

would be acquired if this system were to be implemented in practice.  The pictures were 

taken so that the road signs in the image occupied areas ranging from 50x50 pixels to 

170x170 pixels.  According to [8], a 50x50 pixel image corresponds to a distance of 

about 50 feet if a 6mm video camera is used to take the pictures. 

 

6.2 THE PC  

 The 1600x1200 JPEG images taken by the digital camera were not conducive to 

processing on the EVM.  1600x1200 pixels were more than what was needed.   Images of 

this size would consume an unnecessarily large amount of memory and they would 

require a lot of processing time.  Also, the JPEG file format compresses the red (R), 

green (G), and blue (B) values of an 8x8 block of pixels.  This was problematic because 

the group needed access to the individual RGB values of each pixel at various points in 

the algorithm.   

 To make the digital camera’s pictures more suitable for processing on the EVM, the 

group first resized the 1600x1200 JPEG images to 280x280 JPEG images with Adobe 

Photoshop.  Figure 6 shows a few images used in this project after they had been resized 
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to 280x280 pixels.  These smaller JPEG images were then converted to ppm files with 

ImageMagick.  The ppm file format was chosen because C code already existed that 

allowed easy access to the RGB values for each pixel in the image.  This is C code that is 

used in Carnegie Mellon University’s 18-798 Image and Video Processing class.  The 

RGB values were extracted from the ppm file with the 18-798 C code running in 

Microsoft Visual C++, interleaved (i.e. …Rn-1, Gn-1, Bn-1, Rn, Gn, Bn, Rn+1, Gn+1, Bn+1…), 

and stored flat in a vector.  Flat means the RGB values for the last pixel in a given row 

are immediately followed by the RGB values for the first pixel in the next row.  After this 

vector was created for the image, it was transferred to the EVM via the host port interface 

(HPI). 

 

 

 

 

 

 

 

(a) (b) (c) 

 
Figure 6: These images of a (a) stop sign, (b) do not enter sign, and (c) yield sign were 
transferred to the EVM for processing. 
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6.3 THE EVM 

 After the image was transferred to the EVM, it was subjected to two stages of 

processing.  The first stage of processing, the detection stage, located the red areas in the 

image because the three signs of interest in this project have red as their dominant color.  

These red areas were then passed to a second stage of processing, the recognition stage, 

in which the various angles of a red area’s edges were used to determine which, if any, of 

the three signs were present in that particular red area. 

 

6.3.1 EXTRACTING THE RED AREAS 

 The first step in the detection stage of the algorithm is to extract all of the red areas 

in the image.  This is done by calculating a redness value for each pixel with the 

following equation: 

Redness = R-max(G,B)-α*|G-B|, (Eqn. 1) 

where RGB are the red, green, and blue values of the pixel of interest and α is a 

sensitivity factor that can be varied to account for pictures taken in different lighting 

conditions [8].  The authors of [8] claim that the top line of a roadside image is likely to 

correspond to the sky and can be used to determine α.  The top lines of the images used 

in this project did not always correspond to the sky so the group chose to keep α at a 

constant value of 1.  

 Eqn. 1 generates a redness value between –510 and 255 for every pixel in the 

image.  This value is then thresholded at 25 to create a binary image of the red pixels in 

the original image.  The threshold of 25 was determined by testing different values in 

MATLAB.  The group found that a threshold of 25 produced very good results, as can be 
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seen in Figure 7.  Unfortunately, if there are red objects in the image other than the road 

sign, they will be present the redness image.  Notice that parts of the red brick building in 

the background of Figure 8(a) are present in the corresponding redness image shown in 

Figure 8(b). 

 

 

 

 

(a) (b) 

 
Figure 7: The image shown in (b) is the redness image created from (a). 
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(a) (b) 

 
Figure 8: The image shown in (b) is the redness image created from (a) – notice that 
parts of red brick building are present in (b). 

 
 
6.3.2 MORPHOLOGICAL FILTERING: CLOSING OPERATION 
 
 The second step in the detection stage of the algorithm is to apply a morphological 

filter to the binary image that represents the redness of the road scene picture.  The type 

of morphological filter that the group applies, which consists of performing a dilation 

followed by an erosion, is called a closing operation.  In general, there are two reasons 

why one would apply this kind of morphological filter: fill in holes inside red areas and 

connect two adjacent regions that are separated by a thin gap. 

 The group only takes advantage of the second property of closing operations. 

Since the remaining part of the algorithm is performed on the raw redness obtained from 

the algorithm described in section 6.3.1, filling holes does not have any effect on the 

result that the group obtains, but merging the separated red areas does. 
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halves of the sign were not connected anymore, because of color bleeding effects.  

