
18-551 Project Final Report 1

18-551 Project Final Report
Spring 2002

The Virtual Zone

Group #11
Robert DiMaggio (rsd)

Louis Trebaol (lpt)
Shao Chiang (schiang)

18-551 Project Final Report 2

TABLE OF CONTENTS

1. The Problem………………………………………………………………………………….3
2. The Solution………………………………………………………………………………….3
3. The Process…………………………………………………………………………………..4
4. Other Work…………………………………………………………………………………..6
5. Video Manipulation

5.1 Video to Bitmap……………………………………………………………………..8
5.2 Bitmap to Raw………………………………………………………………………8

6. Project History
6.1 Introduction………………………………………………………………………...10
6.2 Initial Research…………………………………………………………………….10
6.3 The Path We Walked………………………………………………………………10

7. The Final Algorithm
7.1 Knee Detection……………………………………………………………………..12
7.2 Height of the Strike Zone …………………………………………………………13
7.3 Plate Detection……………………………………………………………………...14
7.4 Processing the Video……………………………………………………………….14

8. Use of the EVM
6.1 What Does the EVM Do? …………………………………………………………16
6.2 Memory Allocation…………………………………………………………………16
6.3 EVM Timing………………………………………………………………………..17
6.4 What Doesn’t the EVM Do? ………………………………………………………17

9. Future Improvements
7.1 All Batters…………………………………………………………………….……. 18
7.2 Queue Off of the Pitcher……………………………………………………………18
7.3 Video Clip Quality………………………………………………………………….18
7.4 Speed…………………………………………………………………………..…….19

10. References………………………………………………………………………………….19
11. Appendices…………………………………………………………………………………20

18-551 Project Final Report 3

1. THE PROBLEM

Over the past 100 years, Major League Baseball has remained virtually

unchanged. Set in a stadium battleground, it is an epic struggle between

foes. Most of the action rests in the hands of the pitcher and the batter.

The pitcher attempts to throw the baseball into the strike zone and outwit

the batter. The batter is trying to do everything in his power to hit the ball

and place it into play if the ball enters the strike zone. The omnipotent

ruler, the umpire, regulates this altercation by defining what is considered a

strike and what is considered a ball. He is usually an elderly man dressed in

blue that stands behind the catcher and interprets every play. The lack of

accuracy in this method is largely attributed to human error, for example

blocked sight of ball entry or vision degradation on the part of the individual.

Many spectators become angry when the umpire calls a play contradictory to

what they collectively saw. Both audiences in the stadium and at home

would demand to know if the umpire had erred. We propose overlaying a

virtual strike zone on the pitcher’s throw in the actual game footage so that

every viewer on broadcast will be able to see if the baseball was truly in the

strike zone when the ball crossed the plate. This will ultimately strengthen

the fairness of the game and not have significant rulings be decided on by

the sole discretion of one individual.

2. THE SOLUTION

We propose a digital image processing solution that will be able to use

as input a video clip of a baseball game and superimpose an outline of each

batter’s strike zone. This project was made possible using many different

methods of edge detection, motion detection, segmentation, and filtering to

allow for this robust system to deliver a rich viewing experience for

broadcast audiences.

18-551 Project Final Report 4

3. THE PROCESS

Once the pitch begins, our system will determine where the strike zone

actually is. We are also assuming only right-handed batters in our system

design due to possible complexity issues that may arise. In order to achieve

our goal of producing an accurate depiction of the correct size and location

of the batter’s strike zone, we need to extract information from the video

clip. In the Major League Baseball rulebook, it states that the parameters of

a batter’s strike zone is from the batter’s knee to his elbow that falls over

the width of the plate while the batter is in his ready position. So, we must

find the batter’s knee and elbow along with home plate to determine where

the strike zone must be placed.

Also from viewing many clips of batter’s waiting for a pitch, we

observed that the batter and the camera do not have much movement from

when the batter gets into his crouched position, ready position, until he

begins to swing at the pitch. Therefore we only have to perform the knee

and elbow calculation once. The lack of movement also makes creating the

zone much easier because the batter will be in an almost constant position

for most of the duration of the pitch. The lack of movement of the camera

and constant positioning for each pitch allows us to narrow down the

positioning of the batter and plate much easier.

