
Implementation of High Performance LDPC

in a Communications Channel

Submitted to

Professor David Casasent
Department of Electrical and Computer Engineering

Carnegie Institute of Technology
Carnegie Mellon University

Pittsburgh, PA 15213

Prepared by

Irsal Mashhor
Laura Miyakawa

Steven Sherry
18-551 Group 8

May 8, 2000

Table of Contents

Abstract i

1.0 Introduction 1

1.1 Purpose 1

1.2 Findings 1

1.3 Results 1

2.0 Turbo Codes 1

3.0 LDPC Advantages for the TI C67 EVM 3

4.0 How LDPC Works 3

4.1 LDPC Encode 4

4.2 LDPC Decode 5

4.2.1 Initial Probabilities 5

4.2.2 Syndrome Check 6

4.2.3 Iterative Decoding 7

5.0 Project Results 9

5.1 Memory Optimization 10

5.2 Performance 12

5.2.1 Qualitative Analysis 12

5.2.2 Quantitative Analysis 14

6.0 Discussion 15

6.1 Performance 16

6.2 Real Time Transmission 17

7.0 Conclusion 18

8.0 Future Extensions 19

Sources Cited 20

Abstract

This project achieved its goal of successfully implementing an LDPC code

channel on a TI C67 EVM. Provided in this report is background information on

Turbo and LDPC codes, results and discussion of the project, a conclusion, and

suggestions for further extension. The background on turbo codes includes

information on traditional turbo coding encoding and decoding functions. The

report then describes the advantages of LDPC and how the algorithm encodes

and decodes. Next, the report details the memory optimizations made and a

qualitative and quantitative analysis of the results. A discussion of channel

performance and real time transmission follows. Finally, the report presents

conclusions and suggests avenues for further research.

1.0 Introduction

1.1 Purpose

Our goal was to implement LDPC codes on a TI C67 EVM processor. This

project posed many challenges for us: turbo code research, converting Matlab

code to C, debugging, and optimization.

1.2 Findings

LDPC encoding can be simply implemented with xor matrix multiplication.

Decoding is a more complicated and time-consuming iterative process. We

felt that LDPC was a natural choice for implementation on the TI C67 EVM

because the structure of the decoder lends itself to parallel operations.

1.3 Results

Although we had original hoped to attain real time video transmission, we

are pleased with the successful implementation of LDPC codes on the TI C67

EVM. Our code achieves outstanding performance considering the memory

constraints of the processor.

2.0 Turbo Codes

Turbo codes are to date the best encoding scheme available: they can achieve

results closer to the Shannon Limit than any others. Turbo codes are a

combination of convolutional codes with bit interleavers. A traditional Turbo

code encoder is shown on the next page.

Figure 1: Turbo Coder, Valenti

This encoder is far more complicated than the LDPC encoder, though it is not

the hardest part of the turbo coding algorithm. The decoder is a combination

of many interleavers as well as MAP/SOVA decoders to undo the

convolutional encoding. The traditional decoder is shown below.

Figure 2: Turbo Decoder, Valenti

Although the group wanted to strive for the results that turbo codes could

offer, they decided that it would be beyond the scope of the course to

implement them. With the advice of Professor Kumar, group 8 decided to

implement LDPC codes. They are within the same family as turbo codes;

however, they are much easier to implement.

3.0 LDPC Advantages for the TI C67 EVM

Our group chose to implement LDPC from the turbo code family because of

its parallel processing possibilities, simple encode, and the fact that it does

only error corrections. Since the TI C67 EVM can do up to eight operations in

parallel, we felt it would be optimal to use the LDPC algorithm. The q and r

computations in the decode function lend themselves easily to parallel

processing. The encoding process is much simpler than that of the original

turbo codes, which consisted of convolutional codes and interleavers. First,

LDPCÕs encode function is a straight matrix multiplication. Second, in the

binary case, the encode matrix multiplication is as easy as an xor of bits.

