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The Problem 

 Two major problems exist in hardware synthesizers to date.  Firstly, hardware 
synthesizers are limited to a predefined, single synthesis method, filter order, and filter 
set. The closest the current state of the art comes to such an implementation is the super 
expensive Clavia NORD Modular1, which allows for re-routing, but limits the user to 
hard-coded filter definitions. No hardware synthesizer to date (NORD included) has the 
ability to alter the filter/modulator set.  Secondly, when experiencing DSP overload, both 
hardware (DSP based) and software (PC based) synthesizers miss notes or introduce 
significant latency when converting user input to audio output.  This is highly 
problematic in that, for composers and musicians to get the kind of flexibility and 
performance they require, they have to fill their studios with multiple racks filled with 
different types of synthesizers, or purchase expensive software and cope with the latency 
issues. 
 Part of the reason that hardware synthesizers haven’t adopted the aforementioned 
features is that implementing just one type of synthesis takes all the processing power 
that older DSPs can provide.  However, with faster, cheaper, and more powerful DSPs 
coming out on the market, this is limitation is rapidly becoming less of an issue.  While 
much focus has been placed on software modular synthesizers, so that they are available 
today2, “soft synths” are not appropriate for real time synthesis because of the significant 
latencies involved, not to mention the instability of the underlying operating systems 
which is out of the developer’s control – softsynths are simply too unstable for live use, 
and is the key reason why they’re not widely adopted in the music industry for live 
performances.  Hence, there is still an opportunity available in the hardware synthesizer 
market for the creation of a flexible “all in one” synthesizer that gracefully combines the 
features of the major types of synthesizers as well as provides modularity and graceful 
degradation in performance—all into one box.  
 Below are displayed the basic block diagrams for the current major types of 
synthesis available in hardware synthesizers today.  Currently, each of the following 
diagrams represents a separate piece of hardware.  Our goal is to be able to 
combine/mix/match the main subcomponents of each synthesis method together. 

Sample Playback Synthesis (also known as Wavetable Synthesis) 

 

 

 

 

 

This method employs the continuous playback of a previously recorded sound 
sample, performing upsampling / downsampling as appropriate depending on the desired 
                                                 
1 http://www.clavia.se/modular.htm 
2 http://www.software-technology.com/ 
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fundamental frequency (ie: what note is being played on a keyboard). The filter is 
typically used mostly as an effect and does not play a significant role in the synthesis 
aspect, as the desired sound is already in sampled form. 
 
Examples: “Wavetable” sound cards, PCM sound modules. 

FM Synthesis 

 
 
 
 
 
 
 

Frequency modulation synthesis employs the use of a combined unit named an 
operator. It consists of a sine wave generator (the carrier signal) being modulated by a 
low frequency oscillator (LFO), where the frequency of this LFO is a “musically 
meaningful” frequency such as 110Hz (A2 on the piano). The filters and envelopes are 
applied to further modify the sound in order to synthesize instruments such as bells, 
organs and certain percussion instruments.  Examples: Yamaha synths developed in the 
70s and 80s (DX7, TX81Z, DX100), Older sound chips used in videogames and 
computer sound cards (The very popular Yamaha OPL series chips used on the sound 
blaster and adlib cards, among others) 

Additive/Fourier Synthesis 

  
 
 
  
 

 

Stemming from the notion that any complex waveform may be generated by the 
addition of simple sine waves, additive synthesis employs the usage of many sine wave 
generators simultaneously (upwards of 100 in certain cases), each with a different 
amplitude and frequency in order to synthesize the harmonic components of a complex 
signal. Given the sheer complexity of the circuitry needed to support so many sine 
generators, synths employing this method are rare and extremely expensive. Likewise, 
implementing this method of synthesis in software is very computationally intensive. 
Examples: The legendary Hammond B3 organ.3 
 

Subtractive Synthesis: 

 

