

18-551, Spring 2002

Group #3, Final Report

Gender and Emotion Classification

Patrick Choi (pakyan@andrew.cmu.edu)

KaYoung Ky (kayoungk@andrew.cmu.edu)

Eric Lee (ericlee@andrew.cmu.edu)

Problem

 The recognition of emotion and gender is an important perceptual ability. In many

situations, systems require the knowledge of the emotion or the gender of the user to

provide appropriate responses. For example, a nursebot needs the information of the

emotion and gender of the patient to provide correct feedback in conversations.

 There are many applications for determining gender and emotion from facial

images. One application is that employers can use the emotion classification tool to rate the

effectiveness of employees in handling customers. Moreover, obtaining information about

gender and expression of users can help computers to respond to the users on a more

personal level. Furthermore, venders can use this information to customize their services or

product advertisement to address the mood and gender of the customers. For example, in

supermarkets, there can be LCD screen, which display appropriate advertisements, such as

chocolate for unhappy women, beer on sale for men, for each shopper walking by.

Solution

 To address the need of gender and emotion information, we will construct a vision-

based emotion and gender classifier based on neural network. We will consider three

expressions: happy (positive), neutral and sad (negative). In order to simplify the project to

be doable within the given timeframe, we assume the facial images to be classified are

already located, centered, aligned and frontal.

Algorithm

 The state of the art in gender and emotion classification makes use of different

classifiers such as neural network, Bayesian classifier, Mahalanobis, linear discrimant

analysis, nearest neighbor, K-nearest neighbor. In this project, we chose to apply neural

network to classify facial images.

Neural Network

 Neural network learning provides a robust operate to approximating real-valued

target function. In this project, the target function is a mapping of input image to a correct

category of gender and emotion. Neural network is inspired by the observation that

biological learning systems are built of complex, inter-connected webs of neurons. Neural

networks are built out of a inter-connected set of simple units, where each unit takes a

number of real-valued inputs from input to the network or outputs from other units and

produce a real-valued output. In mathematical terms, the output of a unit is the output

value of an activation function taking in a weighted sum of input values.

 In our project, we will construct a multi-layer feed-forward back-propagation

network to approximate the target function. The back propagation algorithm learns the

weights for a multi-layer network by employing gradient descent to attempt to minimize

the squared error between the output values of network and the target values for these

output values. The idea of gradient descent is search the hypotheses space of possible

weight vectors to find the weights that best fit the training examples to make the neural

network converges towards a best-fit approximation to the target function. However, if

there are multiple local minima in the error surface, then there is no guarantee that gradient

∑
=

=
n

i
ii xwfoutput

0
)(

descent will find the global minimum. Although there is no guarantee for reaching global

minimum, back-propagation algorithm provided good results in many real-world

applications. One of the possible explanations why neural network works well even it may

reach local minima is that as the dimensionality of the error surface increase as the number

of weights increase. When gradient descent reaches a local minimum with respect to one of

the weights, it is not necessarily a local minimum with respect to all weights. Therefore,

the gradient descent can move away from local minimum with respect to single weight

when there are more dimensions. In our implementation, we will apply a repeated training

approach to attempt to reduce the problem of local minima. We will initialize each network

with different random weights and train it using the same training data set. If the different

training results lead to different local minima, then we will pick the network with the best

performance over a separate data set.

In the training process, the neural network may be trained to fit the characteristics of

the training data set which are not present in the overall data. This problem is known as

overfitting. Overfitting will cause the overall accuracy to decrease even though the training

accuracy is high. To avoid the overfitting problem, we will provide the neural network a set

of validation that has null intersection with the training set. The validation set is used to

stop the training iteration once the trained weights reach a significantly higher error over

the validation set than the previous iteration. The stored weight from previous iteration will

be returned as the final network.

Principal Component Analysis

 As the size of the input image grows, the size of the neural network becomes

prohibitively large. To learn from inputs of 64 x 64 images, 4096 input neurons are needed

and thus the computation time is long, the neural network is complex and thus the memory

requirement to train the neural network may be too large for practical purpose. To deal

with this problem of linearly growing of network size with respect to the size of input

image, we need to reduce the dimensionality of the data. We will use a method called

principal component analysis. The aim is to find a set of M orthogonal vectors in the data

space that account for the data’s variance as much as possible. Then we can represent each

data sample by the projection of the data from the original N-dimensional space onto the

M-dimensional subspace spanned by the M orthogonal vectors. This process allows us to

represent each N-dimensional data by only M scalars.