Finally, many encoding schemes, like simple parity check, can only detect

when an error is there not correct it. The receiver must then ask for the

packet once again in order for the packet to be properly decoded. LDPC only

does error correction. This means it can find the error in the packet and,

given enough iterations, correct it. The only case where this fails is if the

number of iterations is limited. If one were to implement LDPC with an

acknowledge/repeat system or with infinitely many iterations, the

transmission would be entirely without errors though very slow.

4.0 How LDPC Works

As in every coding scheme, LDPC has two stages: an encode step and a

decode step. The LDPC encode is a simple matrix multiplication common to

all sparse graph. The LDPC decode is where the difficulty and the strength of

LDPC lies: it uses a decode matrix in an iterative decoding process on

probabilities of specific symbols. This section will discuss a binary

implementation of LDPC codes, covering the encode function, and the decode

function in detail.

4.1 LDPC Encode

The best way to explain the encode step is by example. LDPC uses an

encoding matrix, G. To encode a message word, one must simply multiply

the message word by the G matrix. The result is a ready-to-be-transmitted

codeword. G is typically made up of 2 parts: an identity and a parity check.

G = [I | P]

The purpose of the identity is to repeat the message word. This makes it

simple to find the message word when the codeword has been recovered in

the decode step. The parity check part of the matrix is what gives us the

ability to correct errors. It simply takes a combination of bits and xors them

to come up with another bit that is then tacked onto the end. This is

illustrated by a message word, u, and the encoding matrix, G, below.

u = [1 0 0]

When u is multiplied by G, the result is y, the codeword. The codeword y

shows the message word, u, in the first 3 bits, and the parity check in the last

3 bits.

y= [1 0 0 0 0 1]

Once y has been computed, it is ready to be sent through a communications

channel to a receiver. The receiver takes the received codeword, s, which is y

with noise added to it, and applies the decoding algorithm to it to get the

message word back again.

4.2 LDPC Decode

The decoding step can be broken into 3 main parts: computing initial

probabilities, syndrome check, and iterative decoding. Before anything else

can be done, the received codeword, s, must be converted into symbol

=
010100

001010

100001

G

probabilities. Next a syndrome check is performed on the probabilities to

determine if s is a valid codeword. If s is a valid codeword, the message is

extracted from it, and the decoding step is finished. If we do not have a valid

codeword, it is sent through the iterative decoder, which updates the

probabilities by using knowledge of other probabilities. After each iteration

the syndrome check is performed to see if a valid codeword has been

decoded. Usually, a maximum number of iterations is set. Should the

maximum number be reached, then the codeword is not decoded and there

are possibilities for errors in the extracted message.

4.2.1 Initial Probabilities

The received codeword, s, is no longer a bit stream. It is a string of floating

point numbers. For instance, although a one may have be sent through the

channel, the noise may have made it into 1.2 or .2 depending on the noise

strength. Using these values we can derive the probability that each bit was a

one or a zero from the other side. The probability that a bit is a one is

computed in q1; the probability that it is a zero is set in q0.

10 1 qq −=
Once all the q1 and q0 are computed the syndrome check and iterative

decoding may begin.

4.2.2 Syndrome Check

The syndrome check takes the computed probabilities and decides whether

the bit is a one or a zero based on the higher probability. It then uses a

decode matrix, H, derived from the encode matrix, G, to decide if the

codeword is valid or not. The codeword is simply multiplied by the

transpose of H. If the result is an all zero vector, then the codeword is valid.

H is of the form:

2/2

1

1

1
σkye

q
−+

=

H = [PT | I]

Where PT is the transpose of the parity check from G, and I is the identity. For

the previous example H is:

Assuming our codeword comes through the channel with no errors the

probabilities we can put y to the test.

Y * HT = [0 0 0]

In this case we exit the decoding process and take the first three bits of y since

we know that they are the original message word. Suppose now that we

receive the word m.

m = [1 0 0 0 0 0]

When m is multiplied by the transpose of H the resulting vector is

[0 0 1]

In this case we know that m is not a valid codeword, so we must go into the

iterative decoding process to find a better codeword.

4.2.3 Iterative Decoding

The iterative decoding process takes the probabilities from the initial

probabilities part and the H matrix from the syndrome check and updates the

probabilities. From the H matrix a message-passing graph is formed. Here is

the message-passing graph for the previous example.

=
100001

010100

001010

H

Figure 3: Message Parsing Graph

Looking back at the H matrix the first line contains ones in the second and the

fourth places, and therefore, there is a connection between the first square

and the second and fourth circles. The additional connections are made in

similar manners. The idea in decoding is to iteratively go back and forth

between the q probabilities and the r probabilities to get the best possible

result. The qÕs are set initially to be the initial probabilities. The rÕs are then

computed using the values of q and the following formulas.

rk0 = _ (1 + Π(qk0 - qk1))

rk1 = _ (1 - Π(qk0 - qk1))

In these formulas, q
k

1
 is the probability that circle k is a one, and q

k

0
 is the

probability that circle k is a zero. These two should add to one. The

differences of qkÕs are then multiplied together to form r1 and r0. For example

to get r1
1 one would multiply (q2

0 Ð q2
1)(q4

0 Ð q4
1) then subtract that from 1 and

divide by 2. Once the rÕs have been calculated, it is possible to update the qÕs.

qÕs are calculated using the following equations.

qk0 = αkpj0Πrk0

1 2 3

2 3 4 5 61

qÕs

rÕs

qk1 = αkpj1Πrk1

Here α is a normalization constant to ensure that qk
0 and qk

1 add to 1. p is the

inverse of the previous value of q to avoid double counting. In the example

q1
1 is computed by α times the prior value of q times r3

1.

From these 4 equations it is possible to iterate back and forth to get better and

better values of q. Between iterations, it is customary to do a syndrome check

on the values of q to see if a valid codeword has been determined. This

enables the algorithm to do as much work as needed to retrieve the real

codeword, while not wasting time doing extra iterations.

Once a valid codeword is determined, the message word is extracted by

removing the first string of bits of length equal to the message length. Then

the decoding algorithm is complete.

5.0 Results

In its final version, our project was fully functional on the EVM. We

implemented the LDPC encoder, channel noise simulation, and the LDPC

decoder, as described in the mid-semester project update. After completing

the project, we next improved its speed and evaluated its functionality.

Performance on the EVM was hindered by the requirements of the LDPC

iterative decoding algorithm. Despite initial difficulties, we decreased

decoder clock cycles used by 32%1 at 3dB of SNR. Our group tested the final

PC/EVM code at several SNR levels to perform a BER evaluation. We

transmitted an image at 0dB and 1dB to gain a qualitative understanding of

the LDPC channel. For a quantitative perspective, we performed a SNR vs.

BER analysis.

1 Our improvement efforts focused on the iterative decoder, as this is the bottleneck of the LDPC
channel.

Figure 4: Project Component Layout

5.1 Memory Optimization

Figure 4 displays the layout of our project. In order to use the same EVM for

encoding, adding noise, and decoding, we carefully controlled memory

usage. One difference between our updated project proposal and our final

project is the addition of noise on the EVM. We had initially envisioned

sending the encoded signal form the EVM to the PC, adding noise on the PC,

and passing back the noisy signal to the EVM to be decoded. An unforeseen

consequence of simulating a channel with BPSK modulation and using a _

rate error correction code is that four floating-point noise values must be

generated for each bit of data transmitted. Realizing this, we decided to send the

noise values to the EVM, corrupt the encoded frames, and decode the frames

serially.

A major drawback of the iterative LDPC algorithm is the accuracy that it

requires. All of the probability-containing arrays must be double-precision,

floating-point values. In an attempt to decrease on-chip memory used, we

changed all double arrays to float arrays, but the algorithm could not decode

properly. A C float value is accurate to 1*10-6 and the lower bound on the

zero representation2 in IgorÕs Matlab LDPC Simulation is 1*10-20, so the

necessary accuracy for the algorithm lies between these bounds. In practice,

many more values must be temporarily stored than many technical papers

make apparent. Using a packet of 52 bits3, over 3,000 double-precision,

floating-point values need to be stored. These arrays alone take up 24KB of

memory.

As the discussion below illustrates, it is possible to streamline the execution

of the iterative decoding function, but one must remember that decoding

times are highly dependent on the number of iterations necessary to decode a

packet at given SNR. Since the decoder iterates on a packet until the packet

has been successfully decoded,4 there is a direct relationship between the

BER, based on the SNR, and the time to decode a packet. Due to the highly

variable nature of the channel rate and the limitations of the decoding

matrix5, an in-depth analysis of packet throughput is not appropriate, but for

qualitative purposes we found that at 3dB the decoder processes about 280

bps. Our group chose to use 3dB of SNR as a benchmark because after two

iterations at this power over 97% of noise is removed and almost all packets

can be resolved in fewer than five iterations.

In its first operational version, the iterative decoder6 exceeded 6.3 million

clock cycles to decode a packet at 3dB. All operations were executed in the

8MB EVM external memory. Next, we determined that the Q, q, r, and check

arrays were the most frequently used and placed them into on-chip memory.

Moving these arrays decreased the average iteration to 5.2 million clock

cycles. Still with some free space on the chip, we moved on the H matrix,

which is used to index the q and r probability arrays, and the j and jv

indexing arrays. This dropped the average decoding cycle to about 4.8

million clock cycles. Finally, we added the large dq and r_temp arrays into

2 Setting a non-zero, zero value prevents divide by zero errors.
3 The 52-bit packet resulted from the dimensions of the H matrix.
4 If the decoder reaches a max_iterations value, it declares the packet damaged.
5 See Discussion: Performance
6 See Appendix B: LDPC Decoder

on-chip memory and removed the printf statements from the function, and

reduced the average number of clock cycles to decode a packet at 3dB to 4.3

million. After completing memory optimizations, the maximum and average

packet decoding attempts improved by 32% and the minimum packet

decoding case improved by 34%.

5.2 Performance

Our group performed both qualitative and quantitative analyses of the EVM

LDPC Channel. For a qualitative understanding, we transmitted a RAW

format image at several SNR levels, controlling the maximum number of

iterations permitted. The uncompressed RAW format stores each pixel of a

picture as an 8-bit value. It was necessary to use an uncompressed format in

the qualitative test to prevent a single error in the header of a compressed file

from allowing the file to open. Also, the image reflected every error

introduced by the AWGN. For a quantitative analysis, we compared the

codeÕs BER at several SNR levels.

5.2.1 Qualitative Analysis

Figures 5-7 (clockwise, from upper

left):Original Image; SNR = 1dB,

max_iterations = 1; SNR = 1dB,

max_iterations = 2.

At 1dB of SNR, the power of the LDPC code is clear. The original image in

Figure 5 shows a satellite picture of Carnegie MellonÕs campus taken during

the 1995 US Geological Survey. The image is slightly distorted as it has been

shrunken for transmission and blown up to three times its transmission size.

The image was resized to transfer in a reasonable amount of time during the

demonstration. The 232KB image accumulates over 18,000 errors in passing

through the channel, or experiences an 8% error rate. In figure 6, after a

single pass through the decoder, 76% of the noise has been removed. Figure 7

shows the same picture after two passes through the iterative decoder with

95% of noise removed.

Figures 8-10 (clockwise, from

upper left):

SNR = 0dB, max_iterations = 20;

SNR

= 0dB, max_iterations = 50,

SNR = 0dB,

max_iterations = 500.

At 0dB of SNR, the encoding/decoding matrices are reaching the limits of

their potential. However, the performance is still impressive when the size

constraints are considered7. The unprocessed image contains over 37,000

errors, an error rate of 16%. In figure 8 with max_iterations at 20, 55% of the

noise has been removed. Figure 9 shows a remarkable improvement from

figure 8, with max_iterations increased to only 50. 96% of noise has been

removed at this stage. If the decoder is permitted to continue to a maximum

of 500 iterations, figure 10 shows that over 97% percent of errors can be

removed.

