

18-551,Spring 2002
Group 12, Final Report

MASH

Modularly Architectured Synthesizer in Hardware

Benjamin B. Lyon (bbl@andrew.cmu.edu)
Michelle Ng (moshuen@andrew.cmu.edu)
Eduardo Neto (eneto@andrew.cmu.edu)

Table Of Contents

THE PROBLEM 3

WHAT WE DID 6

PERFORMANCE ANALYSIS 20

PRIOR ART 21

OUR FINAL DEMO 21

CONCLUSION 22

TERMS AND DEFINITIONS 23

The Problem

 Two major problems exist in hardware synthesizers to date. Firstly, hardware
synthesizers are limited to a predefined, single synthesis method, filter order, and filter
set. The closest the current state of the art comes to such an implementation is the super
expensive Clavia NORD Modular1, which allows for re-routing, but limits the user to
hard-coded filter definitions. No hardware synthesizer to date (NORD included) has the
ability to alter the filter/modulator set. Secondly, when experiencing DSP overload, both
hardware (DSP based) and software (PC based) synthesizers miss notes or introduce
significant latency when converting user input to audio output. This is highly
problematic in that, for composers and musicians to get the kind of flexibility and
performance they require, they have to fill their studios with multiple racks filled with
different types of synthesizers, or purchase expensive software and cope with the latency
issues.
 Part of the reason that hardware synthesizers haven’t adopted the aforementioned
features is that implementing just one type of synthesis takes all the processing power
that older DSPs can provide. However, with faster, cheaper, and more powerful DSPs
coming out on the market, this is limitation is rapidly becoming less of an issue. While
much focus has been placed on software modular synthesizers, so that they are available
today2, “soft synths” are not appropriate for real time synthesis because of the significant
latencies involved, not to mention the instability of the underlying operating systems
which is out of the developer’s control – softsynths are simply too unstable for live use,
and is the key reason why they’re not widely adopted in the music industry for live
performances. Hence, there is still an opportunity available in the hardware synthesizer
market for the creation of a flexible “all in one” synthesizer that gracefully combines the
features of the major types of synthesizers as well as provides modularity and graceful
degradation in performance—all into one box.
 Below are displayed the basic block diagrams for the current major types of
synthesis available in hardware synthesizers today. Currently, each of the following
diagrams represents a separate piece of hardware. Our goal is to be able to
combine/mix/match the main subcomponents of each synthesis method together.

Sample Playback Synthesis (also known as Wavetable Synthesis)

This method employs the continuous playback of a previously recorded sound
sample, performing upsampling / downsampling as appropriate depending on the desired

1 http://www.clavia.se/modular.htm
2 http://www.software-technology.com/

Sample
source

Upsampling /
Downsampling

Filter Output

fundamental frequency (ie: what note is being played on a keyboard). The filter is
typically used mostly as an effect and does not play a significant role in the synthesis
aspect, as the desired sound is already in sampled form.

Examples: “Wavetable” sound cards, PCM sound modules.

FM Synthesis

Frequency modulation synthesis employs the use of a combined unit named an
operator. It consists of a sine wave generator (the carrier signal) being modulated by a
low frequency oscillator (LFO), where the frequency of this LFO is a “musically
meaningful” frequency such as 110Hz (A2 on the piano). The filters and envelopes are
applied to further modify the sound in order to synthesize instruments such as bells,
organs and certain percussion instruments. Examples: Yamaha synths developed in the
70s and 80s (DX7, TX81Z, DX100), Older sound chips used in videogames and
computer sound cards (The very popular Yamaha OPL series chips used on the sound
blaster and adlib cards, among others)

Additive/Fourier Synthesis

Stemming from the notion that any complex waveform may be generated by the
addition of simple sine waves, additive synthesis employs the usage of many sine wave
generators simultaneously (upwards of 100 in certain cases), each with a different
amplitude and frequency in order to synthesize the harmonic components of a complex
signal. Given the sheer complexity of the circuitry needed to support so many sine
generators, synths employing this method are rare and extremely expensive. Likewise,
implementing this method of synthesis in software is very computationally intensive.
Examples: The legendary Hammond B3 organ.3

Subtractive Synthesis:

3 http://www.obsolete.com/120_years/machines/hammond/

Sine
generator
(Carrier)

Filter Output

LFO
(Modulator)