                                                 
3 http://www.obsolete.com/120_years/machines/hammond/ 
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Subtractive synthesis is the most popular type of synthesis used in vintage and 
“virtual” DSP-based analog synthesizers. Whereas additive synthesizers are expensive to 
build due to the sheer quantity of oscillators needed, subtractive synths “cut corners” by 
using less signal generators, but with a richer harmonic component than that of a clean 
tone sine wave which (ideally) only has one harmonic at its fundamental frequency. 
Hence, by using square and sawtooth waves for example, the number of oscillators 
necessary to synthesize a complex sound is drastically reduced. However the side effect 
is that there will be frequency components that are not desired – at that point filters are 
used to subtract the undesired components, hence the term “subtractive” synthesis. 
Examples:  Moog Minimoog, Roland Jupiter 8, Seq. Circuits Prophet 5, virtually all 
analog synthesizers4. 

Whereas virtually all hardware synthesizers in existence employ only one of the 
above methods, our flexible architecture would allow one to mix and match properties of 
each synthesis methods to develop new “hybrid” synthesis methods previously 
unattainable.  By allowing this, the instrument would be capable of generating a wider 
range of possible sounds – and this along with sound quality (ie: sampling rate, bit depth, 
SNR of DAC) are the most desirable qualities of synthesizers, specially in the analog 
modeling market, where musicians are not so much interested in how well a synthesizer 
can emulate a real instrument as much as the wide range of sonic landscapes capable of 
being produced by the synthesizer. 
 The goal of our project is to combine the flexibility offered by new software 
synthesizers with the real-time functionality of current hardware synthesizers.  In 
addition, we will add a couple “bells and whistles”, namely, analog modeling. This 
synthesizer will have a modular architecture that will lend itself to the easy introduction 
of new synthesis methods, filter modules, and synthesis system paths.  

                                                 
4 http://music.ashbysolutions.com/modsynth/generatn.html 
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What We Did 

Introduction 
While developing our system architecture, we had two main goals in mind. First 

and most important, the system had to work in real time with low latency, since it was 
designed with live performance in mind. In other words, as notes are being played on the 
keyboard, the corresponding sound for a given configuration had to not only be 
synthesized in real time, but it also had to be responsive such that once a key is pressed, 
there should be no noticeable lag from that time until the sound is heard. The other goal 
was that the architecture had to be modular. Any type of synthesizer could then be built 
by combining basic DSP blocks together to form a specific signal path, be it say, additive 
or subtractive synthesis which both require very different signal paths. The entire system 
was designed and optimized from the ground up with these base requirements in mind – 
what follows is a detailed description of how we achieved this goal. 
 
Real-Time/Latency Issues 

Since we were using the built-in CODEC for audio output, we first utilized the 
provided code from lab1, but extended it to allow for double buffering. We quickly 
realized that this was not satisfactory, since the interrupt was set to be executed every 
time a sample was consumed by the CODEC. This places too much of a burden on the 
CPU making any sort of advanced signal processing in real time impossible. A different 
system was then devised in order to offload the cpu. The logical choice was to use DMA 
for all audio transfers, which is precisely the way typical PCs output audio to sound 
cards. This way one buffer block is being transferred at once, and an interrupt is only 
raised when the entire block has been transferred, as opposed to a single sample. In our 
case, we set our block size to 256 samples (512 bytes). This means that the CPU is 
interrupted once every 256 samples as opposed to every single sample. Since there is 
overhead of setting and restoring register state with each interrupt, the benefits of using 
DMA become obvious. When the interrupt is raised, we toggle between buffers, such that 
the audio transmission is not interrupted at any time.  
 
