
Wednesday, June 28, 2000

18-551

Spring 2000

CDMA Modem with LPC Voice

Compression

Felipe E. Conill

Erik Dykema

Julian Gomez

18-551 CDMA Modem with Voice Compression Page:2/24

Table of Contents

General IntroductionÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..3

Linear Predicting Code (LPC) Compression and DecompressionÉÉÉÉÉÉÉÉÉ4

BackgroundÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..4

Signal Information and AssumptionsÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...4

AnalysisÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ6

SynthesisÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..7

Advantages and DrawbacksÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.8

Code Division Multiple Access (CDMA)ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..10

IntroductionÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ10

BPSKÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..11

SynchronizingÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ13

Communication Channel (Daughterboard)ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.14

IntroductionÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ....14

Materials UsedÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...15

EVM Resources UsedÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ16

ProcedureÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...18

ConclusionÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.É21

Appendix AÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ23

ReferencesÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.24

18-551 CDMA Modem with Voice Compression Page:3/24

General Introduction

The structure of this final report will be a focus on the three fundamental

blocks involved in the construction of our CDMA modem. We will start by

describing the particulars of LPC voice coding. After this discussion we will

describe the CDMA standard and at the end we will deal with the issues of using

an external DAC/ADC connection.

We hope that by reading this report one can see the issues involved in

building such a system on the TMS320Cx family of DSPÕs.

18-551 CDMA Modem with Voice Compression Page:4/24

Linear Predicting Code Compression and Decompression (LPC)

Background:

Linear Predictive Coding is one of the most powerful techniques available

for encoding and transmission of speech signals. LPC analysis can reduce a

human voice signal to an extremely low bit rate digital signal, suitable for

transmission over low bandwidth digital and packet channels. Linear Prediction

was first introduced as a method for coding speech by Atal and Schroeder in

1967, and in 1982 it became a federal government standard (FS-1015)for

speech compression. LPC-10 was attractive to the government because it's low

bit rate made transmission of the signal resistant to jamming and channel noise.

Signal Information and Assumptions:

LPC starts with the assumption that the speech signal is produced by a

buzzer at the end of a tube. The vocal cords produce the buzz, which is

characterized by its intensity and frequency. The vocal tract forms the tube,

which is characterized by its resonances, which are called formants.1

LPC analyzes the speech signal by estimating the formants, removing

their effects from the speech signal, and estimating the intensity and frequency of

the remaining buzz. The process of removing the formants is called inverse

filtering, and the remaining signal is called the residue. The filters which perform

1http://asylum.sf.ca.us/pub/u/howitt/lpc.tutorial.html

18-551 CDMA Modem with Voice Compression Page:5/24

the analysis are described by differential equations. Equations of a higher order

are more computationally intensive, produce more output, and more accurately

predict the signal. LPC-10 uses a 10th order filter to describe it the signal.

The figure above shows the differences in compression between different

order filters. It is obvious that the move from a 1st to a 2nd order filter produces a

big jump in compression, while the move from a 2nd to a 6th order filter is not as

dramatic. A 10th order filter produces the most efficient compression and

prediction, a higher order filter would not appreciably improve the compression.

The numbers which describe the formants and the residue can be stored

or transmitted somewhere else. LPC synthesizes the speech signal by reversing

the process: use the residue to create a source signal, use the formants to create

a filter and run the source through the filter, resulting in speech. Because speech

18-551 CDMA Modem with Voice Compression Page:6/24

signals vary with time, this process is done on short chunks of the speech signal,

which are called frames.

 The FS-1015 standard implementation vocoder2 which we used in our

project takes as input a linear 8 kHz voice signal, which is broken up into frames

of 180 samples. This frame is reduced to 54 bits which describe the speech

signal. 44 frames are processed per second, yielding a bit rate of 2400 bits per

second.

