
DIGITAL PHOTO ALBUM USING EPIC

18-551 SPRING 2001

RUCHI MITTAL (rmittal),
JENNIFER WONG (jlwong)

Table of Contents
Table of Contents.. 2
1. Introduction... 3

1.1 Problem Description ... 3
1.2 Similar Previous 18-551 Work ... 3
1.3 Overview of Solution.. 4

2. Image Data Compression.. 4
2.1 EPIC.. 5
2.2 EPIC encoding and decoding algorithm ... 7

2.2.1 Encoding (Compression) .. 7
2.2.2 Decoding (Decompression) .. 10
2.2.3 Implementation on the EVM .. 10
2.2.4 Result .. 12

3. Image Enhancement ... 16
3.1 Smoothing Filters.. 16
3.2 Edge Enhancement Filters .. 16
3.3 Implementing Filtering on EVM .. 17
3.4 Improving Speed Performance ... 18
3.5 Results of image enhancement.. 19

4. Face Detection .. 19
4.1 Introduction... 19
4.2 Software .. 20

4.2.1 Software Background.. 20
4.2.2 Face Detection .. 20
4.2.3 Face Tracking.. 22

4.3 Assumptions.. 22
4.4 Modifications .. 23

4.4.1 Problems with Original Code.. 23
4.5 Final State ... 25

5. Conclusion .. 26

1. Introduction

1.1 Problem Description

Modern image-and-video-compression techniques offer the possibility to store or

transmit the vast amount of data necessary to represent digital images and video in an

efficient and robust way. Compressed image-and-video data is transmitted through the

Internet with PCs. With the advances in VLSI technology, it is possible to access the

Internet with networked multimedia applications on slim hosts such as personal digital

assistants (PDAs) and cellular phones.

When people access the Internet, the most important thing for them is to obtain

information. In this situation, applications like downloading pictures from the Web would

require fast decoding. Sometimes a slight degradation would be acceptable due to high

compression rates and fast decoding. Therefore, for slim hosts powered by batteries, the

need to speed up the decoding of images without increasing power consumption is

important.

One increasingly popular research area is face detection and recognition of faces

in images. In such an application, the image should be of high enough clarity, so that this

complex algorithm can be executed on it. Therefore an enhancement procedure should be

available to help the user increase the clarity of images, together with a fast decoding

algorithm.

Under these circumstances, for one implementation, we developed a convenient

digital photo album. This photo album stores compressed image data. When needed, a

data decompression algorithm decompresses these data, and a program that detects faces

sorts out human faces.

1.2 Similar Previous 18-551 Work

algorithm used in this previous project is different from the EPIC decompression

algorithm that we are using. Therefore, our project is significantly different from their

project and other previous projects.

1.3 Overview of Solution

In this project, we will develop a digital photo album with three parts: image data

compression/decompression, post-filtering, and face detection. This photo album will

require stationary images (referred to from this point on as images) to be stored in a

compressed form. When needed, the compressed images are decompressed. The Efficient

Pyramid Image Coder (EPIC) algorithm implemented on the EVM executes these image

data compression/decompression processes. Then, face detection will help search

through the pictures to find the human faces, rather than the user having to look through

all the pictures to find the ones he/she needs.

There will be cases when particular photos are degraded and blurry. So there

should be an option that can allow chosen photos to be enhanced with post-filtering

algorithms implemented on the EVM.

We will be focusing our attention and energy on selected aspects of this problem.

We will implement the compression, decompression and optional post-filtering on the

EVM. In addition, to make the demo more attractive, we will do face detection on the

image with the PC.

2. Image Data Compression
Efficient Pyramid Image Coder (EPIC)1 is an experimental image data

compression utility written in the C programming language. The compression algorithms

are based on a biorthogonal critically-sampled dyadic wavelet decomposition and a

combined run-length/Huffman entropy coder. EPIC is designed for extremely fast

encoding and a slight degradation in compression quality (as compared to a good

orthogonal wavelet decomposition).

In this project, EPIC encoder and decoder were implemented on a TMS320C6701

Evaluation Module (EVM) containing a Texas Instruments C6701 DSP (C67).

First, in this section, characteristics of EPIC are briefly explained from a

theoretical point of view. Secondly, EPIC encoding (compression) and decoding

(decompression) algorithms are introduced. Finally, the implementation of EPIC on the

EVM and the results are reported.