Sine

Sine

Sine

+
Output

Subtractive synthesis is the most popular type of synthesis used in vintage and
“virtual” DSP-based analog synthesizers. Whereas additive synthesizers are expensive to
build due to the sheer quantity of oscillators needed, subtractive synths “cut corners” by
using less signal generators, but with a richer harmonic component than that of a clean
tone sine wave which (ideally) only has one harmonic at its fundamental frequency.
Hence, by using square and sawtooth waves for example, the number of oscillators
necessary to synthesize a complex sound is drastically reduced. However the side effect
is that there will be frequency components that are not desired – at that point filters are
used to subtract the undesired components, hence the term “subtractive” synthesis.
Examples: Moog Minimoog, Roland Jupiter 8, Seq. Circuits Prophet 5, virtually all
analog synthesizers4.

Whereas virtually all hardware synthesizers in existence employ only one of the
above methods, our flexible architecture would allow one to mix and match properties of
each synthesis methods to develop new “hybrid” synthesis methods previously
unattainable. By allowing this, the instrument would be capable of generating a wider
range of possible sounds – and this along with sound quality (ie: sampling rate, bit depth,
SNR of DAC) are the most desirable qualities of synthesizers, specially in the analog
modeling market, where musicians are not so much interested in how well a synthesizer
can emulate a real instrument as much as the wide range of sonic landscapes capable of
being produced by the synthesizer.
 The goal of our project is to combine the flexibility offered by new software
synthesizers with the real-time functionality of current hardware synthesizers. In
addition, we will add a couple “bells and whistles”, namely, analog modeling. This
synthesizer will have a modular architecture that will lend itself to the easy introduction
of new synthesis methods, filter modules, and synthesis system paths.

4 http://music.ashbysolutions.com/modsynth/generatn.html

Signal Generator Filter Output

What We Did

Introduction
While developing our system architecture, we had two main goals in mind. First

and most important, the system had to work in real time with low latency, since it was
designed with live performance in mind. In other words, as notes are being played on the
keyboard, the corresponding sound for a given configuration had to not only be
synthesized in real time, but it also had to be responsive such that once a key is pressed,
there should be no noticeable lag from that time until the sound is heard. The other goal
was that the architecture had to be modular. Any type of synthesizer could then be built
by combining basic DSP blocks together to form a specific signal path, be it say, additive
or subtractive synthesis which both require very different signal paths. The entire system
was designed and optimized from the ground up with these base requirements in mind –
what follows is a detailed description of how we achieved this goal.

Real-Time/Latency Issues

Since we were using the built-in CODEC for audio output, we first utilized the
provided code from lab1, but extended it to allow for double buffering. We quickly
realized that this was not satisfactory, since the interrupt was set to be executed every
time a sample was consumed by the CODEC. This places too much of a burden on the
CPU making any sort of advanced signal processing in real time impossible. A different
system was then devised in order to offload the cpu. The logical choice was to use DMA
for all audio transfers, which is precisely the way typical PCs output audio to sound
cards. This way one buffer block is being transferred at once, and an interrupt is only
raised when the entire block has been transferred, as opposed to a single sample. In our
case, we set our block size to 256 samples (512 bytes). This means that the CPU is
interrupted once every 256 samples as opposed to every single sample. Since there is
overhead of setting and restoring register state with each interrupt, the benefits of using
DMA become obvious. When the interrupt is raised, we toggle between buffers, such that
the audio transmission is not interrupted at any time.

Double Buffering w/ DMA Example

DMA operating on buffer 0:

 DMA
Buffer0 CODEC Output
Buffer1 EVM synthesis

DMA raises interrupt (buffer switch occurs):

Buffer0 CODEC Output

Buffer1 EVM synthesis

By using a block size of 256 samples, we immediately add 5.8ms of lantency at
44.1khz (256 / 44100). This is due to double-buffering – what is being output to the
CODEC now happened 256 samples ago. Our goal was to keep latency to under 20ms
since anything greater than that would be noticeable to the keyboard player. However the
buffering scheme is not the only source of latency – the PC side which processes the
MIDI input and communicates with the EVM also introduces latency. Hence, we
optimized the PC side code by designing a low-latency multithreaded architecture for
communicating with the EVM.