Double Buffering w/ DMA Example 
 
DMA operating on buffer 0: 
  
        DMA 
Buffer0  CODEC Output 
Buffer1   EVM synthesis 
 
DMA raises interrupt (buffer switch occurs): 
 
Buffer0  CODEC Output 
 



      
 

Buffer1   EVM synthesis 
 

By using a block size of 256 samples, we immediately add 5.8ms of lantency at 
44.1khz (256 / 44100). This is due to double-buffering – what is being output to the 
CODEC now happened 256 samples ago. Our goal was to keep latency to under 20ms 
since anything greater than that would be noticeable to the keyboard player. However the 
buffering scheme is not the only source of latency – the PC side which processes the 
MIDI input and communicates with the EVM also introduces latency. Hence, we 
optimized the PC side code by designing a low-latency multithreaded architecture for 
communicating with the EVM. 
 
 
Multithreaded Architecture Overview 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The control loop on the PC side communicates with the EVM whenever a control 
message has been received from MIDI or the GUI. The processing time per command on 
the PC side is typically well under 5ms since all the thread does is take in the data and 
convert it to the evm control protocol format (explained in the next section). Profiling on 
the PC side has shown latency of around 3-5ms. However, latency is introduced in the 
evm side due to its own main control loop which is as follows: 
 
while (1) { 
 if (go) { 
  go = 0; 
  processParameters(); 
  computeSamples(); 
 } 
} 
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When an audio DMA interrupt comes in, the “go” semaphore is signaled meaning 

we’re ready to process another batch of samples. The EVM then calls 
processParameters() which goes through its command buffer and updates the variables of 
all modules accordingly. Then it calls computeSamples() which iterates through all 
instantiated modules and computes the samples for each. Whichever module is set as the 
final output module will have its buffer routed to one of the 2 DMA buffers (the opposite 
of the one being currently processed). Since we only process the command buffer once 
per control iteration (with a period of 256 / 44100), in the worst case, the command will 
have just missed the current iteration, yielding 5.8ms. On top of that, due to the double 
buffering as previously explained, we introduce another 5.8ms. And given the PC side / 
MIDI latency of 5ms max, we achieve a maximum latency of 5.8+5.8+5 = 16.6ms which 
is well under our goal of <20 ms. 
 
EVM Control Protocol 
 

We have two sources of control – a MIDI device and the graphical user interface. 
The MIDI device is used to play notes (from a keyboard) and to change control 
parameters in real time by controlling hardware knobs. The GUI works like a hardware 
knob but in software – when sliders are moved around in a given module, the 
corresponding control change parameter is stored in the evm control buffer. Both the 
MIDI and GUI processing threads process the input and stores it into a protected evm 
control buffer which is read by the evm communication thread and written to the EVM. 
The PC to EVM communication occurs over HPI. At startup, the EVM sends a 32bit 
message back to the PC containing a pointer to its input buffer. The PC now knows 
where to write the command data to in the EVM address space over HPI. Whenever the 
PC writes commands to that buffer, it first writes a minimal header which is simply an 
integer containing the number of bytes in the buffer, then the buffer data. After writing, it 
signals the EVM once its done writing by using the HPI interrupt 13h. This is in order to 
achieve buffer synchronization between the PC and EVM. 
 

The evm control buffer stores commands in our “evm control protocol” – a low 
overhead control protocol with the following format: 
 
 8 bits       8 bits  8 bits        8 bits 
 
 
 
 

Each control command is 32 bits (one integer) long. The upper byte contains the 
module ID, which describes the type of module, such as a delay effect or a waveform 
generator module. With one byte we can have up to 256 different types of modules. The 
next byte determines the instance ID of that module. This allows the system to contain 
multiples of a single type of module (up to 256 of each type of module). That allows the 
system to have for example, 4 waveform generators going through 2 mixers, each going 
through 2 delay modules, being finally mixed together with one more mixer module. The 

Module ID Instance ID Parameter ID Value 



      
 

third byte contains the parameter ID, which is simply the ID of a variable to be changed. 
In the case of an oscillator (waveform generator) for example, ID 0 represents a note 
table from 0 to 127 (mapped onto its corresponding frequency value). The final byte is 
the value of the parameter given by the previous byte. For example, if we want to modify 
the waveform type of the first oscillator to a square wave, the command would be: 
 
Module ID: 2  Instance ID: 0  Parameter ID: 3 Value: 2 
 
Module ID 2 is the ID for an oscillator (waveform generator) module. Instance ID 0 
means it’s the first oscillator created. Parameter ID 3 means “waveform type” and value 2 
means square wave (0 = sine, 1 = saw, 2 = square, 3 = noise). 
 