2.1 EPIC

For data compression, a subband coding is an effective means. In the subband

coding, original signals are recursively subdivided into subband signals. As one of the

subband coding algorithms, Quadrature Mirror Filter (QMF) decompositions are popular

since it has the following advantages. First, pyramids built with QMF kernels have a

number of desirable properties for signal processing. Second, a hierarchical computation

is highly efficient. Third, the number of coefficients in the transform is equal to the

number of pixels in the original image.

One of the problems of practical QMF is that the QMFs require larger kernels.

Especially, well-behaved kernels with an even number of taps tend to be rather large.

This means that these filters require many floating-point multiplications. On the other

hand, odd-tap kernels can be more compact than the commonly used even-tap kernels. To

form an orthogonal basis set, these kernel must be applied on staggered grids. Kernels

with a width as small as seven can produce highly accurate reconstructions. In transforms

based on QMF kernels, the basis set is orthonormal. As a result, the sampling functions

are identical to the basis functions. However, orthogonality is not required for image

coding: it is only necessary that the transform be invertible.

they do form a linearly independent basis set. The only problem is that the filters violate

the standard QMF criteria, and therefore a different set of filters must be designed for the

encoding process.

The image vector e may be written as a weighted sum of basis vectors

corresponding to shifted versions of the filters, which appears as columns in the matrix F.

If the weighting coefficients from a vector p we have:



























−

−−

−

=

=

...1
21
121

121
12

1

F

Fpe

For encoding, we seek a matrix G that will deliver the coefficients when applied

to the image. That is:

p = Gt e

and thus

G = (F-1)T

Then, the task is simple to invert F; the columns of G will correspond to the encoding

filters. The true inverse sample function has no-zero taps over the entire image, but 15-

tap sample functions work quite well in coding image. This 3-tap kernel is extremely

easy to compute, using only shifts and adds, with no multiplications. They can be

2.2 EPIC encoding and decoding algorithm

2.2.1 Encoding (Compression)

Encoding consists of transformation, quantization and Entropy coding shown in

Figure 1. The entropy coding consists of the Run-length and Huffman encoding, called

variable length encoding (VLE).

Figure 2-1: Block diagram of encoding

2.2.1.1 Transformation

The Quadrature Mirror Filter (QMF) h(n) (n=1,2,...,L), low pass filter, and its

corresponding high pass filter g(n) (n=1,2,...,L) are used to implement the wavelet

transforms, where L=15 in EPIC as described in 2.1.

Transformation process at a single level is shown in Figure 2-2. In order to

transform 2-D image signals, two 1-D filters, h(n) and g(n), are applied to original image

x(n) and downsampled by a factor of 2 in the X direction. Next, two filters are applied

separately in the Y direction and also downsampled by a factor of 2 to produce H1, V1,

D1, and L1. H1 contains horizontally oriented high frequency information, while V1 and

D1 contain high frequency information oriented in the vertical and diagonal directions,

respectively. L1 is a low pass filtered and downsampled version of the input signal. Then,

since the L1 can be classified as most important and the other ‘detail’ bands can be

Transformation
(15 taps) Quantization Run-length

Encoding
Huffman
Encoding

Encoding (Compression)

Original
 Image

Compressed
 Image

Entropy coding

octave-band tree splits. The resulting four level subband decomposition is shown in

Figure 2-3.

Figure 2-2: 2-D transformation at a single level

L4 H4 H3 H2 H1
V4 D4
V3 D3

V2 D2

V1 D1

Diagonal (D1)

Vertical (V1)

High (H1)

Low (L1)

Original
Signal

h(n) 2

h(n)

g(n)

2

2

h(n) 2

h(n)

g(n)

2

2

2.2.1.2 Quantization

Quantization refers to the process of approximating the continuous set of values in

the image data with a finite (preferably small) set of values. The input to a quantizer is

the coefficient transformed from original data, and the output is always one among a

finite number of levels. The quantizer is a function whose set of output values is discrete,

and usually finite. Obviously, this is a process of approximation, and a good quantizer is

one that represents the original signal with minimum loss or distortion.

In EPIC, Quantization step is fixed for each band, decreasing by a constant factor

at each level. Therefore, this is clearly not optimal.