Analysis:

The computationally intensive part of the LPC-10 algorithm is the

determination of the formants from the speech signal. The solution is to use a

difference equation which attempts to express each sample as a linear

combination of previous samples. This equation is known as a linear predictor,

which is why this technique is known as Linear Predictive Coding.3

2 Source available for download at http://www.arl.wustl.edu/~jaf/lpc
3Http://asylum.sf.ca.us/pub/whowitt/lpc.tutorial.html

18-551 CDMA Modem with Voice Compression Page:7/24

These formats, once found, describe the mechanisms responsible for

producing the speech. However, it is necessary to have more information about

the signal to accurately reconstruct it, including the pitch period, gain, and

voicing.

Voicing is a term used to describe the origin of the speech signal. Voice is

produced by the throat and mouth filtering a source sound. This source is either

produced by the vibration of the vocal cords (voiced), or is a random hiss

produced by air coming out of the lungs. For voiced segments of speech, the

source is assumed to be a train of impulses. The pitch period describes the

spacing of the impulses. For unvoiced segments, a random noise generator is

used as the source. For either type of voicing, the gain describes the

amplification of different segments.

Synthesis:

The synthesis step is basically the reverse of the analysis step. The 54

bits of input for one frame (22.5 ms) are read in and used to determine the

values for the filters, voicing, pitch period, gain, etc.

One thing that is different between the analysis and synthesis is that the

synthesizer attempts to do some smoothing. It keeps one frame from the past in

its buffers and attempts to smooth the output signal by comparing the two. This

ultimately causes the output signal to be delayed by one frame.

18-551 CDMA Modem with Voice Compression Page:8/24

Advantages and Drawbacks:

LPC-10 has a few major advantages over other methods of compression.

Its extremely low bit rate makes it ideal for low-bandwidth applications. At 2400

BPS, more than 20 simultaneous conversations could take place on the

bandwidth of one 56k modem! The government suggests that this low bit rate

makes it resistant to jamming and channel noise, which increases it's worth for

military applications.

LPC-10 also has some drawbacks, however. It is a vocoder, not a

waveform encoder, and therefore is inappropriate for the transmission of music,

other sounds, or anything but voice. The algorithm is very computationally

intensive, and requires a somewhat powerful embedded processor or DSP to

perform its tasks, which makes it too expensive for low-cost applications. The

quality is also not the best, introducing a lot of static and also a tinny sound to

voice. With regard to channel noise, its low bit rate could be a boon and a curse

18-551 CDMA Modem with Voice Compression Page:9/24

at once, as the code is not very redundant. A few bit errors and the frame is lost.

This is, of course, mitigated with packet level error detection and correction.

18-551 CDMA Modem with Voice Compression Page:10/24

Code Division Multiple Access (CDMA)

Introduction:

CDMA is a way to have more users on a channel by using a spectrum larger that

what is needed to transmit the signal. This is done using a set of orthogonal

spread spectrum codes to encode each userÕs transmission. In our project we

implemented a Direct Sequence Spread spectrum system. A DS-CDMA

application is one were you spread the original sequence with a spreading code

in order to make it occupy more bandwidth, taking up a wider spectrum and

hence being more resistant to noise.

The main points of the procedure are the following:

• A random binary string is used to modulate the transmitted signal. This

random string is called the spreading code.

18-551 CDMA Modem with Voice Compression Page:11/24

• The data bits are mapped into a pattern of "chips" and mapped back into a

bit at the destination. The number of chips that represent a bit is the

spreading ratio.

• The higher the spreading ratio, the more the signal is resistant to

interference. The lower the spreading ratio, the more bandwidth is

available to the user.

We used a periodic code that was to be used for spreading the signal. After

looking into spreading codes we decided to use a 16 bit Gold code. A Gold code

is a type of spreading code with a high correlation value when it is aligned and

low cross correlation values with other Gold codes. This type of code is

generated with a Feedback Shift Register.

The stream that was coming in from the LPC was a 2400 bits/s digital stream.