The first thought is to segment the batter and focus on his lower

extremities. Once the lower half of the body is noticed, feature detection

can be done to find where the knee joint is oriented in the image. Using an

edge detector we can determine where the edge of the leg is and then

search to find where the edge forms an acute angle. This intersection is the

knee. After obtaining the edge map we can use the knee height as the lower

line of the box.

18-551 Project Final Report 5

 The upper limit of the strike zone is the next problem that must be

addressed. While creating the algorithm to find these two points we ran into

a bit of trouble. In most of video clips we viewed, the batter was either

wearing a dark sleeved uniform or a dark long-sleeved shirt under his

uniform. This causes great trouble in finding the elbow because both the

umpire and the catcher are wearing dark clothing. The batter’s elbow blends

into this clutter and is indistinguishable. To solve this problem, we decided

to use what we knew about human body characteristics. We know that the

distance from a person’s knee to hip is about the same length as from the

hip to the shoulders. Therefore when a person is in a crouched position, the

distance between the knee and the butt is about the same distance as from

the butt to the elbow. Instead of finding the elbow, we will focus on finding

the butt and calculating where the elbow will be. Having these two heights

gives us the top and bottom of the strike zone.

With the ceiling and floor known, we still need the width for

completion. This is a comparatively easier task than figuring out the location

of the elbow or knee. We will be using edge detection to determine where

home plate is located. This should not be a difficult task seeing that the

plate is a white rectangle in our video surrounded by brown dirt. We know

the plate is located relatively close to the batter on his left side and

somewhere below the height of his knee. So segmentation of the plate is

not much of a problem. Once the edges of the plate are determined, we can

use the side edges as the vertical lines representing the left and right side of

the strike zone box. Using the heights from before and our new width

measurements we can now place an accurate strike zone on the video clip.

This box will remain in the same position above the plate until after the

batter swings. In order to insure this we must calculate the edges of the

plate for each frame to ensure accuracy encase the camera pans or zooms.

18-551 Project Final Report 6

4. OTHER WORK

 In early April, a company named SporTVision created a virtual strike

zone system entitled the “K-Zone.” This system is a highly accurate pitch

calling system that uses three cameras mounted around the baseball

stadium, along with a number of sensors, and a truck full of computers. The

system has the power to track the path of a baseball up to four-tenths of an

inch. Using three video feeds and sensor inputs allow the system to

determine a batter’s strike zone along with where the ball was located when

it crossed the plate. This system also is able to keep track of the location of

all the pitches thrown by a pitcher in a game. It can take this information

and map out the path of all of these pitches onto one image showing

patterns of the pitcher’s throwing habits. Below are a few pictures from

some video clips of what the system output looks like.

18-551 Project Final Report 7

Of course the attaining information from this company about their new

product was impossible. This system appears to have overcome some of the

problems we incurred by adding sensors, using multiple cameras, and no

offset camera view of the pitch. These alterations make it easier or even

possible to track the ball, determine the outcome of a pitch, and determine

the exact location of the strike zone.

18-551 Project Final Report 8

5. VIDEO MANIPULATION

Video to bitmap

Our video source was a DVD containing the 2002 playoffs and World

Series highlights. We used a DVD ripper called Smart Ripper which was

found on this website: www.riphelp.com/articles/dvdripping_1.html. This

ripper converted the DVD video into a vob format. Once we had the data in

this format we needed to transform it into avi format in order to parse it into

bitmaps. Xmpeg software was used to perform this transfer. This software

was found at www.mp3guest.com/default.asp. This software was very hard

to come across. A small amount of manipulation is needed to acquire this

software in the U.S. Then using Adobe Premier 6.0 we were able to make

small usable avi clips from the entire DVD movie. This software is available

at www.adobe.com. Finally, the last software package used on our video

clip was MediaConverter. This software converts avi files into parsed

bitmaps and bitmaps back into avi files. Its location is

www.mystikmedia.com/mediaconvert.asp.

Bitmap to Raw

Once we finished with the long process above to give us semi-useful

data we still could use the bitmaps on the board. We had to write in C an

algorithm that would take a bitmap and turn it into raw data and then

transform it back. This turned out to be a greater task then we expected.

