
18-551 Spring 2000

Group 5
Dallas Baker

Jen Deroy
Kevin Gotze

Virtual Advertising

Final Report

PROBLEM

Advertising is an increasingly important industry in the modern media-driven

world, and as technology evolves, it helps advertisers reach their target audience in more

and more ways. Ads pop up on Web sites, through sponsorships, and on digital

billboards, all to maximize visibility of a company or product. As it is, there is still plenty

of wasted advertising, and we feel with the help of technology we can solve one

particular problem. Sporting events are broadcasted nationally, yet the ads in the stadium

are often oriented to the local market. For example, a Broncos/Steelers game at Mile

High Stadium may have ads for a Denver based company, which the fans in Pittsburgh

watching on TV are unable to access or benefit from. Or possibly, a Pepsi sponsored

event takes place in a stadium in which there are Coca-Cola ads. This sort of counter-

productive advertising could easily be remedied with the help of video signal processing.

Now that efficient means of implementing this particular technology are available to us,

we can superimpose our preferred ads over unwanted ads, like in the case of a CBS

broadcast at Times Square. CBS superimposed a CBS logo atop the NBC logo that is on

the Times Square TV.

THE SOLUTION

By digitally altering video footage we overlaid our own ÔGroup 5Õ ad over a

Budweiser ad to demonstrate how we could diversify advertising, making the ad more

efficient and effective. Given the original ad, we used color information to find the area

of the ad in each frame, then superimposed our ad atop of it. We will explain in more

detail how we arrived at this solution in the next section.

PAST PROJECTS

We looked into past projects done by 551 students and we did not find any that

really dealt with the issues that we had to work with. This may be due to the inadequacy

of past EVMÕs in terms of memory space and processor speed, but as a result, we had no

prior work on which we could build. Even through extensive searching on the Internet,

information on Video Processing was mostly theoretical and lacked any coding samples

to work off of. Therefore all of the code in our system is completely our own. Hopefully

our project will help future groups develop their own Video Processing projects with

more ease.

OVERVIEW OF THE PROCESS

PREPROCESSING

We chose to use sports clips in the uncompressed .avi format. The reason behind

this was to retain as much image information as possible and to avoid potential headaches

involved with decompressing a frame. The problem now was to find a way to take an .avi

and break it up into individual frames, then after the changes have been made, package

them back into an .avi. At first Codecs and decoders were explored, in the hopes of

coming across something that had been already written that would do the job, but nothing

viable surfaced and it was suggested to us that we look into the MSDN library to look for

C functions that work with .aviÕs. We went online to http://microsoft.msdn.com and

searched for functions and discovered that there was a library of functions that had what

we needed. The libraries used were vfw32.lib and winmm.lib. Using the C functions in

the libraries we were able to isolate the video stream of an .avi, remove header

information, grab one frame and send it to the EVM, then send it back an write it into a

new video stream. The code for this is located in projectpc.c. Our frames ended up as .dib

files and since they lacked header information, could not be viewed by any image editor,

but using Matlab we could verify that indeed a frame had been isolated and transmitted

properly. What we also discovered is that .dibs store the color information in a blue-

green-red order rather than a red-green-blue one. The image also is upside-down. We

wrote a Matlab script, flip.m, which would correct these problems so the image could be

viewed normally. When these .dibÕs get send to the EVM this problem is corrected, so

any filter we used was altered so it would correspond with the .dib images then flip back

to normal when sent to the EVM.

Our video clips were 320 x 240 x 3 bytes per frame with 40 bytes header

information. Our videos ran at 30 frames per second as well. This means that a single

frame contained 230400 bytes of info. We discuss how we handled transfer of this

information into the EVM in another section.

PROCESSING THE IMAGE

A number of Algorithms were attempted to find the ad in each frame with varying

results. The following sections discuss what methods were used, which ones werenÕt and

why or why not.