After spreading it with our Gold code it would become a 38.4 Kbps stream. This

was implemented in our program storing the incoming bits (a spread sample) in

shorts. A short is 16 bits so therefore one second of LPC data would be 150

shorts. After spreading the bits each bit would be stored in a short (16 bits) which

is that bit up-sampled by 16 and then spread. After this was done we would

proceed to the modulation.

Binary Phase Shift Keying:

For Modulation we used BPSK. Basically, BPSK works in the following

way: if the bit is a one it will transmit a sine wave but only from 0 to a 180-degree

18-551 CDMA Modem with Voice Compression Page:12/24

phase. If the bit is a 0 it will transmit at sine wave from 180 to a 360-degree

phase shift. At the demodulator we will just use a matched filter to decide

whether the bit is a one or a zero. In a channel with no noise present one could

just add the samples incoming to derive whether a bit is a 1 or a zero.

Since the components in our system are not ideal for DC transmission the

sine wave started at the middle point from the range we had to transmit to the

AD/DA. Since our DAC used only 10 bits we formatted the sine to in a 10 bit

format. The array that encompassed our sine wave is the following:

unsigned short bpsk[8] = {0x1800, 0x1C00, 0x1FFC, 0x1C00, 0x1800,

0x1400, 0x0000, 0x1400};

This array samples each bit with 4 samples of a sine and then passes it on

to the DAC already with the remaining bits configured for the specific input out

DAC takes. Therefore at the end we would have a 153.6 Kbps stream that could

be easily handled by our DAC/ADC channel since the fastest they could go is 1

MSps and we only need 0.1536 MSPs.

For our project we had to modify some specific portions of our code to

make sure that the real-time for the CDMA part was accomplished. Basically after

modifying the way we modulated the data we were able to achieve 4 to 5 parallel

operations in the kernel of our loop for the modulation.

18-551 CDMA Modem with Voice Compression Page:13/24

Synchronizing:

One aspect of our project, which was done for simplification, is that since

everything was implemented in the same EVM we decided to use the same clock

for the receiver and the transmitter. This is not a real life situation since normally

the case is the contrary. For example, in a cellular network the receiver (i.e. a cell

phone) has a clock that is not synchronized with the sender. Therefore one

needs to implement tracking algorithm to make sure the alignment of the code

and the CDMA code is done. This is performed with different algorithms that were

not needed in our program since they were running with the same clock and were

therefore always aligned.

The data flow for our whole channel is the following:

2400

Sprea

ding

Upsa NRZ Upsa DAC

Carrie

Mod

ADC

Carrier

DownSamRZ downsa
2400

UnSpre

Acqui

18-551 CDMA Modem with Voice Compression Page:14/24

Communication Channel - Daughterboard

Introduction:

As a means to simulate a channel, we decided to develop a CODEC that

would transmit the CDMA-Encoded data outside of the EVM. We needed a

Digital-to-Analog-to-Digital system which would run at a fast enough rate to

handle a real-time communication. We opted to make this system outside the

EVM because its CODEC would not go at fast enough sample rates, 48KSPS,

while we needed close to 700KSPS. This daughterboard-system would contain a

Digital-to-Analog converter, an Analog-to-Digital converter, and an 80-pin

daughterboard connector to fit the EVMÕs interface. It would communicate with

the DSP via the Multi-channeled Buffered Serial Port (McBSP), using a clock

signal derived from the processor by the Timers. We searched for the

appropriate DAC and ADC extensively through the Texas Instruments site, as

well as other commercial daughterboards made for the C6x EVM. We came

across products like a daughterboard which made an AD-DA conversion, the

opposite of what we needed. We also found one which would sample at 1MSPS,

convert from DA-AD, but were forced to disregard it because of a $1200.00 price

tag. At this point we decided to order some samples of the following two

converters and connector, the first from TI and the other from Samtec to build our

own daughterboard.

