
Taking a Look Inside:
Frequency-Domain Volume Rendering

Erin Fitzgerald
Rebecca Hildebrand
Alex Markle

18-551
Final Report
Group 3

Table of Contents

Background
1. Abstract …………………………………………………………………………………1
2. Introduction………………………..…………….………………………………….….2
3. Background…………………………………………………………………..……...…….3
4. Why the C67 is Good for our Problem………………………………………..6

Our Project
5. Project Objectives

5.1 Speed………………………………..………………………………...……...7
5.1 Image Quality…………………………………………………………….7
5.1 Usefulness……………………………………………………………...….7

6. Program Overview – Major Parts of The Program
6.1 Data flow………………………….……………………………………....…8
6.2 FFT function……………………………………..…………………………9
6.3 Slice function………………………………………………..………….11
6.4 User Interface…………………………………..……………….………14

7. Implementation on EVM
7.1 What is on the EVM…………………………………………………...15
7.1 Why is there not more on the EVM?……………………….…..15
7.1 Memory Allocation………………………………..……………...……17
7.1 Timing breakdown…………………….…………….………….………18

8. Problems We Ran Into
8.1 Hartley vs. FFT……………………….……………….…………...…18
8.1 Memory………….………………….…………………….…………………20

9. Results
9.1 Example output……………….……………………….…….………….21

Future
10. Improvement to Project

10.1 Speed Improvements……………………………………………...…...22
10.1 Image Quality Improvements…………………………….……..…23

References
References………………………………………………………………..………….....…......i
Code & Data Sources……………………………………………………..….....……..…ii

Appendices
Appendix A (display.cpp) ………………………………………………………....….iii
Appendix B (slicer.c) ……………………………………………………..….....………………xiv
Appendix C (fftn.c) ……………………………………………………..….....………………...xix
Appendix D (filterpc.c) ……………………………………………………..….....……..…xxxviii
Appendix E (filterevm.pc) ……………………………………………………..….....……..….xliv

1

Abstract

The purpose of this paper is to describe the implementation of
our project, “Taking a Look Inside: Frequency-Domain Volume
Rendering”. The paper will begin with some background
information on Volume Rendering, including a description of
Frequency-Domain Volume Rendering. It will then go on to talk
about the major parts of the program, including code division
and data flow. The paper will follow the code descriptions with
explanations of how parts of the code have been implemented on
the EVM. It will then go on to describe EVM issues that we
encountered as well as other obstacles we had to overcome. The
report will finish up with the final results of our project and
possible improvements for the future.

2

2. Introduction

Last month, our friend Sarah went skiing for the first time. On

her third run down the mountain, she took a terrible fall that

caused amazing pain in her knee. After a visit to the emergency

room, she had to make an appointment for an MRI to find out what

damage had been done. During her appointment, Sarah had the MRI

done, but unfortunately could not find out the results until the

subsequent week. To help limit the patient’s anxiety, it

should be possible to take an MRI and view the results during

the same appointment. With current technology in most

hospitals, fast diagnosis is not an option and patients are made

to wait to find out their results. A program that allowed a

doctor to look at a data set in real time would make the

diagnosis process much faster, and as a result ease the minds of

patients like Sarah and make hospitals more efficient in the

process. As a solution, we have implemented a program that uses

frequency-domain volume rendering to display 3-D data sets.

With this algorithm, “real time” volume rendering can be

achieved.

3

3. Background

Volume rendering is a useful tool for producing flat projections

of three-dimensional data. This is typically done using a ray

casting technique. This technique calculates line integrals

through the data, normal to the viewing plane, for each pixel in

the rendered image. A continuing problem for the use of this

method in clinical diagnoses is its high computational demands.

The complexity for traditional ray-casting techniques is of

O(N^3). These operations are very time consuming, especially

for datasets of useful size (128^3 or 256^3). This makes real-

time rendering virtually impossible without the use of a super-

computer.

For improved usability, two-dimensional projections need to be

generated rapidly, in ‘real-time’. One suggested method for

improving the speed of volume rendering is to perform it in the

frequency domain. Frequency-domain volume rendering can be

performed between one and two orders of magnitude faster than

traditional ray-casting techniques, with complexities of

O(N^2*log N). This makes it an optimal choice for applications

that require high rendering rates.

