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Motivation

Wireless communication has become a fundamental part of our current information
infrastructure. However, wireless bandwidth is costly which prompts us to more closely
examine the data channel available using electromagnetic waves. It has been well noted
that two polarization sates of planar waves allow two distinct information channels using
a technique called polarization diversity. In a well-publicized article published in
January 2001 by Nature entitled, “Tripling the Capacity of Wireless Communications
Using Electromagnetic Polarization,” mentions largely how wireless channel capacity can
be increased using polarization multiplexing. The article suggests that extra channel
capacity can be obtained because there are six distinguishable electric and magnetic states
of polarization at any given point [1].

The article cites previous experimental work conducted at Bell Labs that demonstrated
the increase in capacity originating from the three electric polarization states in a
scattering environment. This article has caused much excitement in the wireless
communication research industry and we hope to further the research for polarization
multiplexing.

The motivation behind our project is to demonstrate the multiplexing across a electric and
magnetic polarization state within a scattering environment. This is simply to expand on
the idea of polarized antennae diversity using multiple input/multiple output (MIMO)
communications because multiple antenna are required to access polarization or spatial
channels. We propose the use to two identical co-located magnetic and electric dipole
antennas used at the transmitter and receiver to demonstrate electric and magnetic
multiplexing. We will use the Texas Instruments C67 Digital Signal Processor (DSP) to
extract two distinct data sets from the two independent co-interfering transmitted sources.

Target demo

In order to demonstrate the wireless system using the two antennae at both the transmitter
and the receiver we propose the wireless system shown in Fig. 1. The target demo will
require that all the processing be done on the DSP and the transmitted signal will be sent
from the DSP through the line out jack off of the codec on the EVM and then amplified
and mixed using external equipment and then transmitted through the antennae. The
interfering signal will then be received through the receiving antennae and sent through a
mixer and amplified before it is received by the codec through the line in jack on the
DSP. The received signal is then processed for bit error rate checking.
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Figure 1: Target System Setup

Overview of project

DSP work
The DSP will be used to for data generation, modulation across the two antennae, data
transmission and reception over the C67 codec, adaptive equalization and training,
synchronization, demodulation and bit error rate testing. Figure 2 shows a detailed
schematic of the processing being done on the DSP and detailed explanation of the
algorithms for each component of the system can be found in section 3 of this report.

The transmitted signal is either a randomly generated data bit or a predetermined pilot
sequence to retrain the channel estimation and equalization. The data is modulated on the
DSP using a binary frequency shift keying (BFSK) modulation scheme. The received
signal is then demodulated or synchronized and retrained. The demodulated data is then
compared for bit error testing on the DSP.
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Lab setup
Due to time constraints the complete RF channel was not able to be setup for the class
demo. However, the current lab setup for the demo was conducted using a Simulink
simulation of the target scenario. A diagram showing both scenarios is shown in Fig. 3.
The current lab setup involves a direct wire connection from the line in / line out jacks of
the DSP to the line in / line out jacks of the second computers sounds card. The second
computer will be running the Simulink simulation. The connection between the two
computers was also monitored on the oscilloscope. The target scenario will involve a
actual RF link instead of the Simulink simulation

Figure 2: C67 DSP Block Diagram
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Figure 3: 18-551 In-Lab Test Setup

Test procedure
The first test procedure used was to test the wireless system for its comparability to a
non-interfering channel wireless system for noise profiling. Then the system was tested
for possible lab conditions using the electromagnetic channel estimation parameters for
noise profiling.

Project details, algorithms

Transmitter Design
Data Generation and Frame Format

Each frame transmitted has a length of 110 symbols of which 88 contain actual data and
the remaining 22 are used for training and synchronizations purposes. During the first 11
symbols of the frame, the 11 bit pilot sequence is transmitted on channel 1 and channel 2
is turned off. After the pilot sequence is transmitted on channel 1, channel 1 is turned off
and the same pilot sequence is transmitted on channel 2. 88 bits of data are then
transmitted on each channel.
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For the pilot sequence, we chose to use an 11 bit Barker sequence. The Barker sequence
offers the best peak-to-side lobe ratio, and therefore can be detected by the matched filter
receiver with the greatest confidence.

