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Introduction

Problem Description

The objective of this project is to implement a system on the C67 EVM board that will
accept live music through a microphone, detect the notes and transcribe them into sheet
music in real time. Past projects have only attempted the transcription of recorded music,
while this project attempts to perform the same in real time with live music. Common
Music Notation is employed as the application to convert detected notes into sheet music,
given its flexibility and portability.

Prior Work in 551

There were two projects in the past that attempted the same problem, with the following
features:

Spring 97: STFT implementation using ideal synthesizers as input.
Spring 98: WT implementation, also using ideal synthesizers.

In both cases, there was no implementation on the EVM.
Both projects noted difficulties in getting the pitch detection process to work right, with
unwanted notes appearing in the output. It should also be clear that both projects used
frequency-domain techniques at their core.

This project, on the other hand, shifts away from conventional frequency-domain analysis
techniques and utilizes a simple yet innovative time-domain approach that proves to work
well. As will be described later, the use of special wavelets and improvements to them
produced a remarkably robust pitch detection algorithm.

This project is also the first attempt at incorporation of clef, tempo, and meter into the
musical transcription. This implementation of meter and tempo affected the transcription
of the notes in that changes of meter and tempo altered the resulting notes. This is due to
the varying lengths of notes corresponding to the various tempos and meters possible.

Constraints of the Project

•  The detection of music is limited to 2 octaves, C4- C6.

•  The transcription of music is limited to any note as long as or longer than a
sixteenth note or rest. The detection can detect any length of note.

•  The input signal must be in the presence of low noise.

•  The application will only detect single-tones from single instruments.
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Overview of Solution

Pitch Estimation Analysis

Pitch detection of musical sounds is, by their very nature, extremely difficult and
challenging. Currently, there exists no satisfactory polyphonic pitch detection algorithm,
due to the non-trivial harmonic structure of musical sounds of various instruments. It is
decided that attempting polyphonic pitch detection will be beyond the reach of this
project, therefore only monophonic pitch detection will be performed.

Pitch detection can be summed up readily into two separate categories: Time-domain and
Frequency-domain. Frequency-domain techniques usually involve some kind of Fourier-
type analysis on the musical signal. Most notable of these techniques include the Short-
Time Fourier Transform (STFT) or the Discrete Wavelet Transform (DWT). Frequency-
domain techniques are governed by the time-frequency tradeoff, i.e. greater frequency
resolution can be achieved at the expense of time resolution, and vice versa. Both STFT
and DWT have their corresponding tradeoff schedule, but the DWT seems to perform
better with regard to the logarithmic musical scale.

Time-domain techniques usually revolve around finding zeros crossings or maximums in
the signal and calculating the pitch period. If musical signals are composed of simple
sinusoids, this problem becomes very trivial. However, harmonics cause the signal to
have multiple zero crossings and the problem becomes more involved.

A Simple Approach

The approach used in this project involves using a time-domain event detection method
for finding the pitch period of the musical signal. It is based on Wendt and PetropuluÕs1

work on speech signals. In their paper, they described the estimation of pitch period of
speech signals by determining the ÒGlottal Closure Instants (GCIs)Ó and measuring the
time period between each event. It is instantly clear that the signal is processed period by
period, which provides impressive time and frequency resolution.

The method proposed was to use a Òsingle derivative filtering function defined to contain
a specific bandwidth of voiced speech. This process produces a filtered signal with well-
defined local maximums where GCIs occur in the speech signalÓ. It became apparent that
this method promises a dramatic simplification in terms of processing, for only
convolution is used.

                                                  
1 Wendt and Petropulu: Pitch Determination And Speech Segmentation Using The Discrete Wavelet
Transform
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Building upon this work by Wendt and Petropulu, Jehan2 investigated the application of
this algorithm towards musical signals in this thesis at CNMAT with some success on
ethnic flutes, which have very simple harmonic structures. Suitably excited by this
development, our group decided to try and implement this algorithm on the EVM board,
with some essential changes that will be described later in this paper.