The basis for frequency domain volume rendering is the Fourier

Projection-Slice Theorem. This theorem states that the two-

4

dimensional Fourier transform of a two-dimensional projection of

a three-dimensional object at an angle, theta, is a two-

dimensional plane passing through the origin of the three-

dimensional Fourier transform of that three-dimensional object,

at the same angle, theta.

To perform frequency domain volume rendering, a three-

dimensional forward Fourier transfer is first performed on the

data set. Then a slice is taken through the center of this

transformed data, at the angle corresponding to the desired

viewing angle. This slice is then run through an inverse two-

dimensional Fourier transform, and the resulting data is

displayed to the screen. After the complete three-dimensional

transform has been completed, the only steps required to produce

further renderings from other viewing angles are the re-sampling

and inverse two-dimensional transforms.

Figure 1: Ray-casting vs. Fourier Volume Rendering

5

The images produced using frequency-domain volume rendering are

not identical to those produced using ray-casting, as shown in

the figure on the previous page. In frequency domain-volume

rendering, all voxels (three-dimensional pixels) along the lines

normal to the viewing plane contribute equally to the final

pixel value, regardless of their distance from the viewer. This

eliminates the hidden surface effects that appear in images

produced using ray-casting, and make frequency-domain volume

rendered images look like X-ray images. (Malzbender, 1993)

6

4. Why the C67 is Good for our Problem

There are a number of advantages to using specialized hardware

such as the C67 for performing real-time volume rendering. The

most obvious of these is speed. As stated above, the complexity

for performing the repeated interpolation and inverse transforms

is very high, and for medical application time can be at a

premium. The C67 can perform these computations at very high

rates, especially if its multiprocessing attributes are

exploited fully in the code.

The C67 is also sensible for use in this project because of its

possible usefulness in the application that we are

investigating: medical imaging. It would be very reasonable for

a hospital to use PCs, equipped with built in DSP hardware such

as the C67, which would allow doctors to render images taken

through traditional means (MRI, ultrasound, etc.) “on the fly”,

and to make diagnosis rapidly.

7

5. Project Objectives

5.1 Speed

To make this application really useful, it is important that the

image can be seen in “real time”. For our project, this means

that the user will be able to rotate the 3-D image flawlessly,

and go to any view angle directly in a very short period of

time.

5.2 Image Quality

When a doctor is trying to make a diagnosis, it is important to

have the most accurate information possible. Keeping this in

mind, the image must convey the information clearly and

precisely. The resolution of the image must be high enough for

the viewer to distinguish fine details, and the dynamic range

must be broad enough for subtle gradations to show up fully.

5.3 Usefulness

When designing the program we must keep the user in mind at all

times. To make this application useful to a doctor, certain

options must be included. The image must be able to be rotated

to any angle. This angle could be entered directly or

incrementally from the current view. Also, the interface must

be easy to understand when the doctor is trying to manipulate

the image.

8

6. Program Overview

6.1 Data Flow

Figure 2: Data Flow Chart

The raw 3-D data set is first read into our program and is then

sent to the FFT function, which performs a 3-D forward FFT and

returns a 3-D object with frequency domain data. A slice is

taken from this 3-D data using the slicer function. The slicer

function also performs interpolation and resampling, and returns

a 2-D object with frequency domain data. This data is then sent

to the FFT function again where a reverse 2-D FFT is performed.

The result of the previous steps is a volume rendered image. To

see the image at a different angle, another slice is taken by

the slicer function and then the same steps as previously

3-D Take
Slice

EVM
To

To PC

Take another
slice

FFT

9

explained are repeated. A fast implementation of this cycle

will lead to an image able to smoothly revolve as if seen in

“real-time”.

6.2 FFT function

A wide variety of FFT implementations exist in C code for

distribution on the web. The code we chose to implement was

presented in a previous homework assignment and was selected

primarily for its versatility. Our task required both a forward

3-D FFT as well as an inverse 2-D FFT operation. It would have

been more difficult to get our project to work with two

different sets of code and would have made our project much

larger. Another reason we decided to use the code was its

stability and familiarity. We found the code to be stable and

easy to understand when we used it earlier in the semester, and

we became familiar with the code in the process of completing

homework two. A final reason we decided to use this particular

code was the fact that the FFT is computed with imaginary and

real values contained in separate arrays rather than being

interleaved in a single array. This attribute was useful

because we only have real valued numbers in our data sets.