Multithreaded Architecture Overview

The control loop on the PC side communicates with the EVM whenever a control
message has been received from MIDI or the GUI. The processing time per command on
the PC side is typically well under 5ms since all the thread does is take in the data and
convert it to the evm control protocol format (explained in the next section). Profiling on
the PC side has shown latency of around 3-5ms. However, latency is introduced in the
evm side due to its own main control loop which is as follows:

while (1) {
 if (go) {
 go = 0;
 processParameters();
 computeSamples();
 }
}

MIDI
Device

MIDI
Processing
Thread

GUI
Processing
Thread

JAVA
GUI

EVM
Communication
Thread

EVM

Win32 IPC API
(interprocess
communication)

Low-level
Windows
Device Driver

EVM Control Protocol

PC Side Control Program

When an audio DMA interrupt comes in, the “go” semaphore is signaled meaning

we’re ready to process another batch of samples. The EVM then calls
processParameters() which goes through its command buffer and updates the variables of
all modules accordingly. Then it calls computeSamples() which iterates through all
instantiated modules and computes the samples for each. Whichever module is set as the
final output module will have its buffer routed to one of the 2 DMA buffers (the opposite
of the one being currently processed). Since we only process the command buffer once
per control iteration (with a period of 256 / 44100), in the worst case, the command will
have just missed the current iteration, yielding 5.8ms. On top of that, due to the double
buffering as previously explained, we introduce another 5.8ms. And given the PC side /
MIDI latency of 5ms max, we achieve a maximum latency of 5.8+5.8+5 = 16.6ms which
is well under our goal of <20 ms.

EVM Control Protocol

We have two sources of control – a MIDI device and the graphical user interface.
The MIDI device is used to play notes (from a keyboard) and to change control
parameters in real time by controlling hardware knobs. The GUI works like a hardware
knob but in software – when sliders are moved around in a given module, the
corresponding control change parameter is stored in the evm control buffer. Both the
MIDI and GUI processing threads process the input and stores it into a protected evm
control buffer which is read by the evm communication thread and written to the EVM.
The PC to EVM communication occurs over HPI. At startup, the EVM sends a 32bit
message back to the PC containing a pointer to its input buffer. The PC now knows
where to write the command data to in the EVM address space over HPI. Whenever the
PC writes commands to that buffer, it first writes a minimal header which is simply an
integer containing the number of bytes in the buffer, then the buffer data. After writing, it
signals the EVM once its done writing by using the HPI interrupt 13h. This is in order to
achieve buffer synchronization between the PC and EVM.

The evm control buffer stores commands in our “evm control protocol” – a low
overhead control protocol with the following format:

 8 bits 8 bits 8 bits 8 bits

Each control command is 32 bits (one integer) long. The upper byte contains the
module ID, which describes the type of module, such as a delay effect or a waveform
generator module. With one byte we can have up to 256 different types of modules. The
next byte determines the instance ID of that module. This allows the system to contain
multiples of a single type of module (up to 256 of each type of module). That allows the
system to have for example, 4 waveform generators going through 2 mixers, each going
through 2 delay modules, being finally mixed together with one more mixer module. The

Module ID Instance ID Parameter ID Value

third byte contains the parameter ID, which is simply the ID of a variable to be changed.
In the case of an oscillator (waveform generator) for example, ID 0 represents a note
table from 0 to 127 (mapped onto its corresponding frequency value). The final byte is
the value of the parameter given by the previous byte. For example, if we want to modify
the waveform type of the first oscillator to a square wave, the command would be:

Module ID: 2 Instance ID: 0 Parameter ID: 3 Value: 2

Module ID 2 is the ID for an oscillator (waveform generator) module. Instance ID 0
means it’s the first oscillator created. Parameter ID 3 means “waveform type” and value 2
means square wave (0 = sine, 1 = saw, 2 = square, 3 = noise).

Here’s an example table of parameter ID’s for the waveform generator module
(each module has its own parameter ID table depending on its own requirements):

ID Value meaning
0 Note value from 0 to 127, maps onto musically meaningful frequencies from 8.176

Hz to 12543.85 Hz
1 Trigger value (note on / off) 1 true 0 false (whether keyboard key is currently

pressed)
2 Amplitude value from 0 to 127, normalized to

–MAXVOLUME ÅÆMAXVOLUME (uses velocity value from keyboard presses
to implement touch sensitive velocity – the harder a key is pressed, the louder the
note sounds)

3 Waveform type (0 = sinewave, 1 = sawtooth wave, 2 = square wave, 3 = white
noise)

4 Pulse width value from 0 – 255 normalized to 0 –1 (eg: 63 = 0.5 pulsewidth) this is
similar to the “duty cycle” function of hardware waveform generators.