The Derivative Filter Ð Daubechies Wavelets3

Much work has been performed by Daubechies in the field of wavelets. Specifically, she
developed a class of wavelets that produced derivative filters, which possessed the
characteristics of maximal-flatness and minimal length. A thorough explanation of
characteristics of wavelets and the method of deriving them is beyond the reach of this
project. The wavelets and the final derivative function were chosen by utilizing a
Daubechies wavelet generating function and investigating the properties of the resulting
wavelet. This function is part of a complete set of wavelet functions for MATLAB
written by the Universidad de Vigo.

Generating the Derivative Wavelet

The first step in the design process involves deciding on the order of the Daubechies
wavelet. In general, the higher the order, the longer the filter and this provides a better
performing filter. However, it becomes more computationally intensive. With this in
mind, the 8th order Daubechies wavelet was chosen. The MATLAB function returns the
coefficients of the Daubechies wavelets.

Following that, the coefficients are passed into another function that generates the
wavelet and scaling functions. This function also takes as input the frequency band of
interest. From the wavelet and scaling functions, the final filtering function was derived.
Specifically, the scaling function from the high cut-off frequency wavelet was convolved
with the wavelet function from the low cut-off frequency wavelet.

The frequency responses of the wavelets used for both the 4th and 5t h octaves are
reproduced on the next page.

                                                  
2 Jehan: Musical Signal Parameter Estimation
3 Burrus, Gopinath and Guo: Introduction to Wavelets and Wavelet Transforms: A Primer



6

Figure 1

Figure 2
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Recall that the 4th octave ranges from 261Hz to 494Hz while the 5th octave ranges from
523Hz to 988Hz. It should be observable that the wavelets do have a frequency response
similar to the ranges of interest. However, they are still not satisfactory as bandpass
filters, particularly since the sidelobes are of relatively high magnitude.

Complex harmonic structures of instruments tend to create difficulties for zero-crossing
detection, in that they add more zero-crossings. If a bandpass filter can remove all the
higher harmonics, this problem will be resolved. As seen above, the wavelets by
themselves are not quite satisfactory since they still allow some of the next harmonic to
pass through. Therefore, improvements to the wavelets used in the thesis need to be done.

The Combination Wavelet/FIR filter

In order to resolve the above problem, lowpass FIR filters were brought into the picture.
Specifically, they were convolved with the wavelets to suppress the sidelobes further.
They were designed such that the cutoff frequency was in between the last note of the
octave of interest and the first note of the next octave. Here are the improved filters:

Figure 3
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Figure 4

Now, it is apparent that the unwanted sidelobes are well suppressed. Substituting these
filters instead of the ones used in the original algorithm, the results of the pitch detection
became extremely reliable. Sample results are produced below (Note the well defined
local maximums):

Figure 5: Original and Wavelet Filtered Signal
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Locating the Actual Maximums

While plots of the filtered signal shows the peaks as rather smooth curves, sampling
usually causes the maximum to be located somewhere other than the location of the
samples. In his thesis, Jehan solved this problem by using a parabolic approximation
technique. He used a parabola to fit three points that span the location of the maximum.

Figure 6: Illustration of Parabolic Approximation (Taken from Jehan)

The maximum is found by the following calculations (JehanÕs method):
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With this method, a more precise value of the pitch period can be obtained. This step is
important since a slight change in the pitch period will cause a large effect on the
calculated frequency, which will in turn cause errors in the pitch estimation.

Cleaning up unwanted peaks

While the modified filter produces well-defined local maximums, in some cases the
maximums are not due to the musical note itself but other factors like background noise.
Such maximums have to be removed in order for the detection process to go on smoothly.

Figure 7: Unwanted Maximum Error Rejection (Taken from Jehan)

The algorithm used by Jehan is best described in his own words:

ÒMany different cases of irregularities have been noticed. Their elimination is based on
the variation checking of two consecutive durations (each of them being the time between
two successive maxima) and dynamic threshold. A maximum rate of variation of this
duration is fixed in the program (for example 20%). Then, the processing eliminates
samples that do not fit in the acceptable range, checking however that we do not have a
real strong change of the pitch. The advantage of this method is that no modification of
values occurs. The disadvantage is that the complete process requires knowledge of five
successive maxima. Nevertheless, good results have been obtained with this method.Ó