2.2.1.3 Entropy Coding

In EPIC, entropy coding is composed of Run-length and Huffman coding.

Entropy means the amount of information present in the data, and an entropy coder

encodes the given set of symbols with the minimum number of bits required to represent

them.

The Run-length coding assumes that the quantized coefficients at higher

frequencies would likely be zero, thereby separating the non-zero and zero parts. The

quantized coefficient is coded into a sequence of the run-level pair. The run is defined as

the distance between two non-zero coefficients in the array. The level is the non-zero

value immediately following a sequence of zeros. This coding method produces a

compact representation of the coefficients, since a large number of the coefficients have

been already quantized to zero value.

The Huffman coding finds the optimum (least rate) uniquely decodable, variable

length entropy code associated with a set of events given their probabilities of

occurrence. The main idea of Huffman coding is to represent data by codes of variable

2.2.2 Decoding (Decompression)

Decoding algorithm performs the reverse operations of the encoding shown in

Figure 2-4. As described in 2.1, at the inverse transformation, 3-tap [1 2 1] filter is used.

Figure 2-4: Block diagram of Decoding

2.2.3 Implementation on the EVM

As mentioned above, EPIC was implemented with C Program on UNIX, but only

for 8 bits gray scale image data: Portable Gray Map (PGM) format. We implemented

EPIC on the EVM as the following steps. First, the original algorithm for gray scale

image was implemented on the EVM. Second, the program was modified to deal with

color image. Third, the performance improvement in terms of speed was implemented.

In this project, we assume image size is 256 x 256 pixels for simplicity.

Conversion from the original C program to the EVM implementation was based on the

code from the Lab3. The implementation of the EPIC encoder and decoder on the EVM

are shown in Figure 2-5, Figure 2-6.

At the encoder, the PC will read image data and transfer it to the EVM. Then, on

the EVM, transformation, quantization and Run-length encoding will be applied to the

Inverse
Transformation

(3 taps)

Inverse
Quantization

Decoding (Decompression)

Decompressed
 Image

Run-length
Decoding

Huffman
Decoding

Entropy decoding
Compressed
 Image

EVM and then these signals will be transferred to the PC. Finally, the PC will

concatenate together and add the EPIC header and some parameters such us image size to

the data and write the compressed image data into a file.

At the decoder, first, the PC will read compress image data. Then transfer low

image data to the EVM. After performing Huffman decoding for high frequency images,

these decoded signals will transfer to the EVM. On the EVM, Run-length decoding will

be applied to this signal, then inverse quantization and inverse transformation will be

applied to the all data. The EVM will transfer the decoded data to the PC. Finally, the PC

will write the decoded signal to a file in PGM format.

Figure 2-5: Implementation of the encoder on the EVM

Encoding (Compression)

Transformation
(15 taps)

Quantization Run-length
Encoding

Compressed
DataHuffman

Encoding

PC

EVM

Original
Image

 (PGM)

low frequency data

Decoding

 Decompressed
Image (PGM)

PC

Compressed
Data

Huffman
Decoding

Figure 2-6: Implementation of the decoder on the EVM

2.2.3.1 Color image

In order to correspond to color image, we assume color image is given by Red-

Green-Blue (RGB) data in Portable Pixel Map (PPM) format. Under this assumption,

implementing color image was straightforward – processing each of the color images

separately. In the PC program, color image or gray scale image will be automatically

detected by reading header file in PGM or PPM file.

2.2.4 Result

Figure 2-7, Figure 2-8 shows the comparison between the original image and the

compressed image for gray scale and color images respectively.

The original “Lena” image
at 256 x 256 pixels

Compressed image with EPIC
Compression ratio: 1/20

65536Bytes (8bits per pixel) 8633Bytes (1.1bits/pixel)

The original “GIRL” image
at 256 x 256 pixels

Compressed image with EPIC
Compression ratio: 1/20

196666 bytes
 (8x3(RGB)=24 bits per pixel) 18789 bytes (2.3 bits/pixel)

Figure 2-8: Color image

The encoding and decoding program are stored in the on-chip memory; on the

other hand, image data was stored in the 8MB external memory on the EVM. Table 2-1,

Table 2-2 show the EVM Memory usage for the Encoder and the Decoder respectively.