 This filter was also designed to make the overall algorithm less sensitive to 

occlusion such as when tree branches cut through the sign, as shown in Figure 3. 

 Applying another morphological filter to perform an opening operation to remove 

the background noise (little red areas that do not belong to the road sign) is not as useful 

as it may seem to be. Since the group assumes that road signs must be at least a minimum 

size in order to be detected, the algorithm will only do the recognition stage on areas 

containing at least a minimum number of 4-connected red pixels. Since morphological 

filters are quite computationally time consuming and the improvement gained by 

applying an opening operation is very small, the group decided not to apply this second 

morphological filter.  

 
6.3.3 LABEL RED AREAS AND DEFINE RECTANGULAR WINDOWS 

AROUND THEM 
 

 Once the group had applied the morphological filter to perform the closing 

operation, all red areas had to be labeled in order to be analyzed independently.  As well 

as giving each red zone a different label, this operation also counts the number of pixels 

The structuring element that the group uses is 

the 5x5 circular window depicted in Figure 9.  This 

morphological filtering was added after the group 

realized that a red area corresponding to a single road 

sign was sometimes split into two or more parts that 

were not 4-connected after the thresholding of the 

redness.  This problem mainly occurred for small do 

not enter and stop signs, where the top and bottom 

Figure 9: Shape of the 
structuring element used 
to perform the closing 
operation. 
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contained in each red area in order to measure their areas. Therefore, the group only 

analyzed red areas bigger than a given size, experimentally set to be 1% of the area of the 

image (i.e. area containing at least 784 red pixels). 

The group practically labeled each area as follows: 

1. Scan the entire image, searching for red pixels 

2. If a red pixel is found, label it as follows: 

a. If the pixel above it and the pixel on its left are not red, give the 
considered pixel a new label 

b. If the pixel above it is red, and the pixel on its left is not red, give the 
considered pixel the same label as the point above it 

c. If the pixel on its left is red, and the pixel above it is not red, give the 
considered pixel the same label as the point on its left 

d. If both of the points above it and the point on its left are red, and are 
assigned to the same label, give the considered point the same label as the 
point above it. 

e. If both the points above it and the point on its left are red, but are assigned 
to the different labels (i.e. the point that is considered connects two labeled 
areas), give the considered point the same label as the point above it. Then 
scan the image from the upper left corner to the considered point and 
change the label of points that have the same label as the point on the left 
of the considered point. 

 
The result of this labeling operation is shown in Figure 10. 
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(a) (b) 

 
Figure 10: Filtered redness (a) and labeled filtered redness (b). 

  

 Once all of the red areas were labeled, the group placed a rectangular window 

around each red area.  The entire image was scanned to detect the top, bottom, left-most 

and right-most points contained in each area to determine the coordinates and the size of 

each rectangular window.  Each rectangular window was then expanded by a few pixels, 

to make sure that the red edges were contained in it.  The result of this windowing is 

displayed in Figure 11 below. 
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(a) (b) 

 
Figure 11: The image on the right hand side (b) is the windowed version of the 
image on the left hand side (a). 
 

The recognition part of the algorithm was then run inside each window containing a red 

area bigger than the threshold. 

 

6.3.4 EDGE DETECTION 

 Detecting the edges in the redness image is a three-step process.  First, every pixel 

is XORed with the pixel to its left.  The pixels in first column of the resulting image are 

all set to 0 since they do not have pixels to their lefts.  Because a pixel is only XORed 

with the pixel to its left, horizontal edges are not detected.  Next, the XORed image is 

scanned and for every pixel that is equal to 1, RGB differencing is performed.  Two RGB 

differencing values for every pixel in the XOR image that is found to be a 1 are computed 

with the following equation: 

 Difference[p] = |R[x]-R[p]| + |G[x]-G[p]| + |B[x]-B[p]|, (Eqn. 2) 
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where p ∈  {x-1, x+1} and represents the pixel to the left or to the right of pixel x, which 

is the pixel in the XOR image that is found to be a 1.  The pixels in first column and last 

column of the resulting image are all set to 0 because they do not have pixels to their lefts 

and rights, respectively.  RGB differencing accounts for color bleeding and desaturation 

effects along the edge boundaries, which occur when the camera experiences sudden 

motion and when a light source, such as the sun, are present in the image [8].  Once the 

RGB differencing values are computed, the precise locations of edge points are 

determined with the following local maxima operator: 

IF [(Difference[x] > Difference[x-2]) AND (Difference[x] > Difference[x+2])] 
THEN Difference[x] = 1  
ELSE Difference[x] = 0 
 

The two pixel-spanning distance of the operator is designed to detect parallel edges such 

as those present along red-white border on signs and white-background borders [8].   The 

pixels in first two columns and last two columns of the resulting image are all set to 0 

because they do not have pixels two columns to their lefts and rights, respectively. 