5 Finetune value from 0 – 255 normalized to –FINETUNECOEFF Å Æ
FINETUNECOEFF (set to +/- 0.4 by default). This allows for slight tuning and
detuning of the oscillators such as when the pitchwheel of the keyboard is modified
regardless of the note played. Example: if the note played is A4 (440Hz) and this
value is set to +0.1, the resulting freq. becomes 440Hz * 1.1 = 484Hz. The effect is
similar to the “wobbling” of “wah wah” effect of bending a guitar string while
playing the guitar.

Modular Architecture API

Our major goal besides low-latency and real time performance is that the system
should have a modular architecture such that DSP blocks could be composed together in
order to achieve any type of audio synthesis desired. We have develop a simple API to do
this programmatically, such that modules could be easily created, routed and mixed
together. The easiest way to demonstrate this, is to provide an example such as the one
below:

In the above configuration, the following calls would be made on the EVM in order to
construct the synthesizer:

initModuleMap(9);
createModule(0, OSC, 0);
createModule(1, OSC, 1);
createModule(2, OSC, 2);
createModule(3, ENVELOPE, 0);
createModule(4, MOOG, 0);
createModule(5, MOOG, 1);
createModule(6, ENVELOPE, 1);
createModule(7, MIXER, 0);
createModule(8, DELAY, 0);
routeModule(ENVELOPE, 0, 0, OSC, 0, 0);
routeModule(MOOG, 0, 0, OSC, 1, 0);
routeModule(MOOG, 1, 0, OSC, 2, 0);
routeModule(ENVELOPE, 1, 0, MOOG, 1, 0);
routeModule(MIXER, 0, 0, ENVELOPE, 0, 0);
routeModule(MIXER, 0, 1, MOOG, 0, 0);
routeModule(MIXER, 0, 2, ENVELOPE, 1, 0);
routeModule(DELAY, 0, 0, MIXER, 0, 0);
setOutput((getModulePtr(8))->routeOutput[0]);

The first call initializes the module map, and its only argument is the total number of
modules in the system. Then the module instantiations begin by calling:
createModule(mapID, moduleID, instanceID);
mapID is the global module unique identifier, module ID is the module type (above the
names are defined in module.h) and instanceID is the instance of that type.

Oscillator 0 Oscillator 1 Oscillator 2

Envelope 0 Moog Filter 1

Envelope 1

Mixer 0

Delay 0

Output

Moog Filter 0

After the modules are created they must be “connected” by assigning references to their
input and output buffers. The function is:
routeModule(in_moduleID, in_instID, input_num, out_moduleID, out_instID, output_num);
The first three parameters indicate the input module type and instance ID, and the input
“number” if the module has more than one input (such as a mixer). The next three
parameters indicate where the signal is coming from – the module type, instance ID and
output number for that module. So in the above example, to route the output of oscillator
2 into the input of moog filter 1, the following call is made:
routeModule(MOOG, 1, 0, OSC, 2, 0);

Once all modules are routed together, one module is selected as the final output module.
This is the module that will be connected to the EVM DMA audio subsystem. The
following call is used for this:
setOutput(float *out);

Where “out” points to the output buffer. In the above example:
setOutput((getModulePtr(8))->routeOutput[0]);

The buffer is acquired from module with mapID 8 (the DELAY 0 module). The
getModulePtr() function returns a handle to the module given its unique identifier. The
module structure contains an array of output buffers depending on how many outputs it
has (most of the times it’ll only have one output, but say, modules that output in stereo or
more channels will have more than one). So the above call accesses the first output
(output 0) of the delay 0 module. The buffer pointer is at: (getModulePtr(8))->routeOutput[0].

MASH Signal Flow

EVM / PC COMMS EVM / PC COMMS

MIDI Parser

MIDI Input

EVM Message
Parser

EVM Message Parser

DSP Block

GUI

Change
Parameters

Initialize Signal
Path

Audio Output Update

EVM Wait for COMMS

EVM Wait for COMMS

Example Signal Path Configurations / Module Instantiations

Configuration involving two oscillators (Usually an even and an odd harmonic generator) that are mixed after filtration, with delay
added to give some reverb. This configuration is great for making organ tones.