Unpitched Notes and Error Rejection

The final step in the algorithm developed by Jehan was to reject pitch values that come
either from unpitched or noise frames. In order to perform this task, the energy of each
512-sample frame of both the input and the filtered signal was calculated. Note that 512
samples correspond to 46.4ms of sound, which is short enough to distinguish a sixteenth
note. Here, Jehan used ParsevalÕs Theorem to calculate energy, which is decidedly more
roundabout than a simple sum of squares evaluation. Therefore, the sum of squares
method was implemented in the final algorithm.
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With the energy values, rejection of pitch values will take place whenever the input
signal energy is below a set threshold (which means that there is no signal). A value of
1% of the maximum energy of the signal was used as this threshold by Jehan, which
worked well. Pitch values will also be rejected if there is no energy in the filtered signal
(which occurs if the signal is unpitched). The third criterion for rejecting pitch is if the
pitch track exhibits rapid variations. From simulations, this is observed to occur for loud
noise with some tonal quality.

Musical Properties

Two fundamental properties of music are the characteristics of notes: pitch and duration.
Through appropriate analysis, the pitch and duration of every note can be identified. In
this way, the musical transcript can be accurately constructed with proper detection.

Notes and Frequency

Notes are grouped into sets of twelve notes called an octave. These notes: A, A#, B, C,
C#, D, D#, E, F, F#, G, and G#. These notes cyclically repeat, and are assigned a
particular octave number. There are a total of 10 octaves in the musical range. Notes
range from C0 (about 16 Hz) to C10 (16 kHz).

Pitch can determined if the frequency present is identifiable. A standard mapping
convention between pitch and frequency has been established. The convention common
in western music is the A-440 basis, where every note is based upon the frequency 440
Hz, equivalent to the note A4. Every other note, denoted by pitch and octave, is related to
440 Hz. The A in every octave is a multiple of 440; therefore the A5 corresponds to 880
Hz. Notes in the same octave are related to the corresponding A on an exponential scale.
Figure 8 shows the mapping of notes to frequencies for the fourth octave.
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Figure 8: Notes and their Frequencies

This mapping of notes to frequencies results in larger intervals of notes in higher octaves.
The range of octave 3 is 220 Hz, while the range for octave 8 is 7 kHz. This characteristic
is useful when selecting means to analyze frequencies present in sound.

Duration
Lengths of notes depend on the duration for which they are played, as well as the musical
tempo and meter.

The tempo is simply the number of beats per minute. In the case of a tempo of 60, there is
one beat per second.

Meter, as noted by a fraction at the beginning of a piece determines two characteristics of
the music. The top number determines the number of beats in a measure, and the bottom
number determines the type of note that receives one beat. Typical meters are 4 Ð 4,
which corresponds to four beats per measure and a quarter note receives one beat.

Note length durations in terms of seconds are relative to the length of the measure. The
meter and tempo determine the duration of both the measure and individual notes. Figure
9 shows the various values and representations of notes and rests.
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Figure 9: Naming Convention of Notes and Rests

Source: http://library.thinkquest.org/15413/

Within the application, this project detects notes relative to the length of a measure.
Should the length of a note be recognized as being played for less than the sensitivity of
the detection (set to the duration of a 16th note), it is rejected. This affects the detection in
that the same music sample will result in differing transcriptions due to differing
sensitivity.

These calculations are as follows:
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Timing Jitter
With respect to transcription, the application does not account for small nuances and
liberties with regards to tempo. Small articulation or unintended pauses diminish the
performance of the transcription. This is rather common in real life music where human
error is suspect.
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Viola
The intention of the project is to detect notes played on a viola. The viola is a member of
the string family of instruments. Its range of notes is C4 to C7. This range is lower than
the violinÕs range and higher than the celloÕs range. The viola has strings (in order from
lowest to highest) of C, G, D, and A.

Instrumental characteristics

Box Vibration
The viola presents a difficulty in detection of pitch in that the box of the instrument
vibrates at a constant 125 Hz when played. This intentional design characteristic makes
detection difficult when playing its lowest note, the C3, which is equivalent to 125 Hz.
Because of this, the C3 octave is not of interest in this project.