 To obtain the M principal component eigenvectors, we will sort the eigenvectors

of covariance matrix with descending eigenvalues and select eigenvectors of the top M

eigenvalues. In this application, we construct three sets of principal components for the

emotion and two sets for the gender. Principal component analysis will be performed on all

the training data belongs to a target category. This will return one set of eigenfaces which

captures the common features of happy faces, one set of the neutral faces and another set

of the sad faces. The same procedure is applied to compute a set of eigenfaces for male

faces and one set for female faces.

 The image’s eigenfeatures of target, which is the projection of the input image onto

the three sets of principal component eigenvectors of facial emotion, will be fed into the

emotion classifying neural network as the representation of the input. Projection onto the

two sets of principal component eigenvectors of gender data will be fed into the gender

classifying neural network. For the PCA of the male images, female images, positive

images, neutral images, and negative images, a total of 15 eigenvectors each were chosen.

This was mainly so that around 70-80% of the variance was covered by the eigenvectors,

as shown in the graphs below.

An example of what some of the eigenfaces encode is shown below:

You can see from the eigenfaces for the negative images that the faces appear to be upset,

whereas in the positive images shown below, it is apparent that some of the eigenfaces

encode smiles.

Prior 18-551 Work and Similar Research Topics:

 The purpose of our project was to provide a system that would take in an image of

human face, and then determine the emotion and gender of the person in the image. For

the classifications of emotion and gender, we adopted different networks and datasets, even

though we used the same kind of algorithms for input size reduction and classification.

This is the only project of its kind ever attempted in this class that would test on two

separate issues under the usage of the same algorithms. The class project done in spring

2001 named “Digital photo album using EPIC” (1) involved face detection that applied

neural networks algorithm, which we used for both facial expression and gender

classifications. However, they used the Face Detection software developed by Henry

Rowley, an alumni of CMU, to deal with the face detection process. The way we did the

classifications was we actually built the networks through Matlab and then extracted the

weights in the networks to the EVM for testing. Besides, the main purpose of our project

was for facial identification and not face detection, therefore our project was significantly

different from other previous projects.

There were researches in different places on the topic of facial expression recognition,

for example, “A Neural Network Facial Expression Recognition System using

Unsupervised Local Processing” (3). The idea behind it was that a local unsupervised

processing stage was inserted within a neural network constructed to recognize facial

expressions. The stage was applied in order to reduce the dimensionality of the input data

while preserving some topological structure. We applied a concept that was similar to the

research, but our structure of the network was different and we used a much larger

database for both training and testing processes. Our neural net architecture included three

layers, and it was well-tuned so that it was suitable for both facial expression and gender

recognitions. Other than recognizing a small set of prototypic expressions, such as happy

and sad, there was a research that tried to capture the full range of facial expression by

using Facial Action Coding System (FACS) (4). The Facial Action Coding System

(FACS) was a human-observer-based system designed to detect subtle changes in facial

features. Viewing videotaped facial behavior in slow motion, trained observers could

manually FACS code all possible facial displays, which were referred to as action units

(AU). However, compared to the many possibilities of facial displays, we limited our

classification to three basic emotions, which were happy, neutral and sad.

Our Databases:

One important part of this project was to carefully select the images for our databases.

First of all, our databases should be large enough that would give statistically significant

training and testing results. Besides, since we proposed to have three sets of data, which

were training images, testing images and validation images, we had to have a large amount

of images in order to provide a reasonable amount for each set of data. We decided to use

126 images for testing, 51 images for validation, and 252 images for training, and each of

the images was randomly chosen from the pool of databases we got.

 We collected the databases from different resources. One of the large ones was

called the Postech Faces ’01 Database. It had a total of 309 images, which included 103

subjects, where 53 of them are male and 50 of them are female. For each of the subjects

there were different expressions. Originally, the images were with dimensions of

1280x960 pixels and were not cropped to our desired size, 64x64 pixels, and they were 24

bits full-colored images as well.

Sample images of Postech Faces Database

The second database we had was the PICS(Stirling) Database, and it had a total of 68

images, where each of the 34 subjects had 2 expressions. The images were not cropped,

even though they were in grayscale. One of the biggest problem we found within this

database was that it only had two emotions associated with each subject, and those two

emotions were not all different either, for example some subjects had two expressions of

being happy or normal. Due to the inconsistence of expressions of each subject, we

decided not to use this database.

Samples from PICS Database

 The third database was the MBDAS Database, which contained 30 subjects and

each subject had 75 different expressions. The images were nicely cropped and were

64x64 pixels in dimensions. They were all in grayscale as well. Due to the many different

expressions that each subject possessed, we had to carefully pick within each subject the

three expressions that could mostly represent happy, neutral and sad.

Sample images of MBDAS Database

 The last one was the Yale Database. It contained 15 subjects, and each subject

displayed 4 different expressions. All the images in it were not cropped and were 320x283

pixels in dimensions. However, they were all in grayscale.

Samples from Yale Database

 As a result of the large number of subjects we got from the databases, we could

avoid doing cross-validation. Besides, we could retrieve better weights for neural network

with large amount of training data, and also we would be able to provide a larger test set

for showing the desired accuracy.

 We standardized all our data images to 64x64 pixels in dimensions and also to

grayscale. Also, we tried our best effort to manually crop the images to just capture the

frontal faces of the subjects, and make sure they were all center-aligned. Creating the

databases was time-consuming, since we basically handled each image manually to

guarantee that it would fulfill the requirement for training and testing.

Implementation and Flow Diagram:

 The development of both gender and facial expressions recognition systems

involved implementations on PC and EVM. On the PC side, we would feed in raw image

data to the EVM. But before we could do that, we first preprocessed the data by PCA to

reduce its dimensions. The raw data was then projected onto the eigenfaces that were

stored in EVM. After that, the output of projection would input to the neural network

simulator that involved matrix multiplication with that weights and biases that were stored

in EVM. The decision output of the neural network simulator would then send back to PC

and display to the monitor. The following is the flow diagram of our implementations:

Image
Projection

onto
Eigenfaces

Neural
Network

Matrix
Multiplication

PC EVM

Output

Training and Testing

 While training the neural network, 3 different data sets were used: a training set, a

validation set, and a test set. There were a total of 429 images. Of these 429 images, 252

belonged to the training set, 51 belonged to the validation set, and 126 belonged to the test

set. These images were randomly chosen so that each set would include images from the

various databases, rather than just one.

 All of the training was done in Matlab with the Neural Network Toolbox. The

neural network object in Matlab consists of a number of sub-objects and sub-structures that

can be changed. Therefore the network structure, training algorithm, etc for the neural

network can be modified without much effort. This was one of the main reasons that it

was done on Matlab rather than with C code or the EVM.

 Although the network structure varied slightly among the three different networks

that we created, it only differed in the number of perceptrons in each layer. The input layer

is connected to a hidden layer which is then connected to an output layer. The activation

function of the hidden layer is called “tansig”. This is known as the tan-sigmoid transfer

function given by the following formula:

1
1

2
2 −

+
= − ne

tansig(n)

The activation function used in the output layer is called “poslin”. This is just a positive

linear transfer function that returns 0 if the input to it is less than or equal to 0. Otherwise,

it just returns the input value. In the network for emotion classification with 3 outputs,

there were 45 input perceptrons, 15 hidden layer perceptrons, and 3 output perceptrons

whereas the network with 2 outputs had the same structure except it only had 1 output

perceptron. The network for the gender classification had 30 input perceptrons, 15 hidden

layer perceptrons and 2 output perceptrons.

 The training algorithm we applied to the neural network required a training set and

a validation set. Furthermore, each of these data sets required their target values. The

algorithm runs until:

1) The max number of iterations is reached
2) Performance goal is reached (MSE is 0)
3) Gradient becomes to small
4) MSE of Validation set increases

The weights are only adjusted with the data from the training set. The validation set is

there to make sure that the network doesn’t become overtrained to the training data and

thus it won’t be as accurate with any other data.

 The algorithm used in updating the weights was called ‘trainlm’ in Matlab. This is

an implementation of the Levenberg-Marquardt back-propagation optimization.

Furthermore, the algorithm in Matlab requires a large deal of memory (to speed up

training). If there isn’t enough memory, speed can be sacrificed to compensate via one of

the parameters (mem_reduc).

 Since there are a lot of weights to learn and not enough training images, we rely

somewhat on the randomization of the weights when the network is initialized since

depending on where the network starts, it might not end up on the same local minimum.

The network is created, and trained until one of the conditions mentioned above occurs.

The accuracy is computed. If the network has the best accuracy seen so far, it is saved.

This process is repeated until a sufficient network is found.