MM
VCO

MM
VCO

MOOG
VCF

MOOG
VCF

DELAY OUT

MM
VCO

MM
VCO

DELAY

ECHO

DELAY OUT

MM
VCO

MM
VCO

MOOG
VCF

Q CV

MOOG
VCF

DELAY OUT

A
D
S
R

Dual oscillator configuration with independently controlled delay and echo paths for each oscillator. This yields a different beat
frequency for each harmonic set. Great for analog modeling of higher order distortion effects, or creating heavy vibrato.

Dual oscillator configuration with the second oscillator modulating the resonance of the filter that takes the first oscillator as an input.
Great for making metallic sounds, such as cymbals.

Synthesis Modules

MM VCO

The Multi-Mode Voltage Controlled Oscillator (MMVCO) Produces 4 different types of
signals

� Sine
� Saw
� Square
� Noise

Different base signals are needed in audio synthesis because they contain different
harmonic content. For example, a square wave provides the fundamental frequency as
well as successive odd harmonics. We can then select which harmonics we want later via
filtration techniques.

Our first approach to generating these signals was writing a single period of the selected
wave type to the module’s output buffer and then adjusting a read pointer in order to only
send the portion of the buffer containing the sample to the CODEC.

This approach had two weaknesses. Firstly, we discovered that in order to meet the real
time deadlines, we were going to have to process many samples at once, so an algorithm
with no memory, as indicated above was simply untenable. Additionally, the size of the
data in the buffer was a direct function of the frequency of the sample, therefore the
processing load of the oscillator module and each successive module in the signal path
would vary with frequency. This was an unacceptable outcome as well.

The general solution was reached by filling the module output buffer with the selected
waveform and then using a pointer to keep track of where in the waveform the last data
point in the buffer resided. This way, the next update would start where the last one left
off. The result was continuous, non-skipping audio, while letting us arbitrarily alter the
frame size and sampling rate. This became important later when adding polyphony.

Wavetable MMO

The Wavetable Multi Mode Oscillator (WMMO) is similar to the MMVCO, except
instead of calculating values for the waveforms in real time, it generates a look-up table
on initialization and then grabs the values for the selected waveform from that look-up
table.

The advantage if the WMMO is that it requires significantly processor time. The
disadvantage lies in the inherent inaccuracies that come into play when you try to
modulate a Wavetable value.

Our Implementation adds the same basic waveforms to what our MMVCO offers, in
addition to the following:

• Inverse sine
• Triangle
• PWM square (pulse width modulated square)

Wave-shaper VCO

This was our concept of a “make your own signal” generator. Essentially, the user can
set the amplitude of the signal within each period. We provide four “poles” that let the
user do that. Just like the other oscillators, the frequency and overall amplitude are
independently adjustable as well.

Moog VCF

This filter is a digital equivalent to the Moog Voltage Controlled Filter, aka, the Moog
Ladder Filter (MVCF).

Our MVCF implementation allows the user to select the following modes:

• low-pass
• high-pass
• band-pass

The z-domain transfer function of the MVCF is the following:
• G(z) = ((p+1)(z+0.3)/1.3(z+p))^4

It should be noted that this filter is a resonator. This is part of what has made it so
popular in the audio world. Altering the Q of the filter can yield ringing and emphasis
effects at the cutoff frequency of the filter. As a matter of fact, setting the Q high enough
can result in destabilizing the filter altogether and creating an oscillator, oscillating at the
cutoff frequency. In the analog world, a reset could only be achieved by bleeding out the
charge from the capacitive and inductive elements of the circuit. In the digital world, we
just reset the filter if it’s gone unstable.

We were surprised at how well the algorithm5 we used mimics the real world MVCF.

Butterworth VCF

This is the digital equivalent to a 4 pole RC passive filter. We generate Butterworth
second order sections and then transform them from the s domain into the z domain to
arrive at our digital filter coefficients. We pretty much followed the guidelines set out at
the beginning of 18-551 as well as an algorithm we found on the web6.