The data bits are generated using a random binary number generator. After generating a
bit, the bit is copied into an expect queue and then sent to the modulator. The expect
queues store transmitted bits that are later retrieved by the bit error checker for
comparison against the received bits.

Modulation

Our communications system uses binary frequency shift keying (BFSK) modulation. In
BFSK, a low bit is transmitted as a sinusoid of a particular frequency and a high bit is
transmitted as a sinusoid of another frequency. At the sampling rate of 22.05 kHz that our
system uses, we determined through simulations in Matlab that we could achieve good
performance at a rate of 2205 bits per second per channel using frequencies of 2205 kHz
for a low bit and 4410 kHz for a high bit. At these rates, each bit is 10 samples long. The
10 sample symbol patterns for both bits are generated and stored in registers at the start of
the program.

All DSP activity related to the transmitter occurs within the transmit interrupt. At the end
of each symbol transmission, a request is made to the data generation function for the
next pair of bits. The modulator will receive a "high bit", a "low bit", or a "no bit" for
each channel. When a "no bit" is received, the channel is turned off and nothing is
transmitted. For all other cases, the appropriate symbol pattern is copied from the into the
transmit register and sent out one sample at a time on an interrupt-by-interrupt basis.
After the last sample of the bit is sent, the request is made for the next bits is made.

Receiver Design
Pilot Sequence Detection

The pilot sequence detector is used to detect the arrival of the pilot sequence on channel 1
and synchronize the receiver. At the start of transmission, the sequence detection is run
on each interrupt until the first instance of the pilot sequence is found on channel 1. After
the sequence is found, the detector is shut off and a clock is started that is used to trigger
events for the rest of the frame. The clock is updated on each interrupt. The detector is
turned back on at the point at which the receiver expects the next pilot sequence to arrive
on channel 1 to make sure that the receiver is still synchronized.

When each new sample is received, it is copied into a buffer that stores the 110 most
recent samples. The detector performs a correlation between the received signal on
channel 1 and the expected pilot sequence to determine if the signal in the buffer is a pilot
sequence. Rather than performing a direct correlation between the two signals, we use a
modified algorithm that only looks at whether each sample has a positive or negative
value and increments a counter each time the signs correspond and decrements the
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counter each time they do not. When the value of the counter exceeds a predetermined
threshold value, the pilot sequence has been positively detected.

Equalization
The estimated channel has both channel noise and co-channel interference, which act
together affecting the data transmission system in a combined manner. In order to
account for the co-channel interference within the estimated channel we decided to use a
zero-forcing equalizer (ZFE). The objective of a ZFE is to have the co-channel
interference is equal to zero at all times when the channel output is being sampled except
during the training process [2]. The training process occurs during the pilot sequence
detection period. During the training process the coefficients of the four assumed
channels (further discussed in the S-value calculations section) are derived for the S
matrix that will be used for equalization.

A major design flaws of the ZFE is that it ignores channel noise and it leads to overall
performance degradation due to noise enhancement, a phenomenon that is inherent to the
ZFE. The noise enhancement due to the channel estimation is attributed to the
singularity of the ZFE equalizing matrix. Equation (1) describes the equalization process
where S is the channel estimation matrix, xk are the transmitted bits, yk are the received
bits and nk is the added noise per bit.

yk = Sxk + nk (1)

After testing the wireless system in our simulated channel it is noted that the noise
enhancement is much greater than expected and future work in this project should look at
other equalization methods. The mean-square error criterion is a more refined approach
for receiver designs that is aimed at providing a balanced solution to the problem of
reducing effects of channel noise and ISI.

Demodulation

The demodulator, which follows the equalizer in the system signal flow, demodulates the
two individual extracted data channels. The input is in the form of BFSK symbols and
the output is in the form of bits. Bit decisions are made using a hard-decision method.
Hard decisions are made based on a pre-defined threshold; if a sample of the symbol is
above the threshold, then it is decoded as a “1.” Likewise, if a sample is below the
threshold, then that sample is decoded as a “0.” The demodulation algorithm used was
chosen for its elegance [3]. Shown in Fig. 4, the algorithm accomplishes its task using
only a delayed product and a 32nd order FIR low-pass filter. The inner workings of the
demodulator are detailed below. The time-domain signals received by the demodulator

Figure 4: Demodulator Block Diagram
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are of the form,
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where f0 is the frequency of the tone received (recall there are two possible tones in
BFSK modulation, f0 & f1). After the delayed product, the signal takes the form,
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Applying the low-pass filter to (4) using a cutoff frequency of the symbol rate (2.205
kHz), the second cosine term of (4) is attenuated because it is a sinusoid of twice the tone
f0. Recall that f0 is 2.205 kHz and f1 is 4.41 kHz. The signal after the filter is now of the
form,
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which depends only on the delay, t0 ,and the frequency of the modulating tone, f0. This
suggests that the signal at the output of the demodulator depends only of the modulating
tone, once the delay, t0, has been fixed. Since the modulating tone is chosen based on the
bit being sent, the demodulator has recovered the transmitted bit from the received signal.

To ensure that the demodulator performs optimally, the value of (5) when considering
both f0 and f1 needs to be maximized. This is done by solving the following relation:

)2cos()2cos(max 10 ss
k

kTfkTfK �� �� , (6)

where K is the optimal delay, k is the delay over which the relation is varied and Ts is the
sampling period of the system (1/22.050 kHz). When (6) is solved, an optimal delay of 5
is found; thus, the signal will be delayed by 5 samples in the demodulator before being
multiplied by a zero-delay version of itself. After demodulation and detection, bits are
obtained and are ready for comparison with the transmitted stream in the bit error rate
checker (BER).

Bit Error Checker
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The bit error checker is necessary to determine how well our communications link
performs. The bit error checker compares received bit values against transmitted bit
values and gives information about error rates on each channel. Each time a data bit is
sent out by the transmitter, it is placed into an expect queue. A separate expect queue is
maintained for each channel. When a bit is demodulated by the receiver, it is given to the
bit error checker. The checker compares the value of the bit against the next bit in the
expect queue for that channel and updates the error counter and total bit counter
appropriately.

Once during each second of operation, the bit count and error count information is sent to
a program running on the PC using an asynchronous FIFO transfer and the information is
displayed in a window.

Simulator
Reasons for using simulator

As the end of the project quickly approached, we realized that a demo that included a real
transmitter and receiver, antennas and propagating waveforms was not entirely realistic
for our in-lab demonstration. Thus, a simulation that accurately modeled our channel
was needed as a substitute for a real system. Such a simulation was devised using the
SIMULINK simulation environment, a part of the MATLAB computation suite.

Description of algorithm

The simulation, diagramed in Fig. 5, operates on the audio-range signals created by the
transmit side of the C67 DSP in real-time. After the signals have been processed using
the simulator, they are sent back to the C67 DSP, where they will be equalized,
demodulated and detected. As such, the simulator serves as a functionally even swap for
the real channel system mentioned previously. The algorithm used in the simulator is
described below.

Figure 5: Simulink Channel Simulator
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The channel simulated by SIMULINK is represented by
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where y is the received signal at the DSP (before equalization and demodulation), x is the
transmitted signal from the DSP (after modulation) and n is the noise presented by the
channel (n ~ CN(0, 2

� )). The 2x2 matrix S represents the gains of the four different
signal channels represented in Fig. 6. This channel representation depicts the gains of the
four “effective” channels realized between the two different antennas on the transmitter
and receiver. (The reader should keep in mind that there are only two “real” channels,
though, one for each receiver.) Thus, the SIMULINK model implements (7) in real time,
after it has been given S and the desired noise power, 2

� . Real-time data is inputted to
the model using the host PC’s sound card A/D (represented by the microphone block in
Fig. 5) and outputted from the model using the host’s sound card D/A (represented by the
speaker block in Fig. 5). The values of S are read from the MATLAB workspace using
the constant blocks on the left of Fig. 5, and the noise power is inputted into the Gaussian
Noise block on the right of Fig. 5.

S-Value Calculations

The values of the matrix S are calculated using the two-ray ground reflection model for
RF wave propagation [4]. This model is represented in Fig. 7. Equations (8) – (11) yield
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Figure 6: Signal Processing Channel Representation



12

the values derived from this model; we acknowledge Professor Dan Stancil for assistance
in deriving these equations.
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In (8) – (11), Gdipole and Gloop are the
gains of the dipole and loop antennas,
respectively. The reflection coefficient
of the reflecting surface is represented
by � . The propagation constant, k,

equals
�

�2 , where � is the wavelength of

the carrier (915 MHz), in meters. Using
these generated values, SIMULINK
simulates the channel, presenting
realistic data back to the DSP to be
processed in the system’s receiver.

Simulator non-idealities

While the SIMULINK model does successfully model the channel intended for our
system, it does not completely model the real channel. In the real channel, a very large
number of signal paths (>>2) will exist in the indoor propagation environment. These
additional paths should yield slightly different, and hopefully better, values in the S
matrix. Currently, the model yields a fairly singular matrix for S, giving a large amount
of noise enhancement (discussed later in this report). A less singular matrix, hopefully
resulting from the additional multipaths, would thereby increase the performance of the
system by reducing noise enhancement.

It should also be mentioned that SIMULINK is not entirely designed for a real-time
environment. As such, there may be some parasitic phenomena present in the simulation,
which would be seen as a decrease in performance from the DSP’s perspective. Indeed,
such performance decreases were noted in test simulations; a restart of the host PC
seemed to solved such problems.

d1

d2
TX RX

theta

Figure 7: 2-Ray Ground Reflection Model
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Resource Issues
Optimization

Because of the time sensitive nature of our program, optimizing our code was extremely
important. All transmitter and receiver activity occurs during interrupts, and in order to
ensure proper operation, all processing must be completed during the limited time in
between interrupt arrivals. A number of modifications were made from our initial plans to
guarantee that we would meet our time constraints.

The greatest speed improvement came in cases where we were able to spread out a large
amount of processing over time. In particular, we were able to do this for the channel
training and the demodulation parts of the receiver. For the channel training, instead of
waiting until the entire pilot sequence had been received, a portion of the computation
was done as each sample of pilot sequence arrived. A similar improvement was seen for
the demodulation where instead of waiting to collect all the samples that make up a
particular bit before running the demodulator, it was run continuously during each
sample.

Another optimization method we used was to modify the correlation technique in the
pilot sequence detector. A normal correlation would have required the completion of 110
multiplication operations during a single interrupt which turned out to require more
computation time than was available. The alternate method of only looking at the sign of
each sample allowed us to replace the multiplications with less computationally intensive
comparison operations but still providing us with similar performance.

Other optimization methods we implemented included generating test data directly on the
EVM instead of transferring it over from the PC, turning off the pilot sequence detector
when the demodulator was operating, and performing bit error checking and EVM to PC
transfers outside of interrupts.

Memory Usage

The table below summarizes information about the memory requirements of the DSP
software. The amount of data memory used is included for both the normal case and the
case where no bit error calculations are being performed. The reason for the discrepancy
is when BER calculation is disabled, the need for long expect queues that store
information about the transmitted data is eliminated. In a real system, the transmitter and
receiver would be independent and bit error checking would not be performed.

Memory Type Used Available
On-chip program memory 64064 bytes 65536 bytes
On-chip data memory 43612 bytes 65536 bytes
On-chip data memory (w/ BER disabled) 17508 bytes 65536 bytes
Off-chip memory 0 bytes 8MB
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Timing Information

Timing and profile information is given below for the major parts of our program.

Transmitter
Average interrupt time=0.75ms (125 CPU cycles)
Maximum interrupt time=2.14ms (354 CPU cycles)

Receiver
Average interrupt time=21.25ms (3541 CPU cycles)
Maximum interrupt time=25.43ms (4238 CPU cycles)

FSK Demodulation time=16.62ms (2770 cycles)
Pilot sequence detection time=24.42ms (4070 cycles)

Sample time = 45.35 ms (~7558 cycles)

Testing
Test cases

First, we tested the wireless system with 2 non-interfering channels with a simulated
identity matrix showing two direct channels only affected by noise. In this test we varied
the noise that was being added to learn about the system limits of non-interfering

channels. For this scenario, S equals �
�

�
�
�

�

10

01
.

After testing the non-interfering case, we tested the wireless system for the potential test
setting in the labs. The test setting used was an antenna height of 2.5 meters and an
antenna separation of 6 meters. This signal power was multiplied by 10 in the Simulink
simulator to provide sufficient amplification for the EVM’s input. The gamma value of
0.6 was assumed as a reflection coefficient of the lab area. For this scenario, S equals

�
�

�
�
�

�

��

��

264.0402.0

402.0529.0
.

Test Results

The results obtained from the first (non-interfering) scenario are plotted in Fig. 8. One
can see that the performance of the system without interference between the channels
seems to be good above 20 dB SNR, but deteriorates quickly below 15 dB SNR. It is
likely that this lower limit is dominated by the SNR requirements of the synchronization
and demodulation blocks.

The results obtained from the realistic lab test scenario are plotted in Fig. 9. Here,
performance can been seen as decreasing appreciably below 45 dB SNR, qualitatively a
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very large value. This increase in required SNR is clearly related to the fact that the
channel now is interfering, i.e. each transmitted signal can now be found in each of the
received signals. The mechanism of this reduction in performance is presented in the
next section.

Noise Enhancement

When using a zero-forcing equalizer, such as has been implemented in this project, a
phenomenon called noise enhancement can cause significant losses in performance.
When (7) is received by the C67 DSP, the first operation performed is equalization. In
the equalization operation, the recovery of x, the transmitted signal, is attempted. The
equalized signal, z, can then be written as the following:
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Equation (12) suggests that there are two components of the signal exiting the equalizer.
The first component is indeed the transmitted signal, x. The second component is noise;
however, the noise has been enhanced by the matrix S-1. This suggests that the noise
amplitude at the output of the equalizer is dependant on S-1. In fact, it can be shown that
the degree by which the noise, n, is enhanced is directly proportional to the sum of the
squares of the elements in the rows of S-1. Thus, if S is highly singular, the noise
enhancement will become significantly large. Looking at the two sets of data collected
and presented in the previous sections, one can see the effects of this noise enhancement.
In the non-interfering test, the system operation deteriorated appreciably at 15 dB SNR.
Likewise, the interfering case deteriorated at 45 dB SNR, leaving a difference of

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50
SNR (dB)

B
it

E
rr

o
r

R
at

e Channel 1
Channel 2

Figure 8: Performance in Non-Interfering Channel



16

approximately 30 dB. When we calculated the expected noise enhancement expected

from the simulation, using S equal to �
�

�
�
�

�
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��

264.0402.0

402.0529.0
, we found noise enhancements of

26 dB and 29dB for channels 1 and 2, respectively. As these values closely match the
experimental value of 30 dB, we can conclude that noise enhancement presents a
significant loss in performance in our system.

Conclusion

The results obtained from the setup described above suggest that the system performs as
expected and is able to extract the data from the individual channels successfully. It is
also noted that significant noise enhancement is being observed as a result of the zero-
forcing equalizer. Furthermore, it appears that the enhancement factor expected is indeed
that which is measured when operating the system with a real-time channel simulation. It
is expected that the system will function with an even higher performance in the real
channel, due to the significantly larger number of multipaths. It is the multipath that
allows this system to function, which leads us to believe that this system will function
well in any multipath-rich environment, such as the indoor wireless channel.

What’s Next?

The next step for the system is experimental testing with the RF equipment described
earlier in this report. This would include the use of the custom designed antennas
designed for this project. In order to obtain a successful demo, it is almost certain that
the equalization method be adapted to the minimum mean square error equalization
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(MMSE) method. It is expected that this method will reduce the amount of noise
enhancement experience in these initial lab demos. Along with this shift in equalization
methods, a shift in demodulation schemes might also be necessary.

Provided a successful result of testing with the RF equipment, a potential paper might be
written describing the experiment and processing used within it.
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