We spent a large amount of time working on deciphering the header of the

bitmap with little success. The problem with the bitmap format there are

multiple formats which contain different header sizes and data

arrangements. After days of struggling through development of the code,

we found that our headers were 54 bytes long. Instead of interpreting the

header, we would cut it from the frame data and paste it back on the front

18-551 Project Final Report 9

of the frame when we finished with it. Our next problem was that we did

not realize that the rows of the bitmap are stored in reverse order. When

the bitmap is loaded, stored, and then written we did not discover this

formatting issue because we read and wrote in the same manner. Once

dealing with our manipulations of the data when it was on the board we

realized something was wrong. Once this was solved we discovered a

problem we had with color. Instead of the colors being stored as red, green,

then blue, they were in reverse order. Finally, after getting through all of

this we had an easy way to take data from video down to raw data back to

video.

18-551 Project Final Report 10

Our project required the use of baseball video which became fairly difficult to

find in the baseball off-season. We found a DVD that contained baseball

footage of the pitching camera angle that we needed for our project. After

capturing some of the images from the DVD, we began our work of

processing the images.

Initial Research

We knew that our project required

some form of edge detection to

find the batter’s knee and elbow.

We started our initial work using

Matlab and the built in functions

included in it. In order to run

these operations, the images were

converted to grayscale initially.

We also tried running edge

detection algorithms on each separate color matrix of the RGB values. The

results from these tests yielded no helpful results so we had to start looking

for some more unconventional methods of edge detection

The Path We Walked

The initial edge detection algorithms that we tried didn’t work for two

reasons:

1. The images were had too much noise, especially near the batter

2. The algorithms were not restrained enough for the images that we

had

6. PROJECT HISTORY

18-551 Project Final Report 11

We began looking at the pictures trying to find some similarities in all of

them trying to develop a better method for finding the knee. We noticed

that in all of the baseball footage, the teams either wore gray or white

uniforms. We used this point as the center point for our project. We first

tried to use a simple threshold method, but this was not enough. We

started to combine different processes in the search for the ever-hiding

knee. The next problem was finding the elbow for the upper bound of the

strike zone. After a couple failed attempts, we began to realize that there

was no way of successfully finding the batters elbow in any image. We

began to look into ways of finding an approximation of the batters elbow

such as the height of the batter and the height of the batters lower leg. We

settled on an approximation that was fairly easy to extract the data after the

knee detection ran. We found the line in the image of the batter’s butt’s

furthest out point. The last bit of data that we need to extract was the

position of the plate. This proved to be the easiest part of the image

processing.

18-551 Project Final Report 12

Knee Detection

The first part of the algorithm separates looks for the batters knee. All of

the other data for the algorithm is derived from the position of the batters

knee in the first image. The area around the batter is looked at statistically

to find the RGB values of the batters pants. This data is then used filter the

image. The filtered image is then swept from the bottom right, to the top

left looking for the furthest out point of

the knee. The function finds the

leftmost point on a line and then looks

at the next 15 lines to see if another

point lays further left than it. It

continues this process until there are

no points further left than the one it is

on. It stores these values as lineKnee

and colKnee so that we know the exact position of knee for the future

functions that are going to be called.

The pixel statisitics for the batter 1

7. THE FINAL ALGORITHM

18-551 Project Final Report 13

Height of the Strike Zone

The next step uses the point of the batter’s knee to sweep up from left to

right of the filtered batter’s image to find the batter’s butt. We observed

early on that the strike on that the distance from the knee to the batter’s

elbow is approximately twice the distance from the batter’s knee to his butt.

By finding the line of the batter’s butt we were able to make a fairly accurate

estimation of where the batter’s elbow would be and therefore where the top

of the strike zone should be.

Figure 1 This is the filtered batter area that is used to find the batter's knee and butt

18-551 Project Final Report 14

Plate Detection

The final data needed to find the strike zone is the left and right edges of the

plate. The position of the knee is used as a reference point to capture the

area where the plate should be located

in the image. This area is then filtered

to find the near-white pixels that should

be the pixels of the plate. The plate

detection function uses morphological

image processing to find the plate in

this roughly filtered image. As can be

seen in the picture bellow, the plate

stands out very well after the filtering. A 1x7 pixel construct is used to find

the left side of the plate. After the left side of the plate is found

successfully, the right side of the plate is found by looking for the right-most

edge on the same line as the left-most edge of the plate. The plate

detection operates very successfully from picture to picture.

Processing the Video

There process of taking these functions and running them from 1 picture to

running them on a series of pictures took a good deal of additional functions.