5 Algorithm from http://www.musicdsp.org
6 Algorithm from http://harmonycentral.com

Our major modification of the algorithm was to separate the initialization, parameter
update, and frame calculation sections in order to minimize processor load intensity. As
is intuitively obvious, you only want to initialize each instance of the filter once, calculate
the filter coefficients only when the user has requested a change, and calculate a new
frame of samples only when the last frame has been read. Needless to say, the last of
these operations occurs with the highest duty cycle, not separating the former two from
the latter saves a lot of processing time.

This IIR filter behaves as a LPF, as long as the resonance is kept small. As the
Resonance value increases, the filter “rings” more near the cutoff frequency, causing a
band pass effect as a result of the added peaking

ADSR VCEG

The ADSR VCEG is one of the most used and fundamental modules in sound and music
synthesis. We abbreviate the term above to ADSR. It stands for “Attack Delay Sustain
Release”.

The ADSR is a time sensitive voltage controlled amplifier. The ADSR is what provides
the amplitude shaping that lets us create the following types of effects:

� Swell
� Fade
� Percussive attack
� Doppler effect

The way it works is that we break up every “note on” period into 4 distinct regimes.
• First attack
• Then decay
• Then sustain
• And lastly, release (note off)

The algorithm looks something like this:

If(in attack) output = a*input
If(in decay) output = d*input
If(in sustain) output = s*input
If(in release) output = r*input

But not exactly, because we process frame by frame instead of sample by sample –
However, that’s the idea. In reality, we have to keep track of the time that’s passed since
the note was triggered, the amplitude of the previous sample, and whether the “note off”
event has arrived. This is done in a manner similar to the way we keep track of our
sample position in the MMVCO.

Echo, Delay

The delay and echo modules delay the input signal and have built in configurable
feedback.

Delay:
Our delay module can mix the input and delayed signal into the output, as well as
feedback the output into the input. We represent the original signal and the delayed
signal as “Dry” and “Wet” respectively. Our algorithm looks like this:

 delayLineOutput = *readPtr;
 output[i] = dryLevel * input[i] + wetLevel * delayLineOutput;
 *readPtr = input[i] + feedbackGain * delayLineOutput;

The delay time and read head position can be modified by input CV's. The read head is
the place in the buffer the output sample is taken from, relative to the write head. You’ll
note that just as in the MVCF and the MMVCO, we have to know the results of the
previous sample to computer the current one. Depending on the delay time, we may have
to know the value of a sample as many as 44,100 positions back, given a maximum delay
of 1 second!

The delay module can be used as the base of a number of effects, such as phasers,
flangers and complex echoes.

If the output is fed back into the input, you get a similar effect to the echo, but you can
add cool effects by routing the signal back through a low-pass filter (for example).

Echo:

This is a generic, no frills echo where you can control just the feedback and the delay. It
is essentially a stripped down version of our delay that runs a lot faster at the cost of less
functionality.

Mixer

Our mixer is essentially a four channel adder, with scalable inputs. The output is simply
the sum of the input-channel gain product.

Out = K1*input1 + K2*input2 + K3*input3 + K4*input4

GUI

GUI Development

In order to allow users to efficiently control the various features of an audio

synthesizer, an intuitive interface is essential. Thus a well designed graphical user
interface is more important in our project than a typical signal processing project in this
class. Several factors influenced the GUI development process. First, the GUI should
have the same easy to use look and feel of current software synthesizer interfaces.

Secondly, the GUI must have a method of interacting with the underlying system C code
to pass the control parameters as input and routing of the order of the various modules.

Our GUI module is composed of various smaller modules to display each of the
control windows. RadioButtonListener and SliderListener Java classes were utilized to
detect changes in the GUI components. A desktop pane is used to place the GUI
component buttons. Upon clicking a GUI component button, an instance of the
corresponding GUI window is instantiated. We have developed seven GUI windows:
ADSR envelope, Butterworth Filter, Delay, Echo, Mixer, Moog Filter, and Wave
Generator.

We have chosen to use the applet classes in the Java language to implement our
GUI. The biggest challenge was to ensure that the graphical applet windows and controls
within them created in Java are able to pass the parameters and drive the system module
written in C. The first thought was to utilize the Java Native Interface (JNI) to have Java
programs implement various methods in native code to drive C programs. This involves
writing java program shells to create a dynamic link library file to call the equivalent C
implementation of a particular function.