Table 2-1: EVM Memory Usage for the Encoder

Encoder
Image 256*256*4bytes
Transformed signal 256*256*2bytes
Quantized step data 13*2bytes
Entropy coded symbol stream 256*256*2bytes

Table 2-2: EVM Memory Usage for the Decoder

Decoder
Compressed data 256*256*2bytes
Unquantized data 256*256*4bytes
Quantized step data 13*2bytes
Entropy coded symbol stream 256*256*2bytes
Transformation filter 0 (shifts and adds)
Decompressed data 256*256*4bytes
Total 786Kbytes

Table 2-3 shows the amount of time for each process of the encoder and decoder.

The transformation of the encoder takes 233.0 Million cycles, 12 times longer than

inverse transformation of the decoder for the original version, since encoding filter is 15

taps.

Table 2-3: Cycles for encoding/decoding on EVM

Encoder Million cycles Decoder Million cycles

Transformation 233.0 Inverse
Transformation 19.0

Quantization 31.4 Inverse
Quantization 6.1

Run-length 2.8 Run-length 1.4

2.2.4.1 Performance enhancement

From Table 2-3, our performance improvement efforts focused on the

functions is not easily to be modified, we applied the loop-unrolling only to the center

function. After implementing the loop-unrolling, the cycles decreased to 128.4 Million

cycles. We got the big improvement. Since the epic transformation function was not

optimized, we optimized a lot while implementing the loop-unrolling. Therefore, the

reason for this big improvement is not only the loop-unrolling, but also the code

optimizing by hand.

Next, we implemented the paging on the loop-unrolling program. The paging was

also applied to the center function of the transformation and the workspace size in on-

chip memory is 256 (pixels) * 24 (lines) * 4 (bytes) = 24.5Kbytes. After implementing

the paging, the cycles decreased to 104.1 million cycles.

Table 2-4 Cycles for encoding/decoding transformation

Million cycles

Original 233.0

Loop unrolling 128.4

Encoder

Paging 104.1

Inverse transformation has little room for the parallelization because it has already

optimized. In addition, since inverse transformation process has lack of memory locality,

it was difficult to implement paging. Due to time constraint, we did not improve the

inverse transformation.

3. Image Enhancement 2

EPIC Compression is a lossy algorithm, meaning that there is going to be loss of data.

Hence, the original image cannot be fully restored. However there are numerous

techniques that can be used to reduce or remove artifacts present after decompression.

EPIC’s main advantage over other compression algorithms is that it is fast. We therefore

decided to filter the digital image. We used the low pass filter to help make the image

more aesthetically pleasing, and the high pass filter for edge enhancement. The high pass

would have been useful for enhancing facial features for face detection purposes.

3.1 Smoothing Filters

Smoothing filters are designed to reduce the noise, detail, or ‘blurring’ in an image.

Typical smoothing filters perform some form of moving window operation that may be a

convolution in the window. It is easy to smooth out an image, but the basic problem of

smoothing filters is how to do this without blurring out the interesting features. For this

reason, much emphasis in smoothing is on ‘edge-preserving smoothing’.

3.2 Edge Enhancement Filters

Edge enhancement filters are the opposite of smoothing filters. Whereas

smoothing filters are lowpass filters, edge enhancement filters are high pass filters and

their effect is to enhance or boost edges.

We sampled many different filters, and found that these 2 had the best results.

1) Smoothing Filter

1 2 1

2) Edge Enhancement Filter

 -1/3 -1/3 -1/3

 -1/3 11/3 -1/3

 -1/3 -1/3 -1/3

We tested filters using the MATLAB command ‘filter2’ on an array of image values. The

electronic copy of the entire code is attached.

e.g.

fname=sprintf('lena.raw', i);

 if(fid > 0)

input(:,:) = fread(fid, [256 256], ‘uint8’)';

 fclose(fid);

 disp(['Read file ' fname]);

 else

 input(:,:) = zeros(256, 256);

 disp(['File ' fname ' not found']);

 end

end

H = [1 1 1 ; 1 1 1; 1 1 1]/9

I = filter2(H,input)/255

Imshow(I), figure; Imshow(input)

Figure 3-1: Spatial Correlation performed on input image

3.4 Improving Speed Performance

Without any improvements, the algorithm took 3.5 million cycles, where each cycle is 40ns.