Here’s an example table of parameter ID’s for the waveform generator module 
(each module has its own parameter ID table depending on its own requirements): 
 
ID Value meaning 
0 Note value from 0 to 127, maps onto musically meaningful frequencies from 8.176 

Hz to 12543.85 Hz 
1 Trigger value (note on / off) 1 true 0 false (whether keyboard key is currently 

pressed) 
2 Amplitude value from 0 to 127, normalized to  

–MAXVOLUME ÅÆMAXVOLUME  (uses velocity value from keyboard presses 
to implement touch sensitive velocity – the harder a key is pressed, the louder the 
note sounds) 

3 Waveform type (0 = sinewave, 1 = sawtooth wave, 2 = square wave, 3 = white 
noise) 

4 Pulse width value from 0 – 255 normalized to 0 –1 (eg: 63 = 0.5 pulsewidth) this is 
similar to the “duty cycle” function of hardware waveform generators. 

5 Finetune value from 0 – 255 normalized to –FINETUNECOEFF Å Æ 
FINETUNECOEFF (set to +/- 0.4 by default). This allows for slight tuning and 
detuning of the oscillators such as when the pitchwheel of the keyboard is modified 
regardless of the note played. Example: if the note played is A4 (440Hz) and this 
value is set to +0.1, the resulting freq. becomes 440Hz * 1.1 = 484Hz. The effect is 
similar to the “wobbling” of “wah wah” effect of bending a guitar string while 
playing the guitar. 

 
 
Modular Architecture API 
 

Our major goal besides low-latency and real time performance is that the system 
should have a modular architecture such that DSP blocks could be composed together in 
order to achieve any type of audio synthesis desired. We have develop a simple API to do 
this programmatically, such that modules could be easily created, routed and mixed 
together. The easiest way to demonstrate this, is to provide an example such as the one 
below: 
 



      
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the above configuration, the following calls would be made on the EVM in order to 
construct the synthesizer: 
 
initModuleMap(9); 
createModule(0, OSC, 0); 
createModule(1, OSC, 1); 
createModule(2, OSC, 2); 
createModule(3, ENVELOPE, 0); 
createModule(4, MOOG, 0);  
createModule(5, MOOG, 1); 
createModule(6, ENVELOPE, 1); 
createModule(7, MIXER, 0); 
createModule(8, DELAY, 0); 
routeModule(ENVELOPE, 0, 0, OSC, 0, 0); 
routeModule(MOOG, 0, 0, OSC, 1, 0); 
routeModule(MOOG, 1, 0, OSC, 2, 0); 
routeModule(ENVELOPE, 1, 0, MOOG, 1, 0); 
routeModule(MIXER, 0, 0, ENVELOPE, 0, 0); 
routeModule(MIXER, 0, 1, MOOG, 0, 0); 
routeModule(MIXER, 0, 2, ENVELOPE, 1, 0); 
routeModule(DELAY, 0, 0, MIXER, 0, 0); 
setOutput((getModulePtr(8))->routeOutput[0]);  
 
The first call initializes the module map, and its only argument is the total number of 
modules in the system. Then the module instantiations begin by calling: 
createModule(mapID, moduleID, instanceID); 
mapID is the global module unique identifier, module ID is the module type (above the 
names are defined in module.h) and instanceID is the instance of that type. 