It is important for the reader to consider that setting max_iterations to a

certain value does not guarantee that this value will be reached even

7 See Discussion: Performance

regularly. In practice, a histogram of the number of iterations to decode a

packet shows that the tail of the graph falling off in an inverse power law

relationship (i.e.: 1/xn). Some implementations of sparse graph ECCs have

set a constant number of decoding iterations, but this configuration wastes

both time, when processing an already decoded packet, and information,

when a potentially decipherable packet is discarded. As both qualitative

exercises above show, the great majority of noise can be removed with

relatively little iteration. Considering this and weighting of the cost of each

iteration, we determined that decoder efficiency is improved by several

orders of magnitude by focusing decoding efforts on the few difficult-to-

decode packets in each transmission.

5.2.2 Quantitative Analysis

Figure 11: SNR vs. BER

Analysis and Expected

Projection

Our quantitative

analysis of the LDPC

channel consisted of

an SNR vs. BER

comparison. The

figure 11 shows the

relationship between

SNR and BER we

were able to

determine, and the

stars show the relationship we would expect to see, based on our knowledge

of LDPC channels in general. By transmitting until 100 output errors8 had

8 LDPC decoding errors are always detected when using a check to end decoder iteration.

0.000000001

0.00000001

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 1 2 3 4 5 6

SNR (dB)

B
E

R

occurred,9 we eliminated the possibility of random variance effecting the BER

calculation.

6.0 Discussion

Despite the outstanding performance of our LDPC channel, two aspects did

not perform as initially expected. The SNR vs. BER curve appeared

fundamentally different from near Shannon Limit attaining codes, but a

closer examination reveals that significant matrix size compromises had to be

made to operate on the EVM. In light of these constraints, the matrixÕs

performance is good. Also, we found it necessary to abandon real time video

operation of the LDPC channel, but after more research, discovered that

NASA itself rarely uses it.

Figure 12: Comparison of Results to Other Codes

6.1 Performance

Although we successfully implemented the LDPC channel, the results of our

SNR vs. BER plot were not in the range we expected. Figure 12 compares our

results to other sparse graph and conventional codes. The bold line running

through the middle of the graph indicates our results with a 52 by 200 H

matrix. From left to right, the dashed line marked turbo is one of the best

know turbo codes. The dashed line marked (15, 1/4)C is an extremely

9 Professor Kumar suggested waiting for 100 output errors to be statistically confident of a
calculated BER.

computationally expensive JPL concatenated code based on a convolutional

code of constraint length 15 and rate _. The first group of solid lines

represents several irregular, non-binary LDPC codes. The smallest H matrix

in this group is 15000 by 5000 and rate 1/3. The next group of solid lines

demonstrates the performance of regular, non-binary LDPC codes. The

simplest code in this set uses a 13000 by 3000 H matrix at rate _. The last, lone

solid line is a regular, binary LDPC code with matrix size of 30000 by 20000.

The dashed line marked with (7, 1/2) shows the performance of a standard

convolutional code with a constraint length of seven and a rate of _. (7, 1/2)C

is the performance of the same convolutional code concatenated with a Reed-

Solomon code.

The nature of the decoding matrix used appears to have the greatest effect on

LDPC code performance. LDPC codes with irregular, non-binary matrices

perform the best, followed by regular, non-binary matrices, irregular, binary

matrices, and regular, binary matrices, respectively. Also, the randomly

generated decoding matrices must be on the order of ten millions values to

obtain optimal performance. Considering these issues, other factors being

equal, one sees that the greater the entropy that a matrix has, the better it can

be expected to perform. Intuitively, this makes sense; a large, irregular, non-

binary matrix has a finer resolution than a single bit to contain randomness.

We chose to use a relatively small regular, binary matrix of about 10,000

values for several reasons. A regular, binary matrix can be quickly encoded

using David MacKayÕs alist matrix storage format. In an attempt to optimize

our project for speed, we recognized that only a small matrix can fit into the

EVMÕs on-chip memory and encoding/decoding times are directly related to

matrix size. Due to speed and space constraints, the matrix we used was at

least four orders of magnitude less than optimal regular, binary matrices.

Viewed in this light, the performance of our LDPC channel is not surprising.