Harmonics
Harmonics are present in all musical sounds. When a note is played, the same note at
higher octaves is sounded. This poses a problem in the detection of notes. Our detection
scheme takes into account this characteristic by always selecting the lowest note detected.
This is reasonable since the detection is performed separately for each octave.

In the case of a viola, many harmonics are present. Figure 10 compares the harmonic
structure of a viola sample to that of a flute, one instrument with a very simple harmonic
structure. With this characteristic, should the input signal be a viola, filtering of some sort
is required to reject the unwanted harmonics.

Figure 10: Comparison of Harmonic Structures
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Music Transcription
From the pitch detection process, the frequencies and durations of notes can be identified
for an entire music sample. Using look up tables containing the mapping between every
frequency and their corresponding notes as well as another table containing the durations
of the rests and notes, the transcription process produces the desired standard musical
notation.

Merging of Notes

The general thinking behind the merging of the two note estimation streams is to
eliminate the higher harmonics present in music. By detecting two different octaves, a
note played in the fourth octave would produce a harmonic in the fifth octave. Therefore,
the task is to choose the correct note that was played.

The algorithm starts at the first note to be detected. Upon each note, the time of the
resulting final note estimation is updated to the end of the last note. This results in 6 cases
of merging. They are as follows:
(Let Note1 and Note2 to denote the streams of notes)

1) Note1 starts first and the next Note2 ends after Note1 ends. If the Note2 contains
a higher harmonic of Note1, the final note is the lower harmonic. The duration is
updated to the beginning of note1 to the end of Note2.

2) Note1 starts first and the next Note2 ends before Note1 ends. If the Note2
contains a higher harmonic of note1, the final note is the lower harmonic. The
duration remains as from the beginning of Note1 to the end of Note1.

3) Note1 starts first and the next Note2 starts after Note1 ends. In this case, the final
note is Note1.

4) Ð 6) is the reverse of cases 1) Ð 3) with Note2 starting first.

Common Music Notation
Once these elements of music are identified, the stream of notes is transcribed into a .cmn
file, which stands for Common Music Notation. This method to represent music is an
application developed by the Center for Computer Research in Music and Acoustics at
Stanford University. Upon compiling a simple text representation of music, a lisp script
constructs the graphical music representation.

For ÒTwinkle Twinkle Little StarÓ, the code is:
(cmn staff Treble  (meter 4 4) d4 q d4 q a4 q a4 q b4 q b4 q a4 h g4 q
g4 q fs4 q fs4 q e4 q e4 q d4 h double-bar)

The generated .eps file looks like:

Figure 11: Graphical CMN output
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Our Process

C-conversion

As described above, most of the algorithm used was drawn on the work of Jehan in his
thesis. Gratefully, he provided all the MATLAB code used in his thesis. Conversion from
MATLAB to C was rather straightforward when the details of the code were understood.
However, two aspects of his code were revamped, as listed:

•  conv() function was changed to overlap-add FFT implementation to improve on
the speed of evaluation as well as for block by block processing (useful for real-
time implementation).

•  Energy function was rewritten to that of simple sum of squares
•  Wavelets used were combined with FIR filters to refine their frequency responses,

resulting in an even more robust algorithm.

The most difficult part of C-conversion implementation was ensuring that the vector
indices were aligned properly. Since the entire code is spread over many separate
functions, each function was tested for correctness before linking it to the other functions.
With all the blocks linked up, the preliminary C-code was tested with several testing
music files (all composed of music from ideal synthesis) to ensure correctness.

After C-code conversion was done, some optimizations were done to reduce the amount
of memory required. Redundant variables were removed and several trivial constant
functions were eliminated.

At this stage, it was discovered that Jehan stopped his analysis right after the pitch values
and the times that they occur were obtained. Therefore, additional functions were written
to translate the pitch values and durations into standard musical notation. With two
separate octaves being tracked at the same time, yet another decision process was written
to merge the notes correctly into a single stream.

