
Music Transcription for the Lazy
Musician

18-551 Spring 2000
Final Project Report

Group 7
May 8, 2000

Michelle Kruvczuk Ernest Pusateri Alison Covell

kruvczuk@andrew.cmu.edu pusateri@andrew.cmu.edu covell@andrew.cmu.edu

1. The Problem
Many times musicians find it useful and enjoyable to view the score of a piece of

music while it is being played. Other times, musicians come up with melodies in their

minds, but do not have the time to sit down and transcribe the tunes in their heads to

paper. A musical transcription device that could take music being played and produce the

musical score would be very useful in the situations described above. The transcription

device will also useful for students practicing. They will be able to tell when they are

playing incorrect notes without having to be told. Most people have problems

determining the pitch by directly listening to a musical score. This is, in large part,

because each source in a musical performance produces a signal with a fundamental

frequency as well as harmonics that, in the case of certain instruments, may have an even

stronger presence than the actual fundamental. There are even cases where the

fundamental does not exist at all, although these sounds are primarily made with

electronic synthesizers. Our objective is to automate the process of musical transcription

for a single melody played by any instrument to eliminate the need for musicians to

transcribe their own music.

2. Background
In most cases, musical sound is represented by the fundamental frequency, also

known as the pitch of the note, as well as several harmonics. The harmonics of a note are

simply sinusoidal waves with frequencies at integer multiples of the fundamental. For

example, a sound that has a fundamental frequency of 100Hz, will have its first harmonic

at 200Hz, the second at 300Hz, then 400Hz, 500Hz, etc... In instruments such as the

oboe, the fundamental frequency exists, but the amplitude is significantly lower than that

of its harmonic components, and for several sounds that electronic synthesizers are able

to produce, the fundamental is not there at all. Our ears account for this already, and

although the fundamental may only be slightly audible, we still hear the note as though it

is being played at the fundamental frequency. This makes it more difficult to determine

the fundamental frequency because of course, the Fourier Transforms are not able to pick

up on this and insert the fundamental. Therefore, the fundamental frequency cannot be

determined by taking the Fourier Transform and simply finding the maximum peak.

These variations on harmonic components need to be taken into account when trying to

find the correct fundamental frequency.

Once it has been determined, each fundamental frequency translates to a certain

note in standard Western Music notation. The standard notation consists of a treble and

bass clef, with 5 lines each. Each line and each space between represents a single note,

and a certain frequency. A sample of standard notation in the treble clef is shown below.

Sharps and flats are also included, so that each note is exactly one half step away

from the next. The relationship between one note, and the note one half step above is

determined by a logarithmic scale, so that each note is exactly 2^(1/12) above the next.

An example of a chromatic scale, and the related frequencies is shown here.

A 220*2^(0/12) = 220Hz
A# 220*2^(1/12) = 233Hz
B 220*2^(2/12) = 247Hz
C 220*2^(3/12) = 262Hz
C# 220*2^(4/12) = 277Hz
D 220*2^(5/12) = 294Hz
D# 220*2^(6/12) = 311Hz
E 220*2^(7/12) = 330Hz
F 220*2^(8/12) = 349Hz
F# 220*2^(9/12) = 370Hz
G 220*2^(10/12) = 392Hz
G# 220*2^(11/12) = 415Hz
A 220*2^(12/12) = 440Hz

Besides representing the frequencies as notes on a clef made of lines and spaces,

another important aspect is representing the duration of the musical sound. In musical

scores, this is done with another standard, whereby the shape of a note or rest (space of

time in which no musical sound is played) indicates how many beats it will receive. This

number of beats can be used to determine the actual number of seconds a particular note

takes by examining the speed at which the music is played, usually specified in beats per

minute (bpm). A chart showing the number of beats assigned to a particular note or rest is

shown below:

As you can see, a whole note typically receives 4 beats, so a piece of music played at a

tempo of 120bpm, would have 30 whole notes in one minutes.

Most professional musicians can play 16th notes at speeds of up to 120bpm. We

intend to go one step beyond this to 32nd notes. At 8 32nd notes per beat, and 120bpm this

corresponds to 960 32nd notes in one minutes, roughly one 32nd note every 16th of a

second, which is much faster than most people can play.