After implementing paging, DMA transfers and loop unrolling, this decreased to 0.49

million cycles.

However, the external memory interface (EMIF) on the C6701 processor is very

slow. Single word accesses to external memory take roughly 15-17 cycles per access.

Accesses to the internal (on chip) RAM only take 1 cycle. This filtering procedure

accesses each pixel 9 times. So if external memory is storing the image than each pixels

would need 15*9 = 135 cycles to compute. It would be faster if each pixel was first read

from external memory (15 cycles) and 9 times from On-Chip for a total of 24 cycles. A

problem with using On-Chip is that it is limited in the fact that internal data memory is

much less than external, being only 64K. This won’t be large enough to hold an entire

image. So we needed to copy blocks of the image one at a time into internal memory and

calculate those results. We calculated the output for blocks of 16 lines.

Since there is a large overhead only for the first transfer of each pixel, it would be

Our final speed improvement implementation was loop-unrolling. This was useful

since our program contained nested loops, as the optimizing C compiler only pipelines

the innermost loop.

3.5 Results of image enhancement

The smoothing algorithm worked well with faces, as it reduced any harsh artifacts

and lines present. It didn’t work as well with other images like boats. The ship name

became too blurred. The edge enhancement algorithm also worked well with facial

images. The iris of the eyes was clearer, which would help the face detection process.

Here are some examples of the images prior to and after filtering.

Image after compression Image after filtering

Figure 3-2: Filtering result

4. Face Detection

recognition. Once the face is detected, the digital camera can apply separate recognition

algorithms to recognize the face. This will help us simplify the process of sorting through

our digital photo album. Originally, we had wanted to try to incorporate face recognition

into our project if we had time after finishing face detection. However, because of time

constraints, we could only focus on the detecting aspect of face recognition in our project

demo.

We choose to include face detection in the project in order to make the lab

demonstration more interesting. We did not intend to make face detection a real focus of

the project. As a result, we only wanted to run face detection on the pc based on time

constraints and memory constraints on the computer.

4.2 Software

4.2.1 Software Background

The face detection is done using the Face Detection software developed by Henry

Rowley, an alumni of CMU3. We had difficulty obtaining this code in its original version

because we could not contact anyone that had access to this code. The closest code that

we could obtain to Rowley’s face detection software was a face tracking software

program that contains Rowley’s face detection software. The tracking software was

developed by Professor Tsuhan Chen and his team. We were able to contact Professor

Chen and obtain a copy of the face tracking software that he and his team created.

4.2.2 Face Detection

Rowley’s face detection code uses neural networks and training to find faces in an

gray scale input image. Rowley’s program utilizes a face detection neural network to

detectors, an arbitrator pieces the results from each individual detector and then

determines if one or more faces are present in the input image.

4.2.2.1 Neural Network Used in Rowley’s Face Detection software

The neural network detectors use a process called “face labeling” when searching

for a face in an image. With face labeling distinguishing points on the face such as the

pupils in the eye, the nostrils of the nose, and the corners of the mouth are selected and

marked on an image. The individual detectors attempt to locate these points on an input

image. If the points are present the detector returns a positive result indicating that a face

has been found.

4.2.2.2 Algorithm for Detection Process

In Rowley’s code, the face detection neural network receives a 20 x 20 pixel

region of the input image. This region is preprocessed using lighting correction and

histogram equalization. Following this it is passed on to the neural network detectors.

The neural network runs detectors all over this 20 x 20 pixel input image. The results are

returned and processed determining how many faces are present in this input window. If

a face is larger than this window, the input image is repeatedly reduced in size by a factor

of 1.2 using subsampling. Detectors are run on the preprocessed, subsampled image at

each size. Following this, the arbitrator unit pieces the results of each detector and then

determines the number of faces present in the image. We have included a graphical

version of the basic algorithm for detection, obtained from Henry Rowley’s thesis report.

Figure 4-1: The basic algorithm used for face detection

4.2.3 Face Tracking

Face detection is the initial step to another process called face tracking. Face

tracking is the process of locating and following a face in a video clip. The face tracking

software basically accepts a color video clip as an input. It then takes the first frame from

this video clip converts the frame into grayscale, and then runs face detection on it. Once

the location of the face or faces have been found, this process is repeated on the next

succeeding frame in the video clip. The face is tracked within the video by piecing

together where the face has moved in the new frame relative to the old frame.