Figure 12 shows the XOR image, RGB differencing image, and image following the local 

maxima operator for the stop sign shown in Figure 7. 
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(a) (b) (c) 

 
Figure 12: Detecting the edges in an image is a three-step process: (a) XOR, (b) 
RGB differencing, and (c) a local maxima operator. 
 

6.3.5 PASS SEMI-RECTANGULAR MASK 
 

  
  

 
 
 

 

 

 

increments all the registers (1 to 9) that are also over a pixel corresponding to an edge.  

After this mask has been passed over all pixels inside a given window, the values 

contained in each of the nine registers is normalized, so that they sum to one.  The final 

values contained in the registers are the features that the algorithm uses to decide whether 

a stop, a do not enter or a yield sign is contained in this window, or if this red area only 

contains background noise.  These features can be interpreted as probabilities of certain 

angles: 

3 4 5 6 7 

2    8 

1    9 

  C   

Figure 13: Shape of the semi- 
rectangular mask 

 The next step of the recognition stage is to 

pass a semi-rectangular mask over each labeled 

window, in order to update what will become the 

features for shape analysis.  The shape of this 

mask is shown in Figure 13.  When “C” is over a 

pixel that belongs to an edge, the program  
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• Register 5 detects vertical edges (90-degree angle). 
• Registers 2 and 8 detect 45-degree angles. 
• Registers 3 and 7 detect 60-degree angles. 
• No register corresponds to horizontal edges. This is not a problem, since the XOR 

operation also ignores these edges. 
 
Typical features’ values are depicted in Figure 14. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14: Typical features’ values for a stop sign (a), do not enter sign (b) and yield 
sign (c) 
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(b) Do Not Enter sign 
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6.3.6 DECISION BASED ON PSEUDO-MAHALANOBIS DISTANCE 
 
 
 Once the nine features had been calculated for a given red zone, a method based on 

the Mahalanobis distance was used to make the program decide whether the red zone 

contained a road sign and if it did, which one it was.  Call ‘x’ the 9-component vector 

containing the features’ values extracted from a red zone.  Call ‘mstop,’ ‘mdne,’ and ‘myield’ 

the mean values vector of the features extracted from the training sets of stop, do not 

enter, and yield signs respectively.  Call ‘Cstop,’ ‘Cdne,’ and ‘Cyield’ the covariance matrix 

of the features extracted from the training sets of stop, do not enter, and yield signs 

respectively. 

 The Mahalanobis distance of the red zone to the stop, do not enter, and yield sign 

categories are computed as follows: 

dstop = (x- mstop)
T C-1 (x- mstop) 

ddne = (x- mdne)
T C-1 (x- mdne) 

dyield = (x- myield)
T C-1 (x- myield) 

 Since there is little correlation between the values of the different features, and in 

order to avoid heavy matrix computation, the group neglected the cross correlation and 

only considered the diagonal of each of the covariance matrices.  Eqn. 3 below describes 

how the group’s “pseudo-Mahalanobis” distances were computed: 
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where, 

• mi,stop represents the mean of the ith feature over our stop sign’s training set. 
• mi,dne represents the mean of the ith feature over our do not enter sign’s training set. 
• mi,yield represents the mean of the ith feature over our yield sign’s training set. 
• σ2

i,stop represents the variance of the ith feature over our stop sign’s training set. 
• σ2

i,dne represents the variance of the ith feature over our do not enter sign’s training 
set. 

• σ2
i,yield represents the variance of the ith feature over our yield sign’s training set. 

 

 The group decided to divide the distance to the mean by the variance in order to 

give more importance to features that were “reliable”, or in other words, that had a small 

variance. 

 The group discovered that a simple minimum detector for these three distances was 

not very good, thus a multiplication step was added.  Before selecting the minimum of 

these three distances, each of them was multiplied by an experimental weight. It was 

especially difficult to detect do not enter signs. The pseudo-Mahalanobis distance for a 

red zone containing a do not enter sign to the do not enter category was often bigger than 

its distance to the stop category. That is why it was decided to multiply the distance to the 

do not enter category by 0.27. It is the only weight that is introduced – the stop and yield 

weights were set to 1.  A summary of this decision stage is depicted in Figure 15. 
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Figure 15: Diagram representing the decision stage 

 

 If the smallest distance was still bigger than a given threshold experimentally set at 

26000, the algorithm interpreted the red area as “no road sign”. Otherwise, it interpreted 

it as the sign category having the smallest weighted pseudo-Mahalanobis distance. 
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RESULTS 
 

 Results for the number of signs correctly identified in the training set are shown in 

Table I.  Table II shows the results for the test set images and Table III shows the results 

when the training and test sets are combined.  The number of false alarms, which occur 

when a non-road sign red area (e.g. a red car, a red building, etc.) is recognized as a road 

sign, are also shown in the tables.   