18-551 CDMA Modem with Voice Compression Page:15/24

Materials Used:

1. Texas Instruments TLV 5604 Quad DAC: This is a quadruple 10-bit voltage

output converter with a 4-wire serial interface for a glueless interface to the

TMS320 serial port. It is programmed with a 16-bit serial word comprised of a

DAC address, individual DAC control bits, and a 10-bit data value. It has a

dual operation mode: high-power or low-power. At high power (Vcc=5V) it

can operate at a maximum clock rate of 20 MHz, or 1.25 MSPS, which is the

mode we used for our implementation. Upon the arrival of our TLV 5604

sample ICÕs, we were amazed by their minute size, but the challenge of

building it into the daughterboard was welcome.

2. Texas Instruments TLV 1572 ADC: This is a 10-bit successive-approximation

converter which accepts an analog input range from 0 to Vcc and digitizes it

at a maximum 1.25 MSPS (at high power, 20MHz clock). It is made to

communicate with digital microprocessors via a serial port that interfaces

directly to the TMS320 DSP family without additional glue logic. Also upon

the arrival of the TLV 1572 samples we were amazed by its even smaller size,

half of that of the TLV 5604 since this converter comes in an 8 pin package,

as opposed to the DACÕs 16 pins.

3. Samtec TFM-140-32-S-D-LC 80-pin Connector: This is the mating connector

to the C67 EVM Board. ItÕs attached to the daughterboard and matches the

Expansion Peripheral Interface Connector (EPIC) J7.

4. RadioShack PC Board Kit: This kit contains the etching solution, the

permanent ink solvent, a permanent marker, as well as a few of the copper-

18-551 CDMA Modem with Voice Compression Page:16/24

plated boards. We used it to draw the layout for connecting the pins from the

DAC, ADC and Connector.

EVM Resources Used:

1. Multi-channeled Buffered Serial Port: We had two available McBSPÕs, 0 and

1. 0 was used to communicate with the boardÕs CODEC, while port 1 was

available for our use. The McBSP provides a serial connection to external

peripherals via the J7 EPIC. The Sample Rate Generator (SRG) of the

McBSP configures the Data transmission and reception. This is the meat of

the communication process, for it generates the frame sync signals as

described by the control registers, and obtains a clock signal for this purpose

from either an external or an internal source. In our case, we chose an

external source, which was the one coming from the Timers of the EVM

through a TOUT pin and feeding both the converters and the SRG. The

McBSP has a total of 8 32-bit control registers, which are configured to

provide the necessary signals we need coming out of the EPIC pins:

- Serial Port Control Register (SPCR): This is one of the two registers

which control the serial port. It contains fields such as Interrupt Modes,

Digital Loopback Mode, as well as other set and reset bits.

- Pin Control Register (PCR): This, the second of the serial port control

registers, contains fields which set the Transmitter mode, Receive mode,

Frame sync modes, Clock modes, Clock polarity, Frame sync polarity, as

well as some status pins.

18-551 CDMA Modem with Voice Compression Page:17/24

- Receive and Transmit Control Registers (RCR & XCR): The fields here set

the RCV and XMIT frame phases, frame length, element (sample) length,

data delays, as well as other features which were less important in our

particular implementation.

- Sample Rate Generator Register (SRGR): These fields configure the

SRG functions, such as clock source, clock synchronization, clock edge

polarity, frame period, and frame width.

- Multichannel Control Register (MCR): The McBSP allows for multiple

channels to be independently selected for transmission and reception.

Since we just needed one channel, a single frame, with a single word, and

just 16 bits of data, all the options in this register where set to their

defaults.

- RECV/XMIT Channel Enable Registers (R/XCER): These registers enable

any of the 32 elements for receive and transmit. We didnÕt need to bother

with these, so we just used their default values.

2. Timers: The functionality of the timers ranges from event counters to CPU

interrupts, DMA synchronization and pulse generation. For our project, we

needed to obtain a clock signal to run the converters as well as the SRG of

the McBSP. We hence used the pulse generating function of the EVM

Timers. There are three registers involved in this process, the Period

Register, Counter Register, and the Control Register. We did not need to

count events, so the Counter Register was of no importance to us. The

18-551 CDMA Modem with Voice Compression Page:18/24

Period Register was used to calculate the speed of the output clock signal,

and the Control Register was set up to generate pulses.

Procedure:

1. Hardware: The most interesting aspect of the daughterboard part of the

project was the hardware building process. Because of the size of the ICÕs,

the soldering was going to be a great challenge. We employed a method in

which we would use a thin-point permanent pen to draw what would be

extensions to the chipsÕ pins. Then, these extensions were soldered

according to the following table, which we developed from the EPIC and

convertersÕ pinouts4:

CONNECTIONS:

DAC Pin # NAME Description Destination

1 DVDD Digital Supply (5 V) 5,6,9, or 10 Vcc

2 ~PD Power-down Pin (Never
active)

5,6,9, or 10 Vcc

3 ~LDAC Load DAC (keep low) 3,4,7 or 8 Grnd

4 DIN Serial data input (digital in) 36 XDX1

5 SCLK Serial clock input (20 MHz) 45 TOUT

6 ~CS Chip select 59 XRESETÕ

7 FS Frame sync input. 35 XFSX1

8 DGND Digital ground (just ground) 3,4,7 or 8 GRN

9 AGND Analog ground (just ground) 3,4,7 or 8 GRN

10 REFINCD Volt. Ref input for DACS C &
D

11 OUTD X-ignore ------------

12 OUTC X-ignore ------------

13 OUTB X-ignore ------------

14 OUTA DAC A Output (Analog) ADC # 4(AIN)

15 REFINAB Volt. Ref input for DACS A &
B

5,6,9, or 10 Vcc

4 The pinouts can be found in page A-7 of the TMS320C6201/6701 EVM Technical Reference, TI
Literature Number SPRU305

18-551 CDMA Modem with Voice Compression Page:19/24

16 AVDD Analog Supply 5,6,9, or 10 Vcc

ADC Pin # NAME Description Destination

1 ~CS Chip select 59 XRESETÕ

2 VREF Reference voltage input 5,6,9 or 10 Vcc

3 GND Ground 3,4,7 or 8 GRN

4 AIN Analog Input D A C #
14(OUTA)

5 SCLK Serial clock input (20 MHz) 45 TOUT

6 VCC Digital Supply 5,6,9 or 10 Vcc

7 FS Frame sync input. 41 XFSR1

8 DO Digital Output 42 XDR1

Once we drew the Ôextensions,Õ we dipped the copper-covered board in

the solution which would remove any copper which wasnÕt protected by

the permanent ink. This left think copper lines, which were exposed by

using the permanent ink solvent. These lines were then connected to their

respective pins from the converter to the EPIC, according to the above

table, by using soldered wires. As can be seen on the picture of the

daughterboard (Apendix A), the soldering was a very delicate process

given the proximity of the pins on the converters as well as on the

connector. To make the soldering process easier, the pins which werenÕt

used were stripped off. In the end, very clean solder was performed

thanks to a wonderful product called Solder Weld, which greatly facilitated

the soldering of pins to the wires without soldering them to their

neighboring pins. Magnifying glasses were used to make sure there were

no unnecessary/unwanted connections made accidentally. After the

daughterboard was put together by gluing the individual components

(ADC, DAC, Connector) to a common platform, other wires were attached

18-551 CDMA Modem with Voice Compression Page:20/24

(not soldered) to specific points which we considered important to be used

as probes during our testing phases, like the Timer clock output (TOUT),

the transmit and receive frame sync, and the output of the DAC (input to

ADC).