 After training the network, we then simulate it with the test data to calculate its

accuracy. The following tables are the results:

Gender Training Set Validation Set Test Set
Male 93.33 % 90.00 % 90.12 %

Female 94.95 % 85.71 % 94.44 %
Total 93.98 % 88.24 % 91.85 %

2 Emotion Output Training Set Validation Set Test Set

Positive 100.00 % 76.47 % 82.22 %
Neutral 100.00 % 82.35 % 91.11 %

Negative 93.98 % 100.00 % 82.22 %
Total 98.00 % 86.27 % 85.19 %

 The network for classifying gender performed very well, getting around 90%

accuracy. It is apparent that the network with 3 outputs for the emotion worked well for

positive images, but poorly for neutral or negative images. We hypothesized that this was

due to the fact that some negative images appeared to be neutral, or sometimes a few even

appeared to be happy. This is probably due to the fact that the images are still images and

thus it may seem to be happy or neutral when taken out of context, since there is no

information as to what the face looked like before or after. The example images below are

all supposed to be negative. However, they appear don’t really seem negative. The

subjects are trying to appear annoyed/irritated/sad, but instead they seem neutral or happy.

Therefore, we went to 2 outputs for emotion, either positive or non-positive (neutral or

negative). As can be seen from the results in the previous tables, this greatly increased

performance.

3 Emotion Output Training Set Validation Set Test Set
Positive 92.77 % 76.47 % 82.22 %
Neutral 77.11 % 35.29 % 51.11 %

Negative 56.63 % 52.91 % 48.89 %
Total 75.50 % 54.94 % 60.74 %

 The results in the tables that follow include all images from the training, validation,

and test sets.

Our previous hypothesis was confirmed from the data above. The neutral images when

misclassified were misclassified as negative images about 60% of the time. The negative

images were misclassified almost half the time, mainly as neutral images. The next table

shows that the number of misclassifications go down if we combine neutral and negative

together and create a network.

In/Out Positive Neutral or Negative

Positive 133 12
Neutral or Negative 20 270

In/Out Female Male
Female 162 12
Male 9 252

Performance Gender 3 Emotions 2 Emotions
 Positive 88 %
Male 97 % Neutral 64 % Positive 93 %
Female 93 % Negative 53 % Neutral/Neg 92 %
Overall 95 % Overall 68 % Overall 93 %

Matlab Code (See commented Matlab code for more detail).

The main scripts in training the networks are go_old.m, go_new.m, go_gender.m which are

for the emotion classifier with 3 outputs, the emotion classifier with 2 outputs and the

In/Out Positive Neutral Negative
Positive 127 10 8
Neutral 21 93 31

Negative 27 41 77

gender classifier respectively. Each of the scripts basically does the same thing. The first

thing the scripts do is load the images. Then PCA is run on training images. After PCA

finishes, each of the images from the training, validation, and test set is projected onto the

eigenvectors. Target values for each of the images is created and then a network is created.

The test and validation sets are used for training and when complete, various data is saved

in Matlab format. In addition, after training is complete, the network is simulated with the

test set and statistics are outputted.

• Together, the pc_evectors.m and sortem.m files compute the PCA and returns the

requested number of eigenvectors.

• acc.m and accuracy.m compute the accuracy of the network.

• loadimg.m and loadimg_gender.m load the images for creating the emotion and

gender networks, respectively.

• myproject.m projects an image onto the eigenvectors.

• randomfiles.m randomizes the subjects so that the various data sets include subjects

from more than one database

• makeRaws.m and createRaw.m converts the database of bmp files into raw files for

the PC and EVM version.

• exportWeights.m takes the saved Matlab files generated by the main scripts and

exports everything into text files to be loaded by the PC and EVM version

• showImage.m is used to read and display the image from the raw files. This is

useful for the PC and EVM when we want to see what image we are classifying.

C Code (See commented code for more detail)

PC Only Version

The program begins with an initialization function. This function reads in the

eigenvectors that came from doing PCA on the images. It also reads in all the weights and

biases of the neural network. Then it prompts the user for input. At this point, the user can

run the classification on all the images, on a specific image, or quit. The image(s) are

projected onto the appropriate eigenvectors and then sent to a function that simulates the

behavior of a neural network. From this an output is generated. This process is repeated

for each of the three networks. After the classifications are complete, the results are

outputted to the screen and the user is prompted for input once again.

PC and EVM Version

This works very similar to the PC Only Version. The PC side of the program

initializes by reading in the eigenvectors, weights, and biases for each of the networks. It

then loops and prompts for an image to be classified or to quit. The EVM requests for the

eigenvectors, weights, and biases once. It then loops by repeatedly requesting for an image

and performing the calculations described above.

The only code that we did not write was the code for performing PCA. This code

was found at the following page: http://ai.ucsd.edu/Tutorial/matlab.html

EVM Memory Usage

In order to make the EVM run as fast as possible, everything should go on on-chip

memory. However, when this isn’t possible, as in our case, we must decide what data goes

where. The main problem for us is the PCA data. We have 45 eigenvectors used in

emotion classification and 30 eigenvectors for gender classification. Therefore, there are

(45x64x64 + 30x64x64) or 307,200 values at 4 bytes each since floats are being used.