Oscillator 0 Oscillator 1 Oscillator 2 

Envelope 0 Moog Filter 1 

Envelope 1 

Mixer 0 

Delay 0 

Output 

Moog Filter 0 



      
 

After the modules are created they must be “connected” by assigning references to their 
input and output buffers. The function is: 
routeModule(in_moduleID, in_instID, input_num, out_moduleID, out_instID, output_num); 
The first three parameters indicate the input module type and instance ID, and the input 
“number” if the module has more than one input (such as a mixer). The next three 
parameters indicate where the signal is coming from – the module type, instance ID and 
output number for that module. So in the above example, to route the output of oscillator 
2 into the input of moog filter 1, the following call is made:  
routeModule(MOOG, 1, 0, OSC, 2, 0); 
 
Once all modules are routed together, one module is selected as the final output module. 
This is the module that will be connected to the EVM DMA audio subsystem. The 
following call is used for this: 
setOutput(float *out);  
 
Where “out” points to the output buffer. In the above example:  
setOutput((getModulePtr(8))->routeOutput[0]);  
 
The buffer is acquired from module with mapID 8 (the DELAY 0 module). The 
getModulePtr() function returns a handle to the module given its unique identifier. The 
module structure contains an array of output buffers depending on how many outputs it 
has (most of the times it’ll only have one output, but say, modules that output in stereo or 
more channels will have more than one). So the above call accesses the first output 
(output 0) of the delay 0 module. The buffer pointer is at: (getModulePtr(8))->routeOutput[0]. 
 
 
 
 
 
 



         
 

MASH Signal Flow 
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Example Signal Path Configurations / Module Instantiations 

 

 

 

 
 
 
 
 
 
 
 
Configuration involving two oscillators (Usually an even and an odd harmonic generator) that are mixed after filtration, with delay 
added to give some reverb.  This configuration is great for making organ tones.  

 

 

MM 
VCO 

MM 
VCO 

 

MOOG 
VCF 

MOOG 
VCF 

 

DELAY OUT 



         
 

 
MM 
VCO 

MM 
VCO 

 

DELAY 

ECHO 
 

DELAY OUT 

MM 
VCO 

MM 
VCO 

 

MOOG 
VCF 

 
 

Q CV 

MOOG 
VCF 

 

DELAY OUT 

A 
D 
S 
R 

Dual oscillator configuration with independently controlled delay and echo paths for each oscillator.  This yields a different beat 
frequency for each harmonic set.  Great for analog modeling of higher order distortion effects, or creating heavy vibrato.   

Dual oscillator configuration with the second oscillator modulating the resonance of the filter that takes the first oscillator as an input. 
Great for making metallic sounds, such as cymbals. 



      
 

Synthesis Modules 

MM VCO 
 
The Multi-Mode Voltage Controlled Oscillator (MMVCO) Produces 4 different types of 
signals 

� Sine  
� Saw  
� Square 
� Noise 

Different base signals are needed in audio synthesis because they contain different 
harmonic content.  For example, a square wave provides the fundamental frequency as 
well as successive odd harmonics.  We can then select which harmonics we want later via 
filtration techniques. 
 
Our first approach to generating these signals was writing a single period of the selected 
wave type to the module’s output buffer and then adjusting a read pointer in order to only 
send the portion of the buffer containing the sample to the CODEC.   
 
This approach had two weaknesses.  Firstly, we discovered that in order to meet the real 
time deadlines, we were going to have to process many samples at once, so an algorithm 
with no memory, as indicated above was simply untenable.  Additionally, the size of the 
data in the buffer was a direct function of the frequency of the sample, therefore the 
processing load of the oscillator module and each successive module in the signal path 
would vary with frequency.  This was an unacceptable outcome as well. 
 
The general solution was reached by filling the module output buffer with the selected 
waveform and then using a pointer to keep track of where in the waveform the last data 
point in the buffer resided.  This way, the next update would start where the last one left 
off.  The result was continuous, non-skipping audio, while letting us arbitrarily alter the 
frame size and sampling rate.  This became important later when adding polyphony. 
 
 
Wavetable MMO 
 
The Wavetable Multi Mode Oscillator (WMMO) is similar to the MMVCO, except 
instead of calculating values for the waveforms in real time, it generates a look-up table 
on initialization and then grabs the values for the selected waveform from that look-up 
table. 
 
The advantage if the WMMO is that it requires significantly processor time.  The 
disadvantage lies in the inherent inaccuracies that come into play when you try to 
modulate a Wavetable value. 
 



      
 

Our Implementation adds the same basic waveforms to what our MMVCO offers, in 
addition to the following: 

• Inverse sine 
• Triangle 
• PWM square (pulse width modulated square) 

 
Wave-shaper VCO 
 
This was our concept of a “make your own signal” generator.  Essentially, the user can 
set the amplitude of the signal within each period.  We provide four “poles” that let the 
user do that.  Just like the other oscillators, the frequency and overall amplitude are 
independently adjustable as well. 
 
Moog VCF 
 
This filter is a digital equivalent to the Moog Voltage Controlled Filter, aka, the Moog 
Ladder Filter (MVCF). 
 
Our MVCF implementation allows the user to select the following modes: 

• low-pass 
• high-pass 
• band-pass  

The z-domain transfer function of the MVCF is the following: 
• G(z) = ((p+1)(z+0.3)/1.3(z+p))^4 

 
It should be noted that this filter is a resonator.  This is part of what has made it so 
popular in the audio world.  Altering the Q of the filter can yield ringing and emphasis 
effects at the cutoff frequency of the filter.  As a matter of fact, setting the Q high enough 
can result in destabilizing the filter altogether and creating an oscillator, oscillating at the 
cutoff frequency.  In the analog world, a reset could only be achieved by bleeding out the 
charge from the capacitive and inductive elements of the circuit.  In the digital world, we 
just reset the filter if it’s gone unstable. 
 
We were surprised at how well the algorithm5 we used mimics the real world MVCF. 
 
 
Butterworth VCF 
 
This is the digital equivalent to a 4 pole RC passive filter.  We generate Butterworth 
second order sections and then transform them from the s domain into the z domain to 
arrive at our digital filter coefficients.  We pretty much followed the guidelines set out at 
the beginning of 18-551 as well as an algorithm we found on the web6. 
 

                                                 
5 Algorithm from http://www.musicdsp.org 
6 Algorithm from http://harmonycentral.com 



      
 

Our major modification of the algorithm was to separate the initialization, parameter 
update, and frame calculation sections in order to minimize processor load intensity.  As 
is intuitively obvious, you only want to initialize each instance of the filter once, calculate 
the filter coefficients only when the user has requested a change, and calculate a new 
frame of samples only when the last frame has been read.  Needless to say, the last of 
these operations occurs with the highest duty cycle, not separating the former two from 
the latter saves a lot of processing time. 
 
This IIR filter behaves as a LPF, as long as the resonance is kept small.  As the 
Resonance value increases, the filter “rings” more near the cutoff frequency, causing a 
band pass effect as a result of the added peaking 
 
ADSR VCEG 
 
The ADSR VCEG is one of the most used and fundamental modules in sound and music 
synthesis. We abbreviate the term above to ADSR.  It stands for “Attack Delay Sustain 
Release”. 
   
The ADSR is a time sensitive voltage controlled amplifier.  The ADSR is what provides 
the amplitude shaping that lets us create the following types of effects: 

� Swell 
� Fade 
� Percussive attack 
� Doppler effect 

The way it works is that we break up every “note on” period into 4 distinct regimes. 
• First attack 
• Then decay 
• Then sustain 
• And lastly, release (note off) 

The algorithm looks something like this: 
 
If(in attack) output = a*input 
If(in decay) output = d*input 
If(in sustain) output = s*input 
If(in release) output = r*input 
 
But not exactly, because we process frame by frame instead of sample by sample – 
However, that’s the idea.  In reality, we have to keep track of the time that’s passed since 
the note was triggered, the amplitude of the previous sample, and whether the “note off” 
event has arrived.  This is done in a manner similar to the way we keep track of our 
sample position in the MMVCO.  
 
Echo, Delay 
 
The delay and echo modules delay the input signal and have built in configurable 
feedback. 



      
 

 
Delay:  
Our delay module can mix the input and delayed signal into the output, as well as 
feedback the output into the input.  We represent the original signal and the delayed 
signal as “Dry” and “Wet” respectively.  Our algorithm looks like this: 
 
  delayLineOutput = *readPtr; 
  output[i] = dryLevel * input[i] + wetLevel * delayLineOutput; 
  *readPtr = input[i] + feedbackGain * delayLineOutput;   
 
The delay time and read head position can be modified by input CV's. The read head is 
the place in the buffer the output sample is taken from, relative to the write head.  You’ll 
note that just as in the MVCF and the MMVCO, we have to know the results of the 
previous sample to computer the current one.  Depending on the delay time, we may have 
to know the value of a sample as many as 44,100 positions back, given a maximum delay 
of 1 second! 
 
The delay module can be used as the base of a number of effects, such as phasers, 
flangers and complex echoes.  
 
If the output is fed back into the input, you get a similar effect to the echo, but you can 
add cool effects by routing the signal back through a low-pass filter (for example).  
 
Echo: 
 
This is a generic, no frills echo where you can control just the feedback and the delay.  It 
is essentially a stripped down version of our delay that runs a lot faster at the cost of less 
functionality. 
 
Mixer 
 
Our mixer is essentially a four channel adder, with scalable inputs.  The output is simply 
the sum of the input-channel gain product. 
 
Out = K1*input1 + K2*input2 + K3*input3 + K4*input4 

GUI 

GUI Development  
 
In order to allow users to efficiently control the various features of an audio 

synthesizer, an intuitive interface is essential. Thus a well designed graphical user 
interface is more important in our project than a typical signal processing project in this 
class. Several factors influenced the GUI development process. First, the GUI should 
have the same easy to use look and feel of current software synthesizer interfaces.  



      
 

Secondly, the GUI must have a method of interacting with the underlying system C code 
to pass the control parameters as input and routing of the order of the various modules.  
 

Our GUI module is composed of various smaller modules to display each of the 
control windows. RadioButtonListener and SliderListener Java classes were utilized to 
detect changes in the GUI components. A desktop pane is used to place the GUI 
component buttons. Upon clicking a GUI component button, an instance of the 
corresponding GUI window is instantiated.  We have developed seven GUI windows: 
ADSR envelope, Butterworth Filter, Delay, Echo, Mixer, Moog Filter, and Wave 
Generator. 
 

We have chosen to use the applet classes in the Java language to implement our 
GUI. The biggest challenge was to ensure that the graphical applet windows and controls 
within them created in Java are able to pass the parameters and drive the system module 
written in C. The first thought was to utilize the Java Native Interface (JNI) to have Java 
programs implement various methods in native code to drive C programs. This involves 
writing java program shells to create a dynamic link library file to call the equivalent C 
implementation of a particular function.   
 
The JNI Bridge Between JAVA and C 

  
 
In addition, we have chosen to use Inter Process Communication (IPC) to allow 

information flow between C programs and Java programs. IPC is a system that lets two or 
more processes communicate with each other. The two ways to achieve IPC are shared 
memory and message passing. We have utilized an IPC pipe object to communicate 
between the C and Java programs via message passing. The pipe is first open in a C 
program, waiting for a connection. The driver program in the GUI implementation, 
MASH.java, initiates a pipe object and allows data output to be sent via the pipe.  Each 
GUI component consists of a moduleID, instanceID, parameterID and a value field. A 
byte array is declared to obtain the various states of the sliders and radio button groups in 
the GUI window. This byte array is later passed through the C program through the pipe 
object to allow communication with the other modules of this project. 
  