10

The FFT code we used is called in the following manner:

int fftn (int ndim, const int dims[], REAL Re[], REAL Im[], int iSign, double scaling);

where

• The integer value ndim contains the number of dimensions

used (in our case 2 or 3).

• The integer array dims holds the dimensions of the actual

data set (in our case either {256,256,128} or {256,256}).

• The arrays Re and Im hold the real and imaginary values of

the data. As the raw data was all real, we inputted this

information into the “Re” array, while filling the “Im”

array with all zeros for the 3-D FFT.

• The integer value iSign determined whether the FFT was

forward (1) or reverse (-1). We used both options in the

course of the volume rendering procedure.

• The double value scaling is a normalizing constant by which

the final result is divided. As all of our gray-scale voxel

data fell between zero and one, scaling values down to be

contained within this range was very important for the sake

of image contrast and clarity.

11

6.3 Slice Function

The slice algorithm developed is called in the following manner:

double slicer(double *d, double *slice, int xsize, int ysize, int zsize, float *sliceview);

where

• The double array d represents the array of data

• The double array slice is the sliced output of the function

• Integer values xsize, ysize, and zsize are the dimensions

of dataset d

• The float array sliceview contains the coordinates of the

vector orthogonal to the requested viewing plane

Before taking an inverse 2-D FFT on the

post-3-D FFT dataset, we first set out to

design an algorithm to extract a two-

dimensional slice from any possible angle.

As only a 256x256x128 sample of the dataset

is available, not all values needed for the

slice will already exist during the slice

construction. Therefore, this task should

be divided into two parts: slice extraction

and point interpolation.

Our user will define the desired slice

angle by choosing the array orthogonal to that plane. According

The value at position
(x,y,z) within the cube
can be denoted as Vxyz
and is given by
Vxyz = V000(1-x)(1-y)(1-z)

+
V100*x(1-y)(1-z) +
V010*(1-x)y(1-z) +
V001*(1-x)(1-y)z +
V101*x(1-y)z +
V011*(1-x)yz +
V110*xy(1-z) +
V111*xyz

12

to the Fourier Projection-Slice Theorem (see Section 3 for

further discussion), any slice taken prior to the IFFT must

contain the central point in the dataset (referred to from this

point on as the origin) in order to return the appropriate final

image. Thus, in order to extract a slice on the XY-plane around

the origin, the user would input the (x,y,z) vector (0,0,1).

Using a series of simple matrix algebra cross product

calculations, a pair of perpendicular unit vectors on the

desired plane can be found and used as the basis of determining

the remaining points in the slice.

Once appropriate points in the 3-D dataset are selected to be

part of the slice, pixel values not already defined through the

original data and calculations must be interpolated. By

definition, interpolation means to estimate the value of a

function or series between two known values. According to

Westenberg, “Interpolation is the most critical step in Fourier

rendering, and good interpolation functions are needed to avoid

artifacts such as aliasing and dishing [a hill-shaped weighting

artifact resulting in reduced intensities away from the center

of the image].” Many interpolation algorithms exist, each with

its own advantages, disadvantages, and optimal uses. While

algorithms such as cubic interpolation and POCS (Projection on

Convex Sets) filters were considered, we selected the slightly

13

less precise but simple tri-linear interpolation algorithm due

to the memory allocation and speed concerns these presented.

This algorithm is known to be easy to implement in hardware as

well as computationally very simple and fast. Tri-linear

interpolation uses a weighted average of the eight surrounding

density/pixel values included in the post-FFT dataset to

estimate the value of the desired point. The algorithm makes

many assumptions, most notably the supposition that the rate of

change between any two pixels is constant. In low-resolution

images this will create inaccuracies, but in the higher

256x256x128 resolution used inaccuracies should be limited.

Additonal Considerations: Aliasing is caused by insufficient

sampling. Zero-padding separates the replicas in the spatial

domain and decreases sampling distance in the frequency domain.

Therefore, a way to reduce aliasing might have been to pad the

data in the spatial domain with zeros before the initial 3-D FFT

is taken. Our primary motivation for not implementing zero-

padding again related to memory. Optimal padding would pad the

dataset by at least √3, or around a factor of 2, in each

dimension (√3 being the diagonal distance through a unit cube).

For volume data, zero-padding by a factor of two yield a minimum

memory requirement of eight times the original requirement. As

memory size was an issue even for the original set, zero-padding

this set in the spatial domain was not considered wise.