Table I: This table shows the results for the training set of images. 

Sign # Correct 
results Total # signs % # False alarms 

Total # red 
areas without 

a sign 
% 

Do Not Enter 8 11 72.73 1 2 50.00 
Stop 17 23 73.91 1 8 12.50 
Yield 7 7 100.00 4 5 80.00 

Total 32 41 78.05 6 15 40.00 

 

Table II: This table shows the results for the testing set of images. 

Sign # Correct 
results Total # signs % # False alarms 

Total # red 
areas without 

a sign 
% 

Do Not Enter 7 10 70.00 1 2 50.00 
Stop 7 10 70.00 2 4 50.00 
Yield 2 8 25.00 0 0 X 

Total 16 28 57.14 3 6 50.00 

 

Table III: This table shows the combined results for the training and testing sets of images. 

Sign # Correct 
results Total # signs % # False alarms 

Total # red 
areas without 

a sign 
% 

Do Not Enter 15 21 71.43 2 4 50.00 
Stop 24 33 72.73 3 12 25.00 
Yield 9 15 60.00 4 5 80.00 

Total 48 69 69.57 9 21 42.86 

 

	���
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Before presenting an interpretation of these results and how they could possibly be 

improved, it seems worthwhile to compare the results of this project with those obtained 

by [8].  [8] claims to correctly identify 50% of all stop signs, 37% of all yield signs, and 

94% of all do not enter signs.  As Table III shows, this project achieved better results for 

stop and do not enter signs.  The do not enter results for this project were not as good as 

[8], but correctly identifying 71.43% is not too bad.  The fact that this project’s results, 

for the most part, are better than [8]’s is even more impressive when you consider the 

images used in the two projects.  [8] never describes the images used in their project, but 

all of the images shown in their report are straight on shots of one sign with no other red 

objects in the image.  The images in the project presented here contain red objects other 

than the sign, signs at various angles, and partially occluded signs.  If this project had 

used ideal images, the algorithm may have produced even better results.  It should be 

noted that this group’s results are better than [8]’s results, so the additions that the 18-551 

group made to their algorithm were indeed successful. 

 

7.1 POSSIBLE ACCURACY IMPROVEMENTS 
 
 As described in section 7.0, the results for the testing set are not outstanding, 

especially for yield signs.  There is a very simple explanation: half of the yield sign 

pictures that were used in our training set were rotated by an angle slightly bigger than 

the maximum in-plane rotation angle that the algorithm could handle, which is around 

±10 degrees. An angle bigger than that causes the wrong register to be incremented when 

the semi-rectangular mask is passed over the red zone. 
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 Since the edges of a yield sign are mostly at 60 degrees, features 3 and 7 should 

have the highest values among all the features for a yield sign.  But as shown in Figure 14 

(c), the peak actually occurs for features 4 and 7.  This is what produces most of the 

misinterpretations of yield signs in the testing set; the constants (mean and variances) 

used to calculate the pseudo-Mahalanobis distances were calibrated using corrupted yield 

sign images.  A solution to solve this problem would be to use a much bigger database, 

without any signs rotated more than ±10 degrees. 

 Another smart approach would be to analyze the results obtained for small signs 

(pictures taken far away from the sign) and with big signs (pictures taken close to the 

sign), to see if they differ significantly.  It is possible that results are much better for a 

given size of a road sign than another. If this were the case, it would be worth using 

different constants (means and variances) for each size range. To pursue this idea further, 

a different decision technique could be used for each size range.  Due to time constraints, 

the group was not able to test this approach, but the program is modular enough to allow 

future groups of students implementing this idea to do so.  One could also replace the 

pseudo-Mahalanobis distance by more conventional distance calculations, such as nearest 

neighbor, kth nearest neighbors, or the rigorous Mahalanobis distance. 

 Finally, several parameters in the algorithm can be further tuned to obtain better 

results. Such parameters include the following: 

• Weights used to compute the pseudo-Mahalanobis distances 
• Size and shape of the structural element used in the closing operation 
• Minimum red area considered 
• Threshold value to create the binary redness image (to take care of color bleeding 

effect) 
• Determine a method for setting α in Eqn. 1 
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MEMORY/SPEED/OPTIMIZATION 
 

Due to the amount of memory required for the program and the images, the group 

chose to store these in external memory.  Some variables were stored in on-chip memory 

for quick access.  Table IV shows how the group allocated the EVM’s memory in this 

project. 