 



      
 

Performance Analysis 

 

Above is a performance analysis summary of one of our configurations.  As you 
can see, we meet our real time deadline here, so the audio doesn’t skip.  Altering 
polyphony, module number, module type, and sampling rate all have significant impacts 
on performance. 

We found that through using Wavetable based oscillators, that we saved a lot of 
time, however, we decided to show the worst case scenario here, to demonstrate our 
ability to run a fully featured analog synthesizer emulator in real time. 
 A couple words on the profiler:  It’s performance was erratic at best, often 
summing the processes going on in multiple functions all under one heading, and often 
the wrong one.  Restarting the EVM often yielded different profiler numbers.  In general, 
The Profiler was accurate for profiling SMALL functions, that didn’t call other functions. 

  seconds 2.34E-05   TOTAL Head 
Room 

          

  seconds 1.25E-04 AVAILABLE Sample Time 

  seconds 1.02E-04   TOTAL Sample 
Time 

  seconds 0.052005765   TOTAL  Frame 
Time 

  cycles 7429395 TOTAL Frame Cycles 

          

  cycles 7429395 600 computeSamples 

          

  cycles 3848 1120 processParameters 

  cycles 1991372 824 computeEnvelope 

  cycles 13677 1300 computeOscSamples 

          

    Incl. Average Code Size Areas 



      
 

 

Prior Art 

Algorithms: 
 
18-551 
There have been no projects in 551 that attempted to implement a synthesizer. 
A couple of projects implement tone generators and rudimentary midi parsers. 
This code was not real time compatible and therefore unusable. 
N 

Elsewhere 
hhttttpp::////wwwwww..ffiirrssttpprr..ccoomm..aauu//ddsspp//ppiinnkk--nnooiissee// 
All about noise generation 
hhttttpp::////wwwwww..hhaarrmmoonnyycceennttrraall..ccoommn 
Source for basic filters oscillator algorithms 
Examples of MIDI parsers– nothing real time 
hhttttpp::////wwwwww..mmuussiiccddsspp..oorrgg 
Source for basic filters oscillators 
Analog filter algorithms 
Most code either “pseudo-code”, or in LISP, C++ 
 
 In general, we were able to find algorithms and java skeleton code (for the GUI).  
All the C programming and optimization of these algorithms had to be done on a module-
by-module basis.   
 

Our Final Demo 

Our final demo showed off the working synthesizer and demonstrated the 
following features: 

• Analog synthesizer modeling 
• MIDI or Oscillator INPUT with AUDIO (via CODEC) Output 
• The advantages of our modular design 
• Our working intuitive GUI 
• Real time performance (imperceptible latency) improvement over 

“softsynths”(latency greater than half a second) 
• Our ability to make cool sounds as well as music 
 
 



      
 

Conclusion 

 MASH is a significant step beyond current hardware synthesizers.  Aside from 
arbitrary polyphony (only dependent on the speed of the DSP), MASH’s combination of 
hardware real time capability and software based GUI ease of use platforms simply 
hasn’t been done before.  The closest matches are software synthesizers that, while 
inexpensive and easy to use, are useless in performance environments, and $4,000+ 
difficult to use monophonic digital hardware synthesizers.  
 One thing we did discover during this project is that to do real time audio 
successfully on the EVM, one has to both double buffer as well as talk via DMA to the 
CODEC.  In the end, resolving these real time issues became the single greatest hurdle to 
overcome in implementing MASH—and overcome it we did. 
 



      
 

 

Terms and Definitions 

MMVCO Multi Mode Voltage Controlled Oscillator 
ADSR VCEG Attack Delay Sustain Release Voltage Controlled Envelope Generator 
VCF  Voltage Controlled Filter 
IIRF  Infinite Impulse Response Filter 
Polyphony Multitimbral value 
LPF  Low Pass Filter 
HPF  High Pass Filter 
BPF  Band Pass Filter 
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