14

6.4 User Interface

Our project included the development of a user interface which

was responsible for initializing a windowing environment on the

PC, opening a window and displaying the rendered image, and

allowing interaction with the user. This interface was built

using OpenGL, a simple C library extension that allows graphics

to be displayed on the PC.

Our interface allowed the user a number of controls over the

rendering. First, the user could change the brightness and

contrast of the displayed image. The user also had control over

the viewing angle. Through a number of keyboard commands, the

user could select from one of six pre-selected viewpoints, and

could also independently rotate the view in any of the three

dimensions. When entering any of these keyboard commands, the

user’s desired view was rendered by first taking a new slice

through the data at the selected angle, and then transferring

this slice to the inverse FFT, and finally to the PC for

display.

15

7. Implementation on the EVM

7.1 What is on the EVM?

Only one part of our program is implemented on the EVM. The EVM

takes in a slice of 3-D FFTed data, performs a reverse 2-D FFT

on it, and returns this information to the PC.

7.2 Why is there not more on the EVM?

The greatest advantage of implementing procedures on the TI 67

EVM over strictly software approaches is the inherent

parallelism in the EVM’s operations; operations carried out on

the EVM board or DSP chip are far faster than external

operations on the PC. As is common for frequency domain volume

rendering tasks, the memory issues limit the EVM’s usefulness.

The on-chip memory is a mere 128 Kbytes total between both

program and data memory, and even the on-board memory on the EVM

is only 8 Mbytes, far to small to store the 256*256*128*8 bytes

long dataset.

Although the (one-time) 3-D FFT operation is the most costly in

terms of speed, the time-complexity of the entire frequency

domain volume-rendering task is dominated by the (repeated)

slicing, interpolation, and inverse 2-D FFT operations. Of

these, the IFFT is computationally fairly costly. As only two

16

slices (one real and one imaginary) of 256x256 voxel data are

needed to perform this procedure, the IFFT can be performed on

the 8 MB EVM board without facing major memory issues.

Additionally, the slicing algorithm deals only with vector

multiplications without requiring access to the 3-D dataset, and

therefore could easily be conducted on the EVM. It is the

interpolation algorithm between these two procedures that

presents new unavoidable issues and prevents. As discussed in

Section 6.3, once the location of specific points needed in the

desired slice is determined, tri-linear interpolation finds the

surrounding eight points from the post-FFT 3-D dataset and

estimates a voxel value weighted by the chosen point’s distance

from each of the surrounding points. In other words, in order to

interpolate, the system must have immediate access to the

dataset, which at 256*256*128*sizeof(double) is far too large to

store either on-chip or on-board. Reading from and writing to

external memory is very costly at around 15 cycles per access,

minimized to 15 per total transfer when using DMA (Direct Memory

Access) methods. For this reason it is desirable to limit the

number of transfers between the hardware and the software.

After consideration these facts and as we hoped to limit the

number of times data would need to be transferred between the PC

17

and the EVM, we opted to compute the IFFT on the EVM and keep

all remaining procedures in external memory.

7.3 Memory allocation

On-board memory:
Variable
Name

Description Type Dimension Size (bytes)

frame (real) Post-3-D FFT
graphic slice

double
(8 bytes)

256x256 524288

imag (imaginary) Post-3-D
FFT graphic slice

double 256x256 524288

dim Contains values of
X_SIZE & Y_SIZE
(needed for IFFT)

int
(2 bytes)

1x2 4

Total: 1,048,580

External memory:
Variable
Name

Description Type Dimension Size (bytes)

data Original graphic
information; also
stores post-FFT real
data

double
(8 bytes)

256x256x128 67108864

zeros Zero-filled array,
used as imaginary
input data for 3-D
FFT, also stores
post-FFT imaginary
data

double 256x256x128 67108864

dim Contains values of
DIM1, DIM2, & DIM3
(needed for FFT)

int
(2 bytes)

1x3 6

slice 2D slice from post-
FFT data

double 256x256 524288

zeros2 2D slice from post-
FFT zeros

double 256x256 524288

slice2 Absolute values of
slice, converted to
floats

float
(4 bytes)

256x256 262144

rawslicex,
rawslicey,
rawslicez,
rawslicexy,
rawslicexz,
rawsliceyz

Slices of original
3D dataset taken at
6 predetermined
angles prior to FFT

float
float
float
float
float
float

256x256
256x256
256x256
256x256
256x256
256x256

262144*6 =
 1572864

Total: 1,371,011,318

18

7.4 Timing breakdown

Part of Program Software-only
completion time(s)

Software-hardware
completion time (s)

ReadFile() 0.82 0.82
CalcFFT() (3-D FFT) 67.51 67.51
slicer() 7.63 7.63
Transfers to and from
EVM, 2-D IFFT

0.33 6.43

Total runtime 96.28 102.38

Analyzing the timing results, it appears that the advantages of

running the inverse 2-D FFT on the EVM were overbalanced by the

additional cycles needed to transfer the data to and from the

EVM, resulting in a final speed decrease from the software-only

implementation.

8. Problems Encountered

8.1 Hartley vs. FFT

At the start of our project we were planning on using the

Hartley Transform to complete the two parts of the project that

the FFT now takes care of. We came across many studies and

reports that praised the Hartley Transform for its speed. “It

turns out that using the Hartley transform to compute the

Fourier transform is faster than computing the Fourier transform

directly” (Scott, 2000). The faster speed of the Hartley is a

result from the fact that the transform only uses real-valued

numbers, unlike a FFT that uses both real and imaginary values.

Because the Hartley Transform doesn’t return imaginary results,

19

it can only really be used for real-world applications. This

wasn’t a problem for our project because our 3-D data sets are

only made up of real numbers. Since there would be half the

numbers needed to perform the Hartley Transform compared with

the FFT, there would also be significant memory savings for our

project (Theußl, 1999).

All of the advantages associated with the Hartley Transform

seemed to make it a perfect fit for our project. However, we had

two problems with this algorithm that led us to eventually

choose an FFT implementation instead. The first problem

surfaced when we came across an article by Kumar and Deo, in

which the two researchers studied the performance of the 2-D and

3-D Hartley Transform on a parallel system. Their findings in

essence stated that there was no clear advantage in using the

Hartley Transform over the FFT when using a parallel system.

“Because of complex computation graphs inherent in Hartley

transforms, the inter-processor communication overheads for

parallel DHT [Discrete Hartley Transform] are excessive,

rendering it unsuitable for fine-grained parallelism” (Deo,

Kumar 1995). Since we wanted to exploit the parallel attributes

of the EVM, we felt it was not necessary to use the Hartley

instead of the FFT. Our second problem with the Hartley

Transform occurred when we were searching for usable code. We

20

found it difficult to find any working code, let alone working C

code. As a result of the study and the lack of working code

available, we decided to use a FFT instead of the Hartley

Transform for our project.

8.2 Memory

Another major problem we ran into dealt with memory issues. We

were dealing with huge data sets as large as 256 x 256 x 256.

Storing all this information internally was impossible: the data

set array taking up approximately 67MB of space while the EVM

having only 8MB worth of space. We were able to get one “slice”

of the data on the EVM at a time for the reverse 2-D FFT,

however, the 256 x 256 slice was too large to fit on the on-chip

memory (each slice equals approximately 525kB and on-chip memory

equaling 64kB), so it had to be put on the off-chip EVM memory.

It was not possible to use paging, as we used in lab, because

all the data was needed at one time in order to complete the 2-D

FFT. The transfer from the off-chip to on-chip memory and the

transfer of data from the PC to the EVM cost a great deal of

time when running our program.

21

9. Results

9.1 Example Output

Below is a sample of the graphic output upon running the FDVR

code. The image to the left is a raw slice from ultrasound data,

and opposite is the same view of the volume- rendered image.

Figure 4: Data Slice vs. Volume Rendering

The views have many similarities as well as differences. Both

images have density concentrations in similar areas and share

the same basic shape, reflective of the angular sweep taken to

gather the original ultrasound data. The rendered image on the

right is less clear and smooth than the raw image. Additionally,

a number of horizontally striped artifacts exist through the

center of the rendered image. Many of these inconsistencies can

be attributed to the less-precise interpolation method and

issues that come into play when attempted to estimate values in

22

the frequency domain. Additionally, the lack of a depth-cueing

mechanism which could differentiate between densities at closer

and further distances contributes to the image quality. Overall

however, the stipulations of the Projection-Slice Theorem held

up and we were able to produce useful 2-D data at any angle and

in a brief rendering time given a 3-D image dataset.

10. Future Project Improvements

10.1 Speed Improvements

Speed improvement could most reasonably come from moving a more

significant portion of the rendering process over to the EVM.