SOFTWARE: Interfacing the daughterboard to the EVM was no easy task. It

consisted of 5 parts:

- Daughterboard Initialization: This would send a reset signal to the

daughterboard, and keep XRESET high, which was inverted on the EPIC pin and

connected to the convertersÕ chip select lines (which were active low).

Ð McBSP Initialization: Although at first we used the Mcbsp_setup macros, in the

end we decided to determine the value of each of the fields on the 8 control

registers and set it by using the function mcbsp_init().

- Timer Initialization: This step selected a Timer channel and set it up to output a

clock signal, which was measured with the oscilloscope to be at a rate of 13

MHz, thus allowing the converters to work at a rate of around 800 KHz.

-Interrupt Initialization: This step was taken from the echo.c we used for the

class lab assignments. It initialized an XMIT and a RCV interrupt vector to copy

data from a buffer to the DXR/DRR of the McBSP. The CPU interrupts were also

enabled and configured at this point.

-Data Transfer: With all the configurations in place, a loop running infinitely (until

cancelled), would copy data from the output buffer to the DXR and from the DRR

to the input buffer using the previously declared interrupts.

18-551 CDMA Modem with Voice Compression Page:21/24

Conclusion:

The most challenging part of our project involved the hardware construction and

its testing. The fact that the soldering and chips were so small made it hard to

maintain the proper level of quality control required for testing such

implementation. For example, because the soldering process was so

complicated, the iron was in contact with the copper strips and also the chip pins

for somewhat extended periods of time (30-60 secs). This created the

uncertainty of whether or not a part of the IC was damaged due to the prolonged

heat exposure. We tried de-soldering the first ICÕs and soldering new ones once

we had better practice with the soldering technique. This didnÕt yield any new

positive results, which led us to believe the problem could be coming from an

unwanted connection between two lines. Also, after spending extended periods

of time testing the most basic of all signals, the clock pulse generated by the

Timer, and not finding it, we realized that the board we were working with was

probably damaged, as it worked once we moved to another lab station. On the

other hand, while the software didnÕt demand any complex algorithms, the

McBSP and Timers initializations involved the setting of 12 32-bit registers,

virtually bit-by-bit. This high number of combinations, added to the uncertainty

that both the EVM and the Daughterboard were not defective, made our attempt

to transmit the signal through this CODEC channel unsuccessful. If we had

managed to have a more controlled environment (a professionally made

daughterboard, or a commercial one), our chances would have definitely

improved drastically. Also, if there was more documentation on interfacing a

18-551 CDMA Modem with Voice Compression Page:22/24

daughterboard to the C67 EVM specifically (i.e. other projects from professionals,

or TI), we would have been better oriented in respect to the hardware and

software debugging process. Anyhow, we knew since the beginning that we

were getting into a challenging project, one which would involve a lot of crazy

variables as well as lots of investigation about the insides of the DSP EVM. This

just made our experience more exciting and fulfilling; even though we could not

manage to have a completely successful demo, we feel we accomplished a

whole lot. Perhaps future projects will learn from our observations and achieve a

working CDMA Modem.

18-551 CDMA Modem with Voice Compression Page:23/24

Apendix A:

18-551 CDMA Modem with Voice Compression Page:24/24

References

A prior 551 project that did LPC compression:

http://www.ece.cmu.edu/~ee551/Old_projects/projects/s_97_8

Schumaker, Sharma, Ting, 1997

Speech Coding: A Tutorial Review, Spanias, pp. 42-56,

http://www.eas.asu.edu/~spanias/papers/review.ps

Online Tutorials for speech compression and LPC:

http://asylum.sf.ca.us/pub/u/howitt/lpc.tutorial.html

http://www.cteh.ac.il/departments/commEng/academic/staff/Noam_Amir/s

peech/lpc/lpc_basics2.html

Source code for LPC-10 on UNIX:

http://www.arl.wustl.edu/~jaf/lpc