6.2 Real Time

Initially, our group aspired to better illustrate the real time properties of the

channel we created. We found that decoding was the main bottleneck of our

channel, and focused our efforts there. While we were able to transmit

images in real time during our demonstration, a timing interdependence

issue prevented us from achieving transfer rates sufficient for video. To

better protect the image from the channel noise, we would need a larger,

better-connected matrix. The sturdier packets would now need less iteration

to decode, but the larger matrix would require more paging and memory

transfer overhead for encoding and decoding. Performance increases gained

in saving decoding iterations begin to offset memory transfer issues. By

using a smaller matrix to reduce allocation overhead, fewer matrix

interconnections mean that packets become more sensitive to noise. We

chose to use a small decoding matrix, save clock cycles from transferring

data, and iterate on each packet longer, and our transfers were limited to

small images.

Even though real time video eluded our grasp, NASA itself rarely attempts it.

The majority of deep-space transmissions NASA processes are images

protected with the computationally expensive (15, 1/4) concatenated JPL

code. Further, the propagation delay associated with sending these images

can be up to several minutes. Consequently, it doesnÕt make sense for NASA

to attempt to recover these images in real time because of the minimum

amount of time required to recover them from the channel.

In summary, after we learned more about NASAÕs transmission strategies,

and how infrequently they transmit real time video, our demonstration and

transfer rates seem more appropriate.

7.0 Conclusion

In conclusion, our project was a success. We were able to implement the

LDPC channel we envisioned in the beginning of the semester, and proposed

in our project update. We successfully completed all programming,

improved performance, and demonstrated our communications channel.

When one considers that the Shannon Limit for the binary AWGN channel is

around Ð1.5dB, our transmission at 0dB is quite impressive. Although we

had initially hoped to accomplish real time transmission of video near the

Shannon Limit, after we learned more about LDPC, we refocused and

achieved more realistic goals.

Throughout the project, the novelty of the LDPC algorithm held us back.

Instead of having readily available libraries of code, we had to write our own.

Instead of working with an established algorithm, much of the theory behind

sparse graph codes is still being developed. Instead of having previous 18-

551 projects to base our work on, we struck out on our own. We understood

the challenges that the project presented when we decided to undertake it,

but feel that in the future, other groups will be able to use our project as a

basis for further exploration.

8.0 Future Extensions

There are several areas in LDPC that have the potential for new 18-551

projects. With some research, it would be possible to write software to create

custom size G and H matrices. These custom matrices could be geared

towards noise robustness or speed efficiency, but their creation is non-trivial.

Also, it has been suggested that LDPC codes are the best channel coding

algorithms for the AWGN communications channel. A comparison of other

channel codes with LDPC codes, using different matrices, code rates, and

perhaps puncturing, would be an interesting exercise. However, the most

exciting extension would be to separate the encoder and decoder to create a

true communications channel. This would allow the transmission of data

through the Internet, noise generating devices, and myriad other possibilities.

Sources Cited

Bhagavatula, Vijayakumar, ÒAn Introduction to Turbo CodingÓ, Carnegie Mellon
University, 2000

Couleaud, Jean Yves, ÒHigh Gain Coding Schemes for Space communicationsÓ
Signal Processing Research Institute, University of South Australia, 1995

Davey, Matthew C., ÒError-correction using Low-Density Parity-Check CodesÓ,
Cavendish Laboratory, University of Cambridge, 1999

Davey, Matthew C. and David J.C. MacKay, ÒEvaluation of Gallager Codes for Short
Block Length and High Rate ApplicationsÓ, University of Cambridge, 1999

Heegard, Chris and Stephen B. Wicker, ÒTurbo CodingÓ, Kluwer Academic
Publishers, 1999

Levine, Benjamin R., R. Reed Taylor, and Herman Schmit, ÒImplementation of Near
Shannon Limit Error-Correcting Codes Using Reconfigurable HardwareÓ,
Carnegie Mellon University, (yet to be published)

MacKay, David J.C., ÒGood Error-Correcting codes based on Very Sparse MatricesÓ,
University of Cambridge, 1998

Valenti, Matthew, ÒTurbo Codes and Iterative ProcessingÓ, Virginia Polytechnic
Institute and State University, 1998