Table IV: This table shows how the EVM’s memory was allocated in this project. 
 

 

 

 

 

 

 

 

 To analyze the speed the program, the group ran it on eight images with the 

optimizer feature of Code Composer Studio disabled and it was found that the program 

took an average of 104 seconds to process one image.  The optimizer was then enabled 

and the program was run on six images.  When the optimizer was enabled, the program 

took an average of 42 seconds to process one image.  The program runs significantly 

faster when the optimizer is enabled (p = 0.04) because it performs up to seven operations 

in parallel at some points in the program.  Although this project is not close to real time, 

it is not too bad when one considers that some prior road sign recognition projects take up 
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to 150 seconds of processing time per image [9].  Several possibilities for improving the 

speed of this program are suggested in a later section. 

 
8.1 POSSIBLE SPEED IMPROVEMENTS 
 
 Even though the speed of this algorithm is comparable with what other research 

groups achieved [9], it still is not running in real-time, which is the goal of this kind of 

program. The driver does not care that he passed a yield sign 200 feet before the program 

warns him of the sign!  The group realized that the two slowest parts of the algorithm 

were the morphological filtering and the red zone labeling.  It turns out that the algorithm 

used for the labeling is very simple and naïve, and that its speed can be significantly 

improved. Another 18-551 project group (group #2) this semester used another algorithm 

that took only 0.2 seconds to run on their image. The labeling used in this project took 

about 100 times longer. 

 Due to time constraints, the group focused its efforts on creating an algorithm that 

performed well. Therefore, the group did not devote much attention to optimizing the 

memory allocation.  As an example, all of the data (images at different stages of the 

algorithm) were stored in external memory.  It would be possible to use paging 

techniques similar to those employed in Lab 3, in order to transfer the data to on chip 

memory, and thus make the algorithm work faster. 



18-551, Spring 2002 - 34 - Group 7 
 

 
ACKNOWLEDGEMENTS 

 
 
 The group would like to thank Professor David Casasent, Professor Tsuhan Chen, 

and the 18-551 Teaching Assistants, Matt Juhasz, Parag Patel, and David Wang for their 

help and advice.  The group would also like to thank Cha Zhang for the 18-798 Image 

and Video Processing C code that was used to extract the RGB vectors from a ppm file.

����



18-551, Spring 2002 - 35 - Group 7 
 

 

REFERENCES 
 
 
[1] American Driver & Traffic Safety Education Association.  “Safety Statistics.” 

http://adtsea.iup.edu/adtsea/resource_library/statistic_articles/safetystat.htm 
 
[2] V. Libel.  “The Road Sign Recognition System – RS2.”  

http://euler.fd.cvut.cz/research/rs2/rs2algorithm.html.  1996. 
 
[3] U. Franke, S. Gorzig, F. Lindner, D. Mehren, F. Paetzold.  “Steps Towards an 

Intelligent Vision System for Driver Assistance in Urban Traffic.”  1998 IEEE.  
pp 601 – 606.  1998. 

 
[4] P. Paclik, J. Novovicova, P. Pudil, P.Somol.  “Road Sign Classification Using the 

Laplace Kernal Classifier.”  Institute of Information Theory and Automation. 
 
[5] S. Prince, R. Bergevin.  “Road Sign Recognition Using Perpetual Grouping.”  

http://euler.fd.cvut.cz/research/rs2/files/www.gel.ulaval.ca/Prince_S.html.  1998. 
 
[6] S. Vitabile, G. Pollaccia, G. Pilato, F. Sorbello.  “Road Signs Recognition Using a 

Dynamic Pixel Aggregation Technique in the HSV Color Space.”  2001 IEEE.  pp 
572 – 577.  2001. 

 
[7] E. Perez, B. Javidi.  “Composite Filter Bank for Road Sign Recognition.”  2000 

IEEE.  pp 754 – 755. 2000. 
 
[8] L. Estevez, N. Kehtarnavaz.  “A Real-Time Histographic Approach to Road Sign 

Recognition.”  Image Analysis and Interpretation, 1996 Proceedings of the IEEE 
Southwest Symposium.  pp 95-100.  1996. 

 
[9] M. Lalonde, Y. Li.  “Road Sign Recognition.”  Collection Scientifique et 

Technique.  Centre de Recherche Informatique de Montreal.  pp. 1-29.  1995. 

�����


