
Page 1

18551: Digital Communication and Signal
Processing Design

Spring 2001

Computer Generated
Melodies

Final Report – May 7, 2001
Group 7

Alexander Garmew (agarmew)
Per Lofgren (pl19)

José Morales (jmorales)
James Mourra (jmourra)

Page 2

TABLE OF CONTENTS

1. Introduction

• The Problem

• Solution Overview

• Prior 18-551 Work

• Alternative Solutions

2. What We Did

• Signal Flow Chart / Outline

• Note Detection Algorithm

• Pitch Shifting / Filtering Algorithms

3. Results

• Final Timing Data & Optimizations

• EVM Memory Usage

• Purchases Required

4. Summary

5. References / Web Links

Page 3

INTRODUCTION

The Problem:

As with anything, there is an elemental basis for the composition of music. The material

essence of music lies with its melody, harmony, rhythm, and dynamics. Melody gives music

soul, while rhythm blends the expression of harmony and dynamics with the tempo of the

passage. All are necessary to create a recognizable pattern known as a "song." (1)

Melody is structured by its length and intensity much like sentences in a spoken

language. For instance, a phrase in music is a unit of meaning within the larger structure of the

song in its entirety. Other examples include the cadence and the climax. A cadence is a final

ending to a musical section. A climax is a high point of intensity. (1)

Harmony is the relation of notes to notes and chords to chords as they are played

simultaneously. Harmonic "patterns" are established from notes and chords in successive order.

Melodic intervals are those that are linear and occur in sequence, while harmonic intervals are

sounded at the same time. Whether or not a harmony is pleasing is a matter of personal taste, as

there are consonant and dissonant harmonies, both of which are pleasing to the ears of some and

not others. (1)

Chords have meaning as they lead to other chords. Certain progressions are encouraged

as acceptable in certain styles of music. But basic to all harmony, regardless of style, is the triad.

A triad is the most common chord form. It is built on the first, third, and fifth notes of the scale

(do, mi, and so) and is symbolized in musical notation by the Roman numeral I. A triad built on

the second note of the scale would include the second, fourth, and sixth notes of the scale, still

keeping one scale degree between each jump. A triad built on the second note of the scale is

written as II. Triad chords may be built on all seven notes of the scale (with the eighth note a

Page 4

repeat of the first). Chord symbols for the triads built on the third through seventh notes of the

scale are as follows: III, IV, V, VI, and VII. The I chord is named the Tonic, and the IV chord is

named Sub Dominant. The V chord is the Dominant. The VII chord is referred to as the

Leading Tone, as it is often used to change (or "lead") into a new key. This organization around

tones is known as "tonality." (1)

In the music industry, often times there are artists out there who try to write their own

songs, but unless they’re musical geniuses, composing the melody and all the accompanying

harmony parts can be quite time consuming especially if you don’t know much about music

theory. This lack of harmony problem also arises among singers who don’t always have a band

or the right song to sing along with.

Solution Overview:

Our problem addresses the idea for computers to actually help generate music, given

basic structures to work with. By taking any signal from a given instrument, the computer would

strip it down to its base components and determine the fundamental structure of the music. It

would then create its own music to go along with it. By adding notes above or below the given

music, it would give musicians the ability to discover new sounds and textures. By inputting a

musical melody from a given instrument into the EVM, we should be able to output the original

signal, plus a number of harmonized pseudo-random signals. We say pseudo-random because

they will not be of any frequency but “in tune” to the original input. For example, if we input a

220 Hz signal, then certain other signals will sound "consonant" or "dissonant." How consonant

or dissonant it sounds is based on the ratio of the input frequency to the new signal. The lower

the numbers in that ratio, then the more consonant it will sound, but if the numbers are too high

Page 5

then it will sound dissonant. Dissonance is usually thought of as sounding "bad," but that is

purely up to the listener to decide. So, given the 220 Hz Signal, if we output it along with a

440Hz signal, the ratio is 220/440, which can be reduced to 1/2. This is very consonant and is in

fact one octave above the original frequency.

In each octave of music, there are 12 notes, consisting of A, A#, B, C, C#, D, D#, E, F,

F#, G, G#. A 220 Hz tone is defined as being a note of "A." One octave above that note is also

an A, which is twice the frequency of the lower A, or 440Hz. For each of the other notes in an

octave, we can use the following formula to determine their frequency: FREQ * 2^(n/12) where

n is a value from 0 to 12.

To represent each note we shall use a burst of a sinusoidal tone followed by a shorter

period of silence (a pause). These pauses will allow us to distinguish between two or more

separate notes in a row at the same pitch. The duration of each tone burst is determined by

whether the note is a whole note, half note, quarter note, eighth note, etc. Obviously, a quarter

note has twice the duration of an eighth note and so on. The short pause following each note will

be of the same length regardless of the note’s duration, unless we include slurs, which are

changes of notes without any breaks. (2)

In determining the notes in our sampled signal and also determining when each note

begins and ends we can use a process called a time/ frequency representation of the signal, or a

spectrograph. This is where time is plotted on the x-axis, frequency on the y-axis, and then color

is used to represent the presence or absence of frequencies in the signal during that particular

time. We should be able to first do this in MATLAB by breaking the sampled signal into small

time segments, of approximately 50 ms in duration, and plotting the energy present at each

frequency for that time segment. (2)

Page 6

Typically, when a note is played, the volume rises quickly from zero and then decays

over time, depending on how hard the string is struck and how long it is sustained. The variation

of the volume over time is divided into four segments: Attack, Decay, Sustain, and Release

(ADSR). For a given tone, we can change the volume by multiplying a sinusoid by another

function called a windowing function. A decaying exponential is the simplest way to modulate

the tone volume. We shall try concatenating different functions to model ADSR. (2)

As the volume of one note is decaying, another note is played. Mathematically this can

be accomplished by allowing the time regions occupied by different sinusoids to overlap. This is

ultimately what we want to achieve so we would have a much smoother, less staccato sounding

piece. (2)

Instruments are usually played in rooms that generate reverberations. Reverberations are

reflections off of room surfaces, including walls, ceiling, floors, and obstructions. In discrete

time mathematics, this is like generating echoes of the original signal, with decreasing amplitude

as the delay time increases. However, a major source (e.g. a back wall), may generate higher

amplitudes at specific delays. (2)

Most of the added effects of reverberation, and smooth overlapping notes are things that

should be created in the accompanied harmony sounds, but due to time restraints we decided to

narrow down are project to output just the basic harmonized tones along with the original input.

Prior 18-551 Work:

The purpose of our project was to implement a musical harmonizer on the EVM C67

board. This program would take guitar inputs and create a harmonious and in-tune

accompaniment for that input. The inspiration behind this is to aid the practicing musician. He

Page 7

or she could record a line of music, perhaps a melody, and then use our program to hear that line

of music with a possible accompaniment or harmony attached to it. The program would be able

to generate many different kinds of new signals so the user could get ideas for compositions from

it. This is the only project of its kind ever attempted in this class, but it can be approached in

ways similar to other projects. For example, code for sending information to the EVM was

extracted from previous lab code (6), as well as code for performing the FFT. (7), and also code

for sending DMA memory transfers. (6)

Alternative Solutions:

Originally we approached the problem from a "time-frequency analysis" point of view.

This meant finding the fundamental frequencies and where in the time domain they occurred.

There are several different methods in existence for performing this analysis, most notably STFT

(Short Time Fourier Transform) and DWT (Discrete Wavelet Transform). Unfortunately we

were not able to find any satisfactory C code for these methods. The spring 2000 project

concerning music transcription used "pitch estimation analysis" to find the notes of the input.

They filtered the signal with a combination wavelet/FIR filter and then measured the period of

the signal in the time domain. While this approach seemed logical we decided to try an intuitive

approach of our own creation. First, we placed constraints on the content of the input signal.

Each input would be a series of "plucked guitar string events" about 3/4 of a second apart. There

could be no chords or simultaneously occurring fundamental frequencies. In other words, we

would be searching for one frequency at a time. We also would limit the input to a narrow band

of frequencies, most likely 1 to 500 Hz or so. The first part of the analysis was to find where in

time the individual notes started. In other words find the numbers of the samples in the file

Page 8

where the "attack", or onset of the note, occurs. Summing up the energies of blocks of samples

could do this. For example, take the first 500 samples; add them up, save this number. Take the

next 500 samples, do the same thing. Keep doing this until the end of the file. Then look at this

list of sums. Where there is a big jump from one sum to the next, a new note has started. Next

we would want to know the fundamental frequency of the note. Starting from the attack sample

number, take an FFT of the next 1024 samples or so. This would produce a frequency content

"picture" of that note with peaks at its fundamental frequencies and its harmonics, which are

scaled down integer multiples of the fundamental frequency. The fundamental frequency of the

note will have the largest peak, so the energy value of that FFT point will be greater than all the

rest, thus making it easy to identify. Once we knew the "what" and "where" of the signal's

frequency content, we could then create output signals that have frequencies that are "in-tune"

with the input. We were able to make this work in MATLAB, but it was decided that it would be

too difficult and inefficient to implement on the DSP. It was decided instead to use pitch shifting

to create harmonious accompaniments. The decision to abandon the frequency analysis

approach to output generation was based mainly on two factors. First, the difficulty in accurately

determining the pitch of the individual notes and second, the occurrence of "false positives" in

the attack detection algorithm. Had we continued on with this method we also would have

encountered the problem of generating accompaniment signals that sounded "plausible" and

"intelligent". What exactly define good and bad music and how to create it are difficult things to

discern. For instance, the accompaniment signal would have to be of the same duration as the

input, but where in the time domain of this new file would the output notes occur? Would they

occur synchronously with the input or in between? Also, what would they sound like? Would

they simply be sinusoids played through the sound card? That could scarcely be called music. It

Page 9

was thus decided that we narrow the scope of our project to simply shifting the pitch of the input

signal, the output would then be a "frequency shifted" version of the input. This removes the

arduous and precarious task of time-frequency analysis. The question of how good these pitch

shifted accompaniment sounds is a matter of personal taste. The fact that it is less error prone

than time-frequency analysis makes it very attractive, but the possibilities for the variety of

outputs is severely limited. Now the generated signals will have many of the same

characteristics as the input. What our pitch shifting essentially does is create chords out of single

notes, as opposed to playing a harmony to an inputted melody, so maybe the output is not

different enough from the input to lend true insight to the music composition process.

WHAT WE DID

Signal Flow Chart / Outline:

Pitch Shifting
w/PRN

Add
Signals

(different
channels)

Output
(stereo)Input

(mono)

Filtering

Detect
Notes

Page 10

As an input signal to the EVM we send a mono .wav file of a guitar melody. Any

sampling rate can be used, but the higher the better, which would also take longer to process.

Next the signal is then processed to determine when and where in the signal each new note

begins. Then each note of the waveform is then pitch shifted by one of five pseudo-randomly

chosen scales. The filtering process includes FFT, cropping of excess interpolated zeros, and

then IFFT. The output is then written to a stereo .wav file with the shifted signal of the same

length of the original signal on one channel, and then the original signal is on the other channel.

Note Detection Algorithm:

To determine when where in the input sample to start pitch shifting, it was important to

first find where each new note begins. To do this, the input waveform signal was divided up into

1024 sample chunks, and then the average of the samples of each chunk was calculated. Then

using all the averages you then look for when there’s a huge positive jump from one chunk to the

next. In our case we used normalized waveforms and determined a difference of greater than 1.5

the previous chunks value, then that’s where a new note would begin. This algorithm also works

on the assumption that notes will be separated by at least 1024 samples.

Pitch Shifting / Filtering Algorithms:

We create the pseudo-random computer-generated music as follows. First, we get the

input .wav file, which contains a string of notes. For the purposes of the lab demo, we chose to

use a recording of an acoustic guitar. These recordings consisted of 4-10 notes played

individually (i.e., no chords, or overlapping notes), Polyphony, or more than one note being

played simultaneously, is beyond the scope of the project.

Page 11

Taking the input sound file, we first do peak detection, to determine where notes begin

and end. We then randomly select a ratio by which to shift each note. We chose to have 5

different ratios of shifting, consisting of the following: Perfect Fifth: 2/3, Perfect Forth: _, Major

Third: 4/5, Major Sixth: 3/5, and Minor Third: 5/6. (8)

These ratios can be thought of in two ways: 1) The ratio of the frequencies of the input to

the output, or 2) the ratio of the number of samples that we downsample to from the input to the

output. For example, The following shows how we shift a given note from its original frequency

up a Fifth. First, we cut up the note, which we shift into useable chunks. We chose 1024

samples per "chunk," as shown in Figure 1 below.

Figure 1

The reason we chose this number is that the frequency range on a guitar is approximately

80-1500Hz. The maximum frequency reproducible by a 22050Hz input signal is approximately

Page 12

11025Hz. If we divide 22050Hz by 1024Hz, we get approximately 21 chunks per second. Each

one of these chunks can represent a frequency as high as 512Hz. This frequency is high enough

to get a decent representation of the input and allow us to shift it reasonably as long as we stay in

the lower frequencies of the guitar. We may lose some harmonics on the shifted output notes,

but if we use chunks that are much larger, we will lose accuracy, since notes can be quite short.

Also, the FFT we implement needs to use a power of 2, so 1024 was an ideal choice. We ran

into a small problem with some shifts, which I will go into detail after the explanation.

Once we have the 1024-sample chunk, we must shift it. Still using the example of a

Fifth, we want to end up with a sample that is 2/3 the size of the original sample. This means

that we want to "shrink" the 1024 sample chunk down to a 683-sample chunk. We cannot just

take 2 samples, skip one, take two, etc… because this will change the waveform. We must first

upsample the waveform by taking the original 1024-sample chunk. Next we interpolate zeros as

follows and then create a 2048-sample vector as shown in Figure 2 below.

Figure 2

Page 13

Once this is complete, we need to low-pass filter the upsampled waveform to interpolate the

zeros with values. We did this simply by taking a 2048-pt FFT of the vector as shown in Figure

3 below.

Figure 3: As you can plainly see, the FFT has two sets of peaks. To low-pass filter, we simply

zero all values above 512 samples.

Figure 4

We then IFFT this truncated vector to get the interpolated 2048-sample waveform as shown in

Figure 4 above.

Page 14

Figure 5: Comparing this waveform to the original, we see that it is exactly the same, except for

the higher resolution. Now we just need to take every third sample.

Figure 6

Page 15

We now have a downsampled version of the input chunk as shown in Figure 6 above. To

get a 1024 sample chunk from this 683-sample chunk, we simple cut and append the last third of

the shifted waveform to the end. We then send this shifted waveform back to the output in the

same location as the original chunk so that the two notes are played simultaneously.

Some problems encountered with this method were quite devious. When shifting by

other ratios we begin by interpolating 2, 3, or 4 zeros instead of just one, which creates vectors of

length 3072, 4096, or 5120 samples. Since our FFT cannot deal with vectors whose length is not

a power of two, we had to find ways around this. So we simply adjusted the ratios and simply

rounded when necessary. For a Forth, for example, we changed the ratio 3 /4 to 4/5.3333333.

These new ratios worked perfectly. Another problem was that as we interpolated more zeros, we

have to take bigger FFTs, and hence use up more CPU time.

One alternative approach we considered was to take 1024 sample chunks with an offset.

We could overlap over chunks, so as not to need to append the last _ or _ to create the illusion of

a 1024-sample chunk; however, this had a number of drawbacks such as increased CPU usage

since we would be doing 1/3 more FFTs to determine the output. Also that we would have to

determine the ratio prior to cutting the input into chunks in order to determine the number of

samples to overlap. In the end, our method can sound clipped, but mostly retain the sound of the

original guitar.

RESULTS

Final Timing Data & Optimizations:

Memory was a big concern; however, we were still able to keep the program in on-chip

data. The big concern with memory was how to do the pitch shifting efficiently with all the

Page 16

samples on off-chip memory. All of the input samples are located in SDRAM. We do this so we

can store 1,045,504 floating-point samples. This is done to minimize the amount of times data is

transferred between the EVM and the PC. The problem is that SDRAM is too slow, so we page

1024 samples into SBSRAM memory. Our program shifts the pitch of every note in the input.

We do this using a for loop and an array that tells where each note starts. In this for loop we

shift the pitch of 1024 sample chunks for as many samples as a note lasts. Since we only needed

1024 samples at a time we attempted paging for optimizations. We tried paging the samples into

on-chip data, but we did not have enough memory left over on-chip. We paged both the input as

well as the output.

First we placed the samples into SBSRAM memory using for loops. Then, in order to

optimize the transaction, we unraveled the loop to take advantage of the EVM’s parallelism. The

chart on the next page will show an increase in performance of 6,320.3 cycles on average. Next

we tried to get rid of the for loops used for paging, by using DMA transfers. DMA transfers were

used for paging the input and the output. The chart will show an increase in performance, from

the unraveled loops, by 8,169,222 cycles in total. We then tried to initiate two DMA transfers at

once. That is, we used two DMA transfers to bring in two pages of samples. The chart will

show an increase in performance from the previous DMA transfer by 43,819,184 cycles in total.

There is an increase in number of cycles on average, but that is because we are shifting two

pages within each iteration of the loop, which means that throughput goes up.

That’s all we did for paging the samples. Our next optimization step was to look in every

pitch shifting function we have and unravel each loop. This showed an increase in performance

of 7,356,064 cycles in total when using one DMA transfer to page the input, and it showed a

similar increase when using two DMA transfers to page the input. The only reason the increase

Page 17

in performance would be different for the two is because of the overhead of using profile points.

When optimizing the code for pitch shifting, DMA transfers were not considered because inside

each loop there was some scaling of the index. This made DMA transfers impossible because

DMA transfers copy one continuous piece of memory onto another.

One thing that we could not do was to place the paged input into on-chip memory. We

had to place the stack on the SBSRAM memory, which was faster than the SDRAM, and that

helped significantly. But if we could have kept the stack size down we could have made the

program run a lot faster. Another thing we could have done was check if the FFT code we

downloaded from the Internet was the fastest we could find. We should have looked more

rigorously for a good FFT. (7)

Data from Profile points
Testing Count Average cycles Total number of cycles

For loops to page memory 131 43,947,882.5 5,757,172,605

Parallelism in for loops 131 43,941,562.2 5,756,344,651

One DMA trans. for input 131 43,879,201.7 5,748,175,429

Two DMA trans. for input 65 87,759,326.8 5,704,356,245

One DMA trans. w/ para. 131 43,823,048.6 5,740,819,365

Two DMA trans. w/ para. 65 87,679,561.4 5,696,998,989

Profile times for each Pitch Shifting function
Shifting function Count Total number of cycles

Fifth 1 43,795,094

Forth 1 43,806,728

Major Third 1 43,802,780

Major Sixth 1 43,803,915

Minor Third 1 43,798,244

Page 18

EVM Memory Usage:

Table of memory placement
Origin addr.(in hex) Length Comments

Program text 260 47.5 Kb Fast memory
Program stack 440140 UNINITIALIZED SBSRAM
Far memory 3000000 UNINITIALIZED SDRAM0 for input samples
Global Variables 2000000 UNINITIALIZED
Global Const. 440000 315 bytes SBSRAM

Purchases Required:

The only additional equipment used was a guitar, microphone, and speakers. All

equipment was acquired from personal owners, so no purchases were required.

SUMMARY

In summary, we accomplished a lot in the amount of time given to work on this project.

All of our algorithms worked to make a harmonizer. We got everything to fit into memory and

also to work on the EVM. For our lab demo, we successfully inputted a mono 22 kHz .wav file

of a guitar melody into the EVM for processing. After running our program we outputted a

stereo signal of the same length with the pitch-shifted signal on one channel and the original

signal on the other. The pitch-shifted signal wasn’t quite as smooth as a guitar should sound, but

they were good enough and in tune to act as a sufficient harmonizer to the original sound.

Page 19

Given more time, we think we could have implemented harmonizing tunes with a

different beat than that of the original signal. Also, we might have found a faster way to

implement our algorithms so that we could process input signals on the fly. And we could add

together more than one harmonized signal with the original for more complex chords. Another

improvement would be to add more scales for a wider range of frequencies. But all of these

improvements would require many years to accomplish.

Page 20

REFERENCES / WEB LINKS

(1) http://nd.essortment.com/elementsmusic_rllc.htm

(2) Stonick, Virginia (1996). Digital Music Synthesis. Labs for Signals and Systems: Using

MATLAB, pp. 25-32. Boston: PWS Publishing.

(3) http://ccrma-www.stanford.edu/~pdelac/220c/pitch_detection/img2.htm

(4) Stereo Wave File Format: http://www.borg.com/~jglatt/tech/wave.htm

(5) Wave File Format:

http://www.technology.niagarac.on.ca/courses/comp630/WavFileFormat.html

(6) Lab 3 Code: http://www.ece.cmu.edu/~ee551/Labs.html

(7) FFT Code: http://www.mathcs.carleton.edu/faculty/jgoldfea/cs395/FFT

(8) Pitch Shifting Music Ratio Knowledge:

http://home.datacomm.ch/straub/mamuth/mamufaq.html#Q_ntet