While our implementation only performs the final inverse two-

dimensional transform on the EVM, the rendering speed for the

entire application could likely be improved significantly if we

were to also perform the slicing and interpolation functions on

the EVM. To perform the entire operation on the EVM would not

be practical, because of the memory issues resulting from the

use of large datasets.

A second speed improvement that could be made would be to

optimize the code to take advantage of the parallel processing

capabilities of the C67. This could be done as two parts. One

part would be to implement the reverse two-dimensional FFT to

23

take advantage of the C67’s parallelism. The second part would

be to try and do the same for the slicing and interpolation

algorithms.

10.2 Image Quality Improvements

Currently, though it is clear from looking at the rendered image

that it is indeed a projection of the three-dimensional data

set, the picture itself is blurred and speckled, making it

difficult to discern any small details. There are two possible

improvements that could be made to our design to produce higher

quality images: depth-cuing and directional shading algorithms,

and more complex sampling filters.

As stated above, in frequency domain volume rendering there is

no occlusion of objects that are “further” from the observer by

objects that are “closer” and lie in front. This is one of the

main features that differentiates those images created by ray

casting from those created through frequency domain volume

rendering. One way to try and regain that lost distance

information is to run the data through a depth cueing algorithm

which “weights” those pixels that are closer to the viewer to a

greater degree than it weights those which are further away.

The depth-cuing and directional shading can be accomplished

either through spatial pre-processing, or through frequency

24

domain differentiation and multiplication, respectively.

(Totsuka, 1993) Using these techniques will make the viewer’s

eye better able to interpret the three-dimensional data in a way

that is meaningful for diagnoses.

A second way to improve image quality is through the use of a

more complex interpolation filter. Currently we are using a

simple tri-linear interpolation in our slicing algorithm. By

choosing an algorithm that more completely takes into account

the values of the surrounding pixels, we can better the

resolution and quality of the rendered image. One option is to

use the method of Projection on Convex Sets (POCS). (Nishita,

1986) This can be used with filter sizes of 3x3 and 5x5.

Finally, a number of smaller improvements could be made to the

user interface. Once the rendering process had been sped up, a

mouse-based viewpoint control would be very useful. This type

of control would allow the user to smoothly rotate the rendered

image in three dimensions in a natural way, simply be moving the

mouse. Menu commands could also be added to allow the user to

select and load any of a number of available datasets. Finally,

a feature could be added to allow the user to save individual

rendered images to the PC, and also to print them.

i

References

Deo, Narsingh and Nishit Kumar. “Implementing 2-D an 3-D
Discrete Hartley Transforms on a Massively Parallel SIMD
Mesh Computer.” 1995.

Malzbender, T. (1993) Fourier Volume Rendering. ACM
Transactions on Graphics, 12(3):233-250, July 1993

Nishita, T. (1986) Continuous Tone Representation of Three-
Dimensional Objects. Computer Graphics, Volume 20, Number
4, 125-132, 1986.

Scott, Robert. “Doing Hartley Smartly”. www.embedded.com.
2000.

Theußl, Thomas., Robert F. Tobler and Eduard Gröller. “The
Multi-Dimensional Hartley Transform as a Basis for Volume
Rendering”. 1999.

Totsuka, T. (1993) Frequency Domain Volume Rendering. In James
T. Kajiya, editor, Computer Graphics, volume 27, 271-278,
August 1993

Westenburg, Michel. "Frequency Domain Volume Rendering by the
Wavelet X-ray Transform", IEEE Transactions on Image
Processing. Volume 9, No. 7, July 2000.

ii

Code and Data Sources

FFT:
Fortran code by:
RC Singleton, Stanford Research Institute, Sept. 1968
Translated by f2c (version 19950721).

Revisions:
26 July 95 John Beale
28 July 95 Mark Olesen <olesen@me.queensu.ca>
31 July 95 Mark Olesen <olesen@me.queensu.ca>
1 Aug 95 Mark Olesen <olesen@me.queensu.ca>

TRI-LINEAR INTERPOLATION FUNCTION:
C code from the article
"Tri-linear Interpolation"
by Steve Hill, sah@ukc.ac.uk
in "Graphics Gems IV", Academic Press, 1994

DATA SETS:
Paul Detmer and Jing-Ming Jong
Advanced Technology Laboratories
Bothell, WA