When the fundamental frequency is combined with its respective length and

translated into standard music notation, a musical score is produced. An example of a

very basic musical score is presented here:

There are many other components of a musical score that are not addressed in this

project. These components include more expressive parts of music, such as loudness,

accents and changes in tempo. The basic score our algorithm implements in the end only

includes which notes were played and how long they were held.

3. Solution

3.1 Previous Projects

Several groups have done projects in the past that involve some form of pitch

detection algorithm implementation. The most recent project, implemented in spring

1999, involved a pitch-correction implementation that required the detection of the

incoming pitch, which was computed using an autocorrelation algorithm. Once they

found the pitch being sung they compared it to known pitches to see how far out of tune

the singer was. Finally, they added or subtracted from the original pitch till it matched

one the known pitches and outputted the new waves to a speaker.

With the algorithm they used their system had a slightly delay in the actual

correction of the pitch from the time the singer started each note. There was also some

amount of noise introduced into the system they believed to be due to the limited

accuracy of their algorithm. This group seemed to achieve reasonable results, but put

several limitations on their system. They only considered pitch correction of the human

voice, which has a limited range and harmonic distribution. This would make their

algorithm fail for certain kinds of instruments, and for sounds that exceed the human

vocal range.

The next group we investigated implemented a voice-to-midi system in the

previous year. Their algorithm was similar to ours in that it looked at the frequency

response of a signal and used harmonic ratios to determine which frequency is most

likely the fundamental. They then take the frequencies and write them to a midi-

formatted file to produce a playable piece of music. They wanted to attempt a real-time

solution of this, but were not able to implement this. The output of their system also had

a great deal of high pitched glitches and noise.

The most obvious feature we attempt to improve upon with this project is the real-

time implementation. This group again limited themselves to only a few octaves of the

audible range of hearing. They also did not implement their system to work for a variety

of musical instruments.

Another group of the same year also attempted a pitch detection to midi system.

They planned to implement this using wavelet transforms. One major problem with this

we discovered as we were researching pitch detection algorithms is the lack of good

resolution at extreme ends of the audible range of sounds. This group also did not

implement their system in real time.

In the spring 1997 section of the course, another group implemented music to

transcription system, also using wavelet transforms, and a similar ratioing algorithm to

the second mentioned project. Once again their implementation was not done in real time

and had a greatly limited frequency range. Their system had various glitches and blips,

but was still able to distinguish most of the notes in their input files. While it mostly

worked for piano and string instruments, their system failed for brass instruments. Their

output also was not able to combine several notes of the same frequency into one longer

note, resulting in a cluttered and difficult to read musical score.

Our most obvious improvement over the previous projects presented here is the

implementation of a pitch detection algorithm that can be implemented in real-time.

Another major limitation we attempt to overcome is the dependence of most systems

upon the type of instrument that is being played. More specifically we try to eliminate

the need for music to have a normally structured harmonic spectrum, or for the

fundamental to even need to be present. Finally we intend to eliminate the highly

constricted range that all the previous projects have placed upon their algorithms by

being able to detect all frequencies occurring on natural instruments.

3.2 Solutions Considered

3.2.1 Modal Distribution

The first solution that we considered for our problem was to use the Modal Time-

Frequency Distribution. This distribution allows one to see the strength of frequency

components in narrow bands. Thus, it is well suited to the purpose of detecting a musical

toneÕs fundamental and harmonic components. This approach is very computationally

intense, however, and would not have allowed our implementation to work in real-time.

3.2.2 Wavelet Transform

The second solution considered was the wavelet transform. HeisenbergÕs

uncertainty principle dictates that one must always compromise between time and

frequency resolution. In other words, as one obtains more time resolution, one looses

frequency resolution and visa versa. The wavelet transform allows this compromise to be

made differently at different frequencies. This is a valid approach for musical signals

because as one moves up the musical scale, the note frequencies get farther apart. Thus,

less frequency resolution is required at higher frequencies than at lower ones. If one is

willing to compromise time resolution at lower frequencies, the wavelet transform is an

excellent approach. We were hoping to obtain the same time resolution across the entire

musical scale, however, so this approach was discarded.

3.2.3 Combining Different Window Lengths

The third approach we considered was an algorithm that we devised ourselves.

This algorithm involved using two different window sizes, one very large and one very

small. The result of the FFT for the very small window would be used to filter the result

of the large window FFT. The goal of this algorithm was to combine the fine frequency

resolution of the large window with the fine time resolution of the small window. While

this algorithm had promise, we felt it would be more prudent to use an already existing

algorithm that had been proven to work.

3.3 Final Solution

3.3.1 Algorithms

3.3.1.1 Pitch Detection

The algorithm that we decided to use comes from a paper by Anssi Klapuri called

ÒWide-band Pitch Estimation for Natural Sounds Sources with Inharmonicities.Ó The

purpose of this algorithm is to detect the pitch of the tone being played in one time

window. In other words, the algorithm says nothing about how to combine pitch

estimates for many subsequent windows into a musical notation representation. I will

describe this algorithm in detail in the following paragraphs.

The algorithm consists of two main parts. First independent pitch estimates are

made in different frequency bands. Then, these estimates are combined into one global

estimate. The algorithm for finding the independent pitch estimates are based on a

simplified version of a loundness perception model proposed by Moore [3]. This model

says that the loudness of a signal can be determined by the following formula:

deeXL =
40

1

2.)(

In this formula e represents the frequency in ERBs. The formula to convert a frequency

from Hz to ERBs is as follows:

√
↵

 +??= 1
1000
37.4

log4.21)(
f

fe

Klapuri approximates the formula formula for L with:

=
?= H

h hh eXEL
1

2.)(

In this equation)(heX is the value of the power spectrum at harmonic h. Eh is the

approximate width of the f0 Hz wide frequency range around the partial. This can be

approximated with the formula:

)(hh fe
df

d
E =

After studying the behavior of this function, Klapuri concluded that a function of

f0/bandw could be used as an approximation to this value. He came up with the following

formula:

0
0

1

2

0
2 a

bandw

f
a

bandw

f
aE h +√

↵
?+√

↵
?=

Klapuri trained the system to obtain values for a2, a1, and a0. The values he obtained

were a2,1,0 = {-0.4, 1.2, 0.2}. We found that these values did not work well for our

implementation. This is described in the implementation section of this report. To obtain

pitch estimates in a band, L values are computed for every pitch that could have its

fundamental or any of its harmonics within that band.

After obtaining loudness values within each band, the second part of the

algorithm is performed. All of the bands are searched for the largest L values. These are

put into a candidate list in descending order of loudness. Starting with the first candidate,

all of the frequency bands, except the band from which the candidate came, are searched

to determine whether that frequency has L values in those bands. If so, the L value is

added to the candidates L value. If one of the L values added to a candidate is in the

candidate list, it is removed. After this process is complete, the candidate with the

highest L value is taken as the pitch estimate.

Two voice pitch detection is implemented as follows: After the candidate with the

highest L value is taken as the first pitch, the components in the original FFT

corresponding to the first pitchÕs fundamental and harmonics are set to zero. The L

values are then recomputed, and another pitch estimate is made.

It should be noted that the algorithm described by Klapuri also takes into account

inharmonicities. We did not implement this part of the algorithm, however, and thus it

will not be described.

3.3.1.2 Duration Algorithm

The algorithm we used to determine duration is based on the algorithm used by

[4]. The steps in the algorithm are as follows:

1. The length of the first note of the piece (in musical beats) is entered by the

user.

2. Set window counter to 0.

3. After determining pitch of the first window, set window counter to 1.

4. Obtain the pitch of the next window. If it is the same as the previous window,

increment the window counter, and repeat step 4. Otherwise move to step 5.

5. Use the value of the window counter and the value entered by the user to

determine the number of windows per sixteenth note.

6. Set window counter to 0.

7. After determining pitch of the next window, set window counter to 1.

8. Obtain the pitch of the next window. If it is the same as the previous window,

increment the window counter, and repeat step 8. Otherwise move to step 9.

9. Divide the value of window counter by the number of windows per sixteenth

note. If the value is greater or equal to 1, the pitch is assigned this duration.

Otherwise, discard the pitch as noise. Go to step 6.

3.3.2 Implementation

3.3.2.1 Data Flow

The general data flow of the musical note transcription system began with the

user entering the musical length of the first note on the PC interface. For example, if the

first note were a half note, .5 would be entered as its musical duration. This value would

be sent to the ÔC67 EVM to later be used in the duration algorithm. Next, on the EVM

the pitch estimation algorithm would be performed on windows of samples of the piece

of music coming from the codec. After the pitch estimation algorithm produced the

fundamental frequency corresponding to the note played, the duration algorithm would be

run on the EVM to find the length of the note played. After these two pieces of

information, pitch and duration, were calculated on the EVM, they were sent back to the

PC and stored in an array of pitches and corresponding durations for the piece of music

being played. This array was then compiled into text MIDI format on the PC so that after

using the TXT2MIDI and MidiNotS programs, the transcribed notes could be viewed or

heard. A data flow graph of the transcription system methodology is shown below:

3.3.2.2 Parameters

In order to achieve musical transcription in real time, the pitch detection and

duration algorithms described in the algorithms section above were done on the EVM, as

shown in the data flow diagram. Several parameters were chosen to fit our purposes in

implementing the algorithms. First, the sampling rate parameter given to the system was

44100 samples per second. Secondly, the windows passed to the FFT were of size 4096,

overlapping by half, in order to provide decent frequency resolution needed to detect low

notes, while detecting notes of relatively short duration as calculated below:

.77.10
4096

..44100
Re Hz

samples

ssamp
solutionFrequency ==

.44.46
..44100

.2048
ms

ssamp

samp
DetectableDurationNoteMinumum ==

ms
notesnd

beat

beats

s
bpmatDurationNotend 5.62

328

1

.min/120

.min/.60
12032 =∗=

As can be seen from these calculations, the best frequency resolution using the 4096

point FFT was 10.77 Hz, but the nature of the pitch estimation algorithm assists in

distinguishing lower frequencies with differences less than 10.77 Hz, so this FFT size

was ideal. Also, it can be seen from the calculations that using windows of 4096

overlapping by half allows notes as fast as 32nd notes at 120 bpm to be detected, which is

quite a fast tempo in music.

The 4096 point FFT was taken using the Texas Instruments radix-4 assembly FFT

routine. This routine did not support the use of interrupts. Therefore, just before the

assembly routine was called, interrupts were disabled, and just after the routine, interrupts

were enabled again. This caused a certain number of samples from the codec to be lost,

as shown below:

.516..686000 mscyclenscyclesFFTofLength =∗=

samples
ssamp

ms
LostSamplesofNumber 23

.441001

.516. ==

This number of samples lost was relatively small since the window size to find each

fundamental was 4096.

The next step was to compute the loudness values used to determine the most

likely pitch candidate for the pitch estimation algorithm. The lowest frequency to detect

was designated 55Hz since the sounds below this are too irregular to detect, and the upper

limit for detection was designated 21,096Hz, which is approximately the upper limit of

human hearing. The bands for the pitch estimation calculation were chosen in groups of

2/3 octaves ranging from 55Hz to 21,096Hz. 2/3 octaves were chosen since if the band is

too narrow, the loudness value for many fundamentals will only be calculated with one

harmonic. In such a case, the pitch estimation for each band would not be based on

enough information.

Other parameters needed in the pitch estimation algorithm were the a0, a1, and a2

parameters used to calculate Eh values. In the original implementation of the algorithm

by Anssi Klapuri, a0 = 0.2, a1 = 1.2, and a2 = -0.4 parameters were chosen by automated

training with musical instrument samples. Since automated training was not

implemented in this project, values which gave the best results in general for all test

samples were chosen of a0 = 0.2, a1 = 1.2, and a2 = -.2.

Also, in the pitch estimation algorithm, when the pitch candidates were being

searched to obtain the best fundamental estimate, the number of most-likely pitch

candidates to save from the possible pitch estimates across all bands was chosen. For this

project, 10 most-likely pitch candidates were saved from the vector of possible

candidates since this number seemed to achieve good results across the set of musical test

samples.

Finally, an important parameter for the duration algorithm was the length of the

musical note to which all notes were quantized. For this project, any note shorter than a

sixteenth note was disregarded, and all note lengths were recorded in terms of sixteenth

notes. For example, a quarter note would be represented by 4 sixteenth notes.

Additionally, if the number of sixteenth notes was not exactly the length of any musical

note duration, the note was rounded to the closest musical note duration. For example, if

the note were found to be five sixteenth notes long, the note duration would be rounded

to a quarter note.

3.3.3 Optimization

3.3.3.1 Speed

Because we wanted to create a real-time music transcription system, and the

algorithm was being implemented on the EVM, optimization of the EVM code was an

integral part of achieving our goals. We calculated the total number of allowable cycles

for a real time implementation, using the fact that the window size was 4096, overlapping

by half, as such:

cyclesmillion
ssamp

samp

ns

cycle
74.7

..44100

.2048

.6

1 =∗

A chart showing the approximate initial number of cycles in the parts of our code

consuming the most cycles, and the amount of improvement achieved with each

optimization for these parts is shown below:

Improvement vs.
Cycles

FFT Loudness
Values

Overall

Optimization on, most data
and code external

1.2 Million 33 Million 60 Million

Transferred large data
structures into internal buffer
when needed

400,000 15 Million 25 Million

Moved program code to
internal memory

86,000 6 Million 8 Million

Moved RTS libraries to
external memory

86,000 24 Million 30 Million

Changed processor to C6700 86,000 12 Million 15 Million
Eliminated unnecessary
divides and print statements

86,000 1.2 Million 3 Million

When the EVM code was initially profiled, the optimizations option was checked

in Project settings, but most of the data was in external memory since it could not be fit in

internal memory. At this point, the total number of cycles was around 60 million, which

was exceeding the limit of 7.7 million cycles by quite a lot. Therefore, the memory

management system, described below, was implemented, and the data structures were

transferred from external memory into an internal memory buffer using DMA just before

they were needed. The computation was done with the data in internal, and then the

results would be shipped back to external using DMA so that the internal buffer could be

used for the data of the next computation. This memory management scheme brought

significant improvements in performance, but the total number of cycles was still 3 times

too big for real time.

Next, with the help of the teaching assistant, Pete, an error was found in the linker

command file, whereby the program code was being placed in external memory. After

fixing this and getting the program code placed in internal memory, the number of cycles

was reduced to almost the amount needed for real time, but improvement was still

needed.

Therefore, the RTS libraries were moved to external memory so that there would

be room in internal memory to bring in more data needed in the algorithm computation.

However, when these libraries were moved to external, the number of cycles went up by

a surprisingly big amount, making the total number of cycles again over 3 times too big

for real time.

The RTS libraries contained many functions, including routines for floating point

adds, multiplications, divisions, and also those needed for the McBSP. When the

assembly code for the project was viewed, it could be seen that many calls were being

made to floating point functions, instead of using the floating point assembly instructions

for the ÔC67. Therefore, upon examination of the Project settings, it could be seen that

the processor type was not set. The processor setting was changed to C6700, and the

project was recompiled. This change reduced the total number of cycles by about 2, but

the number of cycles was still about 5 million too big for real time.

Finally, looking at the assembly code for the project revealed that every time a

divide appeared in the code, a function call to the off-chip RTS libraries was made,

slowing down the code dramatically. Thus, as many divides as possible, as well as print

statements, which were also suspected to be slowing things, were eliminated from the

code. These final optimizations brought the total number of cycles down to 3 million,

well under the 7.7 million needed for a real time implementation.

3.3.3.2 Memory

Since the amount of data needed to implement our pitch estimation algorithm was

much more than could be stored in internal memory all at once, memory management

was a very important optimization in order to achieve a real time implementation. The

general memory management technique was to designate an internal memory buffer, to

which data would be transferred from external memory using DMA just before it was

needed in the algorithm. After the data was used in the algorithm, and its results were

stored in internal memory, the results would be shipped back to external memory using

DMA, and new data would be brought into the internal buffer.

The particulars of the memory management for the algorithm are as follows.

After the first musical note duration was passed over to the ÔC67 EVM using a

synchronous mailbox write, the pitch estimation algorithm was begun on the EVM.

The first step to implementing it was to pass windows of the samples coming

from the codec into an FFT to obtain the power spectrum. Three external data buffers of

size 4096 (the FFT size) were used to store 2048 samples coming from the codec

interleaved with 2048 zeros. After one of these external data buffers was filled up with

real samples from the codec, it and the previously filled buffer would be sent to internal

memory using a DMA transfer. Also, at this time, the twiddle factors, which were

computed and stored in external memory before the pitch estimation algorithm began,

were transferred to internal memory using DMA. The FFT was taken with all of the data

structures in the internal memory buffer. The result of the FFT was stored in internal

memory, and the power spectrum of the resulting FFT was computed, and stored in an

internal buffer, as well. At this time, the power spectrum result was shipped to external

memory using a DMA transfer.

The second phase in the pitch estimation algorithm was computing the loudness

values for each frequency band. Therefore, the internal buffer was now designated to

store the structure for the loudness, frequency, and Eh values per frequency band (as

explained above in the algorithms section). Bands of the power spectrum result were

shipped in one at a time from external memory using a DMA transfer, and each of these

was used in the loudness values calculation to fill in one band of the loudness/frequency

structure in internal memory. After the internal loudness/frequency structure was filled

in, it was searched in order to find the most likely fundamental for the note being played,

and the pitch estimation was complete.

Finally, the duration of the fundamental was calculated as explained above using

the ratio of the number of samples of the current fundamental to the number of samples

of the initial fundamental. Thus, the duration algorithm required no significant data

structures or transfer.

Once both the fundamental and its duration were found on the EVM, they were

stored in a structure, which was passed back to the PC, using a synchronous mailbox

transfer.

4. Results

4.1 Monophonic Pitch Detection
Below is a chart of basic music we used to test our algorithm, and the results for

different ranges in the musical scale. For the single note tests, we compiled a group of

files for each instrument that consisted of just a few windows containing the same pitch.

For the chromatic scale tests, instruments were played from their lowest capable pitch to

their highest with little or no rests between played at 120bpm. Most notes were

detectable by our algorithm, but in certain cases noise was apparent in the results. To

account for these in inaccuracies, we decreased the percentage of correct notes detected

by the percentage of noise added. In other words, if a note was correctly detected, but an

extra, incorrect, tone was also detected it only counted as .5 when the total number of

successes were summed.

Instrument a1-b2 c2-f4 f5-above

Midi-clarinet (single notes) NA 100% 100%
Midi-violin (single notes) 50% 100% 100%

Midi-piano (single notes) 75% 90% 100%

Real clarinet (chromatic scale) 100% 90% 50%

Real clarinet (chromatic scale) 2x fast 100% 100% 100%

Real clarinet (chromatic scale) 3x fast 100% 100% 100%

Midi-violin (chromatic scale) 75% 94% 53%

Midi-violin (chromatic scale) 2x fast 97% 100% 100%

Midi-violin (chromatic scale) 3x fast 98% 100% 100%

Midi-flute (chromatic scale) 93% 100% 86%
Midi-flute (chromatic scale) 2x fast 100% 100% 100%
Midi-flute (chromatic scale) 3x fast 15% 100% 100%
Sawtooth wave (function generator) 100% 100% 100%

As can be seen by the table, most of our basic tests cases had very good results.

There are various properties or music that contribute to the poor results in various ranges

of certain instruments. For example, the real clarinet chromatic scale had poor results in

the upper range due to the increased amount of distortion as the instrument pushed the

boundary of its natural range and fell somewhat out of tune. In the upper range of the

midi instrument chromatic scales, the notes began to smear together, causing some

harmonic distortion when one note changed into another. It is interesting that the

accuracy of our results for the chromatic scales actually increased as we increased the

tempo. This is probably because, with the midi tones, the attacks and decays of each of

the notes are shortened when the length of the tone is shortened. It is these attacks and

decays that seem to cause the most inaccuracy in our system.

In our demo we used a real cello and trombone, which we inputted to the codec

through a microphone. The algorithm performed rather well on the trombone, detecting

most notes with some noise. The trombone also revealed the ability of the system to

detect notes at various volumes. On soft and normal volumes it performed fine, but when

a very loud note was played some noise was also detected with the note. This is due

partially to the way we threshold noise, and partially to the distortion of the sound when

it is played extremely loudly. The cello did not perform so well. Upon looking closely at

the output file, it was determined that the notes were being correctly detected, but noise

was introduced in the attack and decay of most notes. This is due to multiple items.

Firstly, the cello has a great deal of reverberation within its body even after a note has

stopped. Secondly, if the note is not struck cleanly and starts just slightly out of tune, the

results will not be as expected. When notes were played cleanly and reverberations kept

to a minimum, the algorithm performs just as well as with any instrument. Our algorithm

will work with string instruments, but the notes have to be very clean and in tune.

The results we obtained are consistent with those obtained by Klapuri [2]. In his

tests, he obtains almost 100% correct detection from c2-c4. The descrepencies between

our results and his, especially in the real clarinet and midi violin cases, are probably due

to the differences in how our tests were run. Klapuri tested his algorithm on very short

samples of individual instruments, not continuous music. Thus, the distortion introduced

by attacks and decays was not present in his results.

4.2 Polyphonic Pitch Detection

Although the algorithm we were using was designed for single pitch detection,

Klapuri adapted the algorithm to perform detection of two pitches [2] . We implemented

this adapted algorithm, but did not implement a duration algorithm or any post processing

to go along with it (unlike in the monophonic case).

 To test the performance of this adapted algorithm, we felt it would be most

informative to use an instrument and range on which single pitch detection worked well.

This way we could evaluate the algorithmÕs polyphonic possibilities separately from the

monophonic limitations we had already discovered. Thus, the test data consisted of a

midi clarinet in the range from c2 to c4. A chromatic scale was played from c2 to c4,

while c2 was held. Then the same chromatic scale was played while c3 was held.

Running this test, the program succeeded in detecting the two pitches in at least

one window during the duration of each note 87.5% of the time. The number of windows

in which the pitch was detected was very irregular, however, and would have made it

difficult to create a successful duration algorithm. It would also be very difficult to

determine which windowsÕ pitch estimates were correct and which were noise caused by

irregularities in the two tones.

In KlapuriÕs tests, he averaged about 80% correct detection on two pitches. His

tests were run on single windows, however, not continuous music. Thus, he had only one

chance to guess the correct pitches, while we had the whole duration of the note. This is

significant because, even with midi tones, the harmonic characteristics of the tone will

change during its sounding. He also ran his tests on many different instruments, while

we picked an instrument that performed well with the single pitch detection algorithm.

The reason for the poor performance of the algorithm in polyphonic pitch

detection is partially due to the way in which the information from the first pitch is

removed from the FFT before an attempt is made to find the second pitch. The FFT

values corresponding to the first pitchÕs fundamental and harmonics are simply set to 0.

This has disastrous effects when the first pitch shares harmonics with the second. In the

test we ran, none of the octaves were detected, probably because the higher pitch shares

all of its harmonics with the lower one. Both fourths and one of the fifths were also

missed, again because the two tones in these intervals share many harmonics.

5. Schedule & Task Distribution

Alison Ernie Michelle
Week
1:
2/28/00

Research pitch
Detection

Research pitch
Detection

Research notation
Software

Week
2:
3/6/00

Explored various
algorithms.

Explored various
algorithms.

Explored various
algorithms.

Week
3:
3/13/00

Began implementing
KlapuriÕs algorithm.

Began implementing
KlapuriÕs algorithm.

Began implementing
KlapuriÕs algorithm.

Week
4:
3/20/00

Implement code to
compute power
spectrum.

Implement code to
determine pitch from L
values.

Implement code to
compute L values.

Week
5:
3/27/00

Spring Break Spring Break Spring Break

Week
6:
4/3/00

Port code to EVM. Port code to EVM. Port code to EVM.

Week
7:
4/10/00

Non-real-time
implementation.

Non-real-time-
implementation.

Non-real-time-
implementation.

Week
8:
4/17/00

Real-time
implementation
and testing. Implement
duration algorithm.

Real-time
implementation
and testing

Real-time
implementation
and testing. Research
MIDI file format.

Week
9:
4/23/00

Real-time
implementation
and testing. Integrate
duration algorithm.

Real-time
implementation
and testing. Implement
midi file conversion.

Real-time
implementation
and testing. Implement
midi file conversion.

6. References

[1] Klapuri, Anssi ÒWide-band Pitch Estimation for Natural Sound Sources with
InharmonicitiesÓ

[2] Klapuri, Anssi ÒPitch Estimation Using Multiple Independent Time-Frequency
WindowsÓ

[3] Moore, Glasberg, Baer, ÒA Model for the Prediction of Thresholds, Loudness, and
Partial Loudness,Ó J. Audo Eng. Soc., vol. 45, No. 4, April 1997

[4] Nedel, Ng, Yamaguchi, ÒAutomated Music Recognition and Transcription,Ó 18-
551 Final Report, May 1997

7. Web References
nRadix-4 FFT Assembly file (cfftr4.asm)
nhttp://www.ti.com/sc/docs/tools/dsp/ftp/c67x.htm

nProgram txt2midi (Used to put our transcribed notes and durations
into midi format)
nhttp://www2.iicm.edu/diditest.nametest

nMidiNotate (Displays a midi file in musical notation)
nhttp://www.notation.com/midinotate.htm