The JNI Bridge Between JAVA and C

In addition, we have chosen to use Inter Process Communication (IPC) to allow

information flow between C programs and Java programs. IPC is a system that lets two or
more processes communicate with each other. The two ways to achieve IPC are shared
memory and message passing. We have utilized an IPC pipe object to communicate
between the C and Java programs via message passing. The pipe is first open in a C
program, waiting for a connection. The driver program in the GUI implementation,
MASH.java, initiates a pipe object and allows data output to be sent via the pipe. Each
GUI component consists of a moduleID, instanceID, parameterID and a value field. A
byte array is declared to obtain the various states of the sliders and radio button groups in
the GUI window. This byte array is later passed through the C program through the pipe
object to allow communication with the other modules of this project.

Performance Analysis

Above is a performance analysis summary of one of our configurations. As you
can see, we meet our real time deadline here, so the audio doesn’t skip. Altering
polyphony, module number, module type, and sampling rate all have significant impacts
on performance.

We found that through using Wavetable based oscillators, that we saved a lot of
time, however, we decided to show the worst case scenario here, to demonstrate our
ability to run a fully featured analog synthesizer emulator in real time.
 A couple words on the profiler: It’s performance was erratic at best, often
summing the processes going on in multiple functions all under one heading, and often
the wrong one. Restarting the EVM often yielded different profiler numbers. In general,
The Profiler was accurate for profiling SMALL functions, that didn’t call other functions.

 seconds 2.34E-05 TOTAL Head
Room

 seconds 1.25E-04 AVAILABLE Sample Time

 seconds 1.02E-04 TOTAL Sample
Time

 seconds 0.052005765 TOTAL Frame
Time

 cycles 7429395 TOTAL Frame Cycles

 cycles 7429395 600 computeSamples

 cycles 3848 1120 processParameters

 cycles 1991372 824 computeEnvelope

 cycles 13677 1300 computeOscSamples

 Incl. Average Code Size Areas

Prior Art

Algorithms:

18-551
There have been no projects in 551 that attempted to implement a synthesizer.
A couple of projects implement tone generators and rudimentary midi parsers.
This code was not real time compatible and therefore unusable.
N

Elsewhere
hhttttpp::////wwwwww..ffiirrssttpprr..ccoomm..aauu//ddsspp//ppiinnkk--nnooiissee//
All about noise generation
hhttttpp::////wwwwww..hhaarrmmoonnyycceennttrraall..ccoommn
Source for basic filters oscillator algorithms
Examples of MIDI parsers– nothing real time
hhttttpp::////wwwwww..mmuussiiccddsspp..oorrgg
Source for basic filters oscillators
Analog filter algorithms
Most code either “pseudo-code”, or in LISP, C++

 In general, we were able to find algorithms and java skeleton code (for the GUI).
All the C programming and optimization of these algorithms had to be done on a module-
by-module basis.

Our Final Demo

Our final demo showed off the working synthesizer and demonstrated the
following features:

• Analog synthesizer modeling
• MIDI or Oscillator INPUT with AUDIO (via CODEC) Output
• The advantages of our modular design
• Our working intuitive GUI
• Real time performance (imperceptible latency) improvement over

“softsynths”(latency greater than half a second)
• Our ability to make cool sounds as well as music

Conclusion

 MASH is a significant step beyond current hardware synthesizers. Aside from
arbitrary polyphony (only dependent on the speed of the DSP), MASH’s combination of
hardware real time capability and software based GUI ease of use platforms simply
hasn’t been done before. The closest matches are software synthesizers that, while
inexpensive and easy to use, are useless in performance environments, and $4,000+
difficult to use monophonic digital hardware synthesizers.
 One thing we did discover during this project is that to do real time audio
successfully on the EVM, one has to both double buffer as well as talk via DMA to the
CODEC. In the end, resolving these real time issues became the single greatest hurdle to
overcome in implementing MASH—and overcome it we did.

Terms and Definitions

MMVCO Multi Mode Voltage Controlled Oscillator
ADSR VCEG Attack Delay Sustain Release Voltage Controlled Envelope Generator
VCF Voltage Controlled Filter
IIRF Infinite Impulse Response Filter
Polyphony Multitimbral value
LPF Low Pass Filter
HPF High Pass Filter
BPF Band Pass Filter

Acknowledgements:
 Ed Neto – who essentially played the role of EPM for the entire project.