This gives us a total of 1200 KB. Accordingly, we placed these eigenvectors on

SDRAM0. The weights and biases all fit on-chip since there weren’t too many values;

45x15+15x1+15x1+1+45x15+15x3+15x1+3x1+ 30x15+15x2+15x1+2x1=1941 values at 4

bytes each gives us 7764 bytes. We also decided to store the image that is being classified

on on-chip memory as well. This takes up 64x64x4 bytes = 16 KB. Thus, there is about 8

KB of memory left on-chip for constants and temporary data.

EVM Speed

 The main functions that would be called over and over again on the EVM after

initialization are calcGender, calcMood1 and calcMood2. The profile results for these

three functions on optimization level 3 are as follows:

 Number of Cycles
calcGender 3,404,724

calcMood1 (3 outputs) 3,398,409
calcMood2 (2 outputs) 2,277,906

We didn’t end up having enough time to optimize performance on the EVM by using the

~8 KB of space left for memory paging. However, we believe that the performance time

of our code is sufficient. There were only a few main loops in our code. One of them was

for doing the projection onto the eigenvectors. Since the eigenvectors were orthonormal,

all that was required was a dot product between the image and each eigenvector (the

images and eigenvectors were converted to column vectors). The loop ran for 1024

iterations (64x64 image = 1024 column vector). It was unrolled by a factor of 4 and ran

with 4 instructions in parallel. The limitation was only due to the availability of registers.

The only other loop for optimization was located in the code that multiplied the weights

and added the biases for the three networks. However, these loops were fairly small and

thus couldn’t be optimized as much.

Original Schedule

Week Tasks

3-4

3-11 Face Images, EVM Communication, PCA code, Matrix ops on EVM

3-18 Build Neural Network in Matlab

3-25 Oral Project Updates + Demo of PCA

4-1 Spring Break

4-8 Train and Test Neural Network for Emotion Classification

4-15 Test on DSP

4-22 If time, repeat for Gender Classification. Otherwise, Debug Time

4-29 Demo

5-6 Written Report

Due to projects and assignments from other classes, we were behind schedule in the period

after spring break. However, we did fit in gender classification into our schedule. The

original task breakup in the schedule was as follows:

Images – Eric
EVM – Kay
Matrix stuff – Kay
PCA – Patrick (and others if too difficult)
Build, Train, and Test Neural Network – All
Test on EVM – All

Reference

Databases:

MBDAS (CMU): http://amp.ece.cmu.edu/projects/FaceAuthentication

Postech: http://nova.postech.ac.kr/archives/imdb.html

PICS (Stirling): http://pics.psych.stir.ac.uk/

Yale Faces: http://cvc.yale.edu/projects/yalefaces/yalefaces.html

Neural Network Tutorials:
http://www.ida.his.se/ida/kurser/ai_ann/kursmaterial/tutorial/node1.html

http://carol.wins.uva.ml/~portegie/matlab/nnt/

Papers
(1) Rucchi Mittal, Jennifer Wong, “DIGITAL PHOTO ALBUM USING EPIC”
https://blackboard.andrew.cmu.edu/courses/1/S02-
18551/content/_43043_1/Group6.pdf

Gender Classifaction: Introduction
http://white.stanford.edu/~dicarlo/ee368/intro.html

Sun, Zehang et al. “Neural-Network-Based Gender Classification Using Genetic
Search for Eigen-Feature Selection”
http://www.cs.unr.edu/~bebis/genderIJCNN.pdf

Eigenflow Based Face Authentication Project Database
http://amp.ece.cmu.edu/projects/FaceAuthentication/download.htm

Dailey, M.N. & Cottrell, G.W. (1999), “PCA = Gabor for Expression Recognition”
http://www.cse.ucsd.edu/users/mdailey/papers/UCSD-CS-629.pdf

Y. Tian, T. Kanade, and J. Cohn (2001), “Recognizing action units for facial
expression analysis”
http://www.ri.cmu.edu/pub_files/pub2/tian_ying_li_2001_2/tian_ying_li_2001_2.pdf

(3) L. Franco, A. Treves (1998), “A Neural Network Facial Expression Recognition
System using Unsupervised Local Processing”
http://www.sissa.it/~lfranco/ipsa.pdf

(4) Lien, Kanade, Cohn, & Li, “Detection, Tracking, and Classification of Action
Units in Facial Expression”, in Journal of Robotics and Autonomous Systems
http://www-2.cs.cmu.edu/~face/Papers/RA_Journal99b.PDF