EVM implementation

The EVM implementation was based on the code from lab 1 and 3. The PC will
send two sets of FIR coefficients, two sets of Wavelet coefficients, a note lookup table,
and the measure to the EVM.  However, on-chip EVM memory cannot accommodate all
data at once. Instead of sending together, the PC sends the first batch of wavelet and FIR
coefficients and waits till the combination filter is evaluated. Then the second batch is
sent and stored over the existing buffers for the calculation of the second combination
filter. At this point, the PC will send the rest of input to the EVM.

The algorithm used is based on a sampling rate of 11025. This rate ensures that
the highest note of interest (C6) is well within the cutoff of about 5 kHz (the Nyquist
sampling criterion).
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For the 10-second live implementation, after receiving all the essential data, the
EVM is ready to record the music signal. A nominal value of 10 seconds was chosen as
the time limit for recording. After acquiring the signal from the codec, the EVM will call
the pitch detection function to perform energy calculation and pitch/duration
determination.  After this process, two streams of output notes well as their start and stop
times are sent back to the PC.

For the 10-second segments version, 10-second segments of the music signal are
sent sequentially from the PC to the EVM.  Segments are processed individually with the
results being sent back to the PC before the next segment is sent to the EVM.

Graphical User Interface

After the implementation on the EVM was complete, a GUI was created with the
novice user in mind.  The GUI is composed of two portions, namely, input and output.  In
the input portion, there are four main fields that the user needs to input: the tempo, the
number of beats per measure, the note that gets one beat and the clef.

Several buttons on the interface control the entire program:

•  Reset: Clear the input data
•  Done:        Click this button to lock in values
•  Initialize:   Initialize EVM Board; EVM gets filters and tables ready
•  Start:        Commence recording
•  Back, Next: Scroll through the pages of output
•  CMN:        Launches the cmn program, converts notes to sheet music
•  Exit:            Exit the program

Results from the PC are displayed in the output portion of the interface.

The interface of 10-second (segment) version is adopted from the 10-second (live)
version interface.  In this case, a browsing function is added to allow the user to select
his desired file. The Initialize button completes the entire process without any further
intervention from the user.

A simple, intuitive interface for the program was desired to enable anyone to use
the program without any need for deep technical knowledge.
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Figure 12: Flow Chart of System



19

Results

Accomplishments

The pitch detection algorithm works as advertised, that it is robust and simple in
implementation. For both versions, the program reliably detects the notes between C4 and
C6. When tested with synthesizers, perfect recognition was achieved. However, detection
using real instruments resulted in outputs that contained some minor errors (e.g. some
half notes were split into two quarter notes). Such problems are expected, arising from
variations and complexities in the instruments rather than the algorithm.

Final Timing Data and Optimizations

All calculations are for a 10 second block of input signal.

10s (Live) version: 675 million cycles
10Xs (Segmented) version: 500 million cycles

Before optimizations:

10s version: 1 billion cycles
10Xs version: 900 million cycles

From the code, it is apparent that the period-by-period processing of signals required no
double loops (except for either traversing through the array or the one case where
elements in an array were removed), therefore no unrolling of loops was applicable. The
only optimization performed was rewriting the energy function.

There is one part of the code that generated some thoughts as to whether a linked-list
implementation or a direct array implementation will have worked faster. The part in
question was the direct array implementation of the maximums array, where removal of
an unwanted maximum was tricky. In a linked-list implementation, removal will be
constant time while removal in an array is linear. However, after examining the code, a
linked-list implementation will not be feasible since accesses become linear time while
the array implementation only requires constant time! It is decided that since node
removal will be minimal, an array implementation is more desirable.

DMA transfers between data in internal and external memory was not looked into simply
because more pressing aspects of the project were at hand, namely real-time
implementation.
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EVM Memory Usage

 Input Signal: 220500*(4 bytes)
 Filtered Signal: 2*110250*(4 bytes)
 Filterbanks: 2*2048*(4 bytes)
 Maxima/Pitch: 4*110250*(4 bytes)
 Intermediates: 2*110250*(4 bytes)
 Energy Array: 4*1000*(4 bytes)
 Outputs: 6*100*(4 bytes)
 Note Match Array: 2000*(4 bytes)
 Others: Non significant
 Total: 4.35 Mbytes

This is well within the 8MB that the board has onboard. Nevertheless, every attempt was
taken to keep this usage as small as possible. Buffers were reused whenever possible
(especially for the calculation of filter coefficients). With a real-time implementation,
memory usage will be decreased further, since the entire signal need not be kept all at
once.