The noise in the images caused the strike zone to jitter substantially from

picture to picture, causing fairly poor results in the constructed videos. This

forced us to make the decision of using only the first image to find the

position of the knee and calculate the height of the strike zone. Due to the

general stability of plate edges and the fact that it is stationary object from

18-551 Project Final Report 15

picture-to-picture, the remaining image’s strike zones are keyed off the

position of the plate. There were issues of the plate edges changing slightly

from picture-to-picture. To solve this problem the width of the plate was

computed and run through a low-pass filter. The amazing part of our project

is that we were able to run our much faster than real time. This is a

significant advantage over our competitors in this quest for the perfect strike

zone.

18-551 Project Final Report 16

8. USE OF THE EVM

What Does the EVM Do?

The EVM is responsible for performing all of our projects calculations. All

edge detection, filtering, and frame altering are all done on the EVM. Our C

code loads a bitmap image onto the board one at a time just like in lab 3.

Once the image is on the board all necessary calculations and augmentations

are performed on the frame. Once this is complete, the frame is sent off the

board back into computer memory and the next frame is read onto the

board. This cycle continues until all frames from the video clip are

manipulated.

Memory Allocation

On-board Memory:

Name Description Type Dimensions Size

(Bytes)

Frame Input frame and

augmented output

frame

Unsigned

char

320x240x3 307,200

batterFilter Segmentation

containing the batter

Unsigned

char

45x90 16,200

Plate.vect Segmentation

containing the plate

Unsigned

char

80x40 12,800

Map.colorMap Three vectors for grey

detection

int 256x1x3 1,536

Misc. Variables for strike

zone computation

Int 1x19 38

TOTAL 337,774

18-551 Project Final Report 17

EVM Timing

(For a 10 frame trial)

Program Portion Cycles Seconds

Load and Write Frame 17,753,380 .135

Color Detection 1,766,290 .013

Knee Detection 239,203 .00179

Butt Detection 3,159,596 .0237

Plate Detection 9,657,325 .0726

Drawing Strike Zone 3,479,402 .0261

Total 36,055,196 .27

*It appears that our system works in real-time.

What Doesn’t the EVM Do?

The Pc is responsible for converting .avi files into bitmap frames or vice

versa. The reason the EVM does not do this in our project is because we

could not find C code that could perform this task and it would have been

too time consuming to create code that could. So we downloaded a software

package that could perform these tasks for us. It is named… and can be

found at…

18-551 Project Final Report 18

9. FUTURE IMPROVEMENTS

All Batters

Presently our system only works for right handed batters. Making the

system work for both right and left handed batters would make the system

more robust and is a necessity if the system were to be implemented. A

mechanism to determine what side of the plate the batter is positioned

needs to be created. But beyond that it seems that the color and edge

detection algorithms could be easily altered to look for the body parts of a

left handed batter.

Queue Off of the Pitcher

At this time, the strike zone is created from the first bitmap the EVM

receives. This means that all video clips which are fed to have the strike

zone created must be queued so that the batter is in his crouched position

and the pitcher is about to throw. Developing an algorithm to determine

when the pitcher begins his windup would be very beneficiary. The video

clips would not have to be cropped to meet such strict specifications and it

would probably add to the viewer’s experience.

Video Clip Quality

The resolution of the video clips must be produced if this system were

actually implemented. A resolution of 320 x 240 is not high enough for

broadcast television. The reason we used this low resolution, especially

since our video source was a DVD, was because of the limited memory and

the speed of the EVM. We wanted to avoid memory storage problems on the

board to keep the speed down. Also when doing all of our calculations and

manipulations we wanted to make the process as quick as possible so we

also only used 15 frames per second. We believed processing frames of a

18-551 Project Final Report 19

high resolution at 30 frames per second would make our system very slow

and hinder is perception.

Speed

Optimizing our code would improve the speed of our system. While

optimizing we would have to look at saving more time in transferring the

frames on and off the processor. This will increase our speed greatly and

make the system work closer to real-time, which is our ultimate goal.

10. REFERENCES

Bitmap Information

http://www.javaworld.com/javaworld/javatips/jw-javatip43.html

http://www.msdn.microsoft.com/library/default.asp?url=/library/en-
us/gdi/bitmaps_87eb.asp

DVD ripper: Smart-Ripper

www.riphelp.com/articles/dvdripping_1.html

.avi->bitmap: MediaConvert

www.mystikmedia.com/mediaconvert.asp

vob->avi: xmpeg

www.mp3guest.com/default.asp

avi->avi clips: Adobe Premiere 6.0

www.adobe.com

18-551 Project Final Report 20

10. APPENDICES