4.3 Assumptions

There are several challenges in original face detection that we must note. For

instance, problems could arise with variations in the size of the face, angle of rotation of

the face (face is frontal but is tilted sideways some angle), brightness and contrast of

image (attributed from changes in light source), variations on the subject’s pose (face is

image during detection. Lastly, facial expressions also had to be accounted for. This can

include closed or opened eyes and mouth and whether a person is smiling or frowning.

 In order to simplify the task of face detection, and to reduce the size and the

complexity of the code, we did not account for many of the problems mentioned above.

The face detection algorithm that we used made several assumptions about the image that

it is applied on. We only used images where the subject’s face is in a frontal position, the

face is not tilted sideways, and the face is not tilted up or down too much. The facial

expression of the person was restricted to a person with a closed non-smiling mouth and

open eyes. The face detecting algorithm was only used on images that vary slightly in

brightness and contrast from the given sample face. The images used had a very uniform

one-color background that was easily distinguishable from skin color, similar to a mug

shot. The images we used followed these characteristics. We used the face detection

algorithm on this image scaled at a larger and a smaller size. We also had a few images

that did not have any faces present in them, so that we could show that the program

mentions that there is no face present, when a face cannot be found in the image.

4.4 Modifications

4.4.1 Problems with Original Code

We had several problems with the original code that we obtained from Professor

Chen’s. Professor Chen’s software is actually for use on face tracking. As explained

above, the program takes a video clip as an input and then runs face detection on each

individual frame of that clip to perform tracking. Because we only need to perform face

detection on an individual still frame we did not need much of the extra code that is used

for tracking. As a result of the additional tracking code, the face tracking program

time of face detection on the input image much faster. Following this, we also needed to

modify the input to this code. As discussed before, the original code accepts a video clip

as an input. We needed to perform face detection on a single gray scale image. As a

result, we modified the parameters of our new face detection code so that it can

accommodate this. After all these modifications the code should work such that when it

receives an input image, it should determine whether or not a face is present. If a face is

present it should mark an “x” on the eyes and then place a box on the face region. This

can be seen in the following figure (Figure 4-1).

 Image before detection Image after detection

Figure 4-2: Desired result for image with face present

If a face is not present it should also return a response indicating so. The following figure

is an example of this (Figure 4-2).

 Image before detection Image after detection

Figure 4-3: Desired result for image without face present

After we finished the face detection modifications, we integrated the EPIC

compression/decompression code and the image enhancement code together with the face

detection, so as to get the entire project working together.

4.5 Final State

After integrating the different parts of the project, we tried to run the final project

so that we could get our results. However, we had a few linking errors when we tried to

run face detection together with the other parts. We really tried to examine these errors

and try to fix them. One of the TA’s for this class, and one of Professor Chen’s students,

who had actually written the face tracking code, sat with us for a long time helping us

attaching it to another program. As a result, we were unable to test the final detection

code, or to test the entire program integrated together. Since the face detection part of the

project was not the main purpose of the project, we spent more time trying to perfect the

other parts, and so we were not able to spend a lot of time trying to figure out why we

were getting the errors for the face detection part. The actual face detection program

consists of several sub-programs. However, a lot of these programs could not be

modified. We basically modified only one of the main programs, and so we have attached

an electronic copy of that sub-program. If needed, the entire program can be obtained

from us.

5. Conclusion
As we can see from the project described above, the Digital Photo Album using

EPIC would be a convenient application, owing to its ability to help the user save a lot of

space by storing the image in compressed form. Since EPIC is a fast decoding algorithm,

as we have seen, the user will not spend a lot of time while the program is decompressing

the compressed images saved on the PC. There is some noticeable loss in the clarity of

the image, which can be reduced by filtering the image. We also applied a face detection

algorithm to the image, so that it would be able to detect a human face in the image, and

sort out the image according to the presence of a face in them. This would help easily

organize the digital photo album. A further step that could also be applied to this project

is face recognition, which would help recognize the face of the person in the image.

However, due to time constraints, we did not implement this part of the project.