Problems Encountered

While the porting of MATLAB code to C code went rather uneventfully, the porting of
our generic C code to one implementable on the EVM was more frustrating. Often,
results were incorrect due to memory issues. It was after much trial and error and asking
the TAs that the problem was discovered. As a result, much more time than projected was
used in getting the EVM to work correctly. As an example, the assembly FFT routine
demands that twiddle factor tables be stored in on-chip memory and be aligned to an 8-bit
boundary. This requirement was not known before and the documentation was not
immediately obvious.

Unfortunately, these problems slowed the implementation down and in the end less than
two weeks were left to implement a real-time version of the code. With the remaining
time, an analysis of running time was performed on the code (with and without the
various simplifications to the code). Both analyzes suggest that real-time implementation
was indeed possible, and work on conversion began immediately. However, halfway
through the change, testing showed that the filling up of buffers occurred faster than the
running of the rest of the program. This was puzzling, for the running times were well
within the theoretical limit, with or without simplifications.

Why there are two versions

As described, real-time implementation was not achieved. However, demonstrating that
the program will work for live input from the codec as well as for long signal lengths was
desired. Therefore, two versions evolved from the same core code, the 10-second (live)
version and the 10-second (segment) version.
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Towards Real-Time Implementation

At the end of the project, it was disappointing to discover that the major setback towards
achieving real-time implementation was the slowdown due to Code Composer (with its
extremely slow printf() functions). Various steps were taken right from the start to move
towards this goal, for example, overlap-add convolution using FFTs as well as rewriting
the energy function to speed it up. All other functions were in line with the fact that the
algorithm allowed for the processing of the signal period by period. The only thing left to
do was to break up the loops in the functions that were used to traverse the entire signal
array and recombine the outputs from each segment in the right order. Also, the note-
matching process was achieved in constant time by the usage of a lookup table stored in
an array. It was also discovered that the Radix-2 FFT is interruptible, and hence will not
be affected by the reading in of samples from the codec.

Our group was in the midst of translating the code into a real-time version when tests
with Code Composer suggested that real-time implementation was not possible, but
close. Unfortunately, it was decided then that real-time implementation be set aside,
leaving the little time left to put together a more complete package for the ordinary user.
Hence the intuitive visual interfaces to the EVM board as well as several tweaks to the
merging functions to make them more consistent.
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Progress Throughout Semester

Feb 28 Wrote Project Proposal and Presented Oral Project Presentation.
Feb 28ÐMar 8 Researched music and collected data.

Searched for the finest algorithms of pitch detection.
Mar 9-21 Chose the final algorithms for the project.

Tested the Matlab code with music samples.
Designed and added the filters into the program.

Mar 18-24 Converted some of the Matlab to C-program.
Mar 22 Project Oral Update.
Mar 27-Apr 2
(Spring Break)

Continued working on C-program.
Debugged and tested the C-program.

Apr 3-21 Made a change in program.  Instead of one stream of output notes,
there are two output streams.
Implemented C-program on EVM Board.
Wrote the program that merges two streams of output notes.
Wrote the program that determines the final notes.
Optimized all C-code programs.
Fixed the memory problem on EVM Board.

Apr 17-25 Created the graphical user interface.
Combined the interface with the EVM implementation program.

Apr 22-30 Attempted to make the program real-time.
May 1 Final project oral presentation.
May 2 Project demonstration.
May 8 Final project report due.

Purchases incurred for the project

The only pieces of hardware that we required are microphones and speakers. Since these
were available in the lab, no purchases were made.

Summary

In summary, our system accomplished the objective of transcribing live music to sheet
music notation within the constraints stated. The algorithm proved remarkably robust and
accurate in determining the notes in the octaves of interest (4th and 5th octaves), regardless
of the tempo of the music. Unfortunately, real-time implementation was not achieved
even though it was definitely within reach.
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