CORRELATION

The direct correlation method worked by simply correlating the filter (the ad to be

replaced) with the image in the spatial domain. This method as a general finding method

was extremely limited, and we did not expect terrific results from it. A slightly rotated ad

could throw off the correlation results a great deal, especially if the ad contained a lot of

detail. Similarly, if the ad in the image was different from the size of the ad in the filter,

the correlation results would be skewed as well. However, we realized that correlation

would be useful as the final step in other detection methods, after potential areas had been

located, to verify the potential area as actually being an ad.

The correlation suffered from speed problems, as well. A correlation of the entire

image with the filter is O(x_image * y_image * x_filter * y_filter), an extremely costly

operation. To speed this process, we introduced a sampling factor for use with large-area

correlations. A sampling factor of n essentially only correlates every nth pixel of both the

image and filter. For a 2X downsampling, reduces the number of points correlated by 16

times, and for 4X downsampling, the number of points is reduced by 256 times-a drop of

two orders of magnitude. For very large correlations, 4X downsampling was used,

followed by 2X at the 9 points around the best location found, followed by full resolution

correlation at the 9 points around and on the best point found at 2X downsampling. This

led to large savings in correlation computations. However, since correlations were an

expensive and noise-prone method of detection, large correlations were for the most part

avoided.

Further savings in the correlation routine were achieved by changing the method

of correlation. At first, a multiplicative correlator was implemented, storing the results,

with the best correlation points having the highest values, in an array of ints. Because of

the two hardware multipliers on the C67 chip, this method was not as slow as would be

expected for O(n^4) multiplications. However, a subtractive correlator was implemented

and used for several reasons. Firstly, there was a slight speed improvement in the use of

a subtractive correlator, likely due to the fact that there were 4 arithmetic units on the

C67, so although the operations took roughly the same time per operation for both

methods, the C67 was able to perform more operations simultaneously in the subtractive

method. Additionally, after normalizing the subtractive correlation results, the result

could be stored in an unsigned char, saving 3 bytes per color per pixel over the int storage

of the multiplicative correlation. This is especially important when paging memory, as

more data could be paged onto the chip in less time.

In spite of the optimizations done to the correlation, it remained a non-viable

method for whole-frame detection of the ad. However, for final validation, coupled with

routines to rotate and resize the ad, it remained an important function.

EDGE DETECTION

One method of finding the ad at varying sizes and rotations was the use of edge

detection to find potential locations for the ad. This was not a complete method in and of

itself, but needed to be coupled with a verification technique (such as correlation) to do

the final testing of the area.

The ad in the image was never subject to rotations past a few degrees. The ads

had essentially vertical side edges, and slightly sloped top and bottom edges. By using

this relative shape resistance to rotation, we implemented a vertical edge detector that

would find vertical edges, assume the edges are sides of the ad, rescale the filter

appropriately, and look on either side of the edge for the ad. The edge detector itself was

a horizontal Laplacian high pass filter, dimensions 1x3. The Laplacian filter is zero-

mean and not sign-dependent, so it found falling edges as well as rising edges. For ease

of computation and processing, the high-pass filter output was thresholded into binary

output for later stages.

To assemble a cloud of points from the Laplacian filter into a collection of edges,

another routine was created. This function went through the binary output of the high-

pass filter, looked above each point to determine if it was the top of a line, and then

"walked" down the line of 1s to the end of the line. When the end of the line was

reached, the function found the length of the line, used the known aspect ratio of the filter

to resize the filter appropriately to the length of the edge it found, and correlated on either

side of the edge. While not rotation-invariant, the edge-detection routine adapted to the

scale of the ad in the image, making it a more robust routine. Additionally, the Laplacian

filter was a fast routine, O(n^2). The edge-assembly method was also fast, essentially

O(n^2) as well. The ad resizing and correlations remained the costly and slow part of the

whole algorithm, but this was limited by correlating over only a few points.

The edge detector suffered from a few problems. Since the Laplacian filter used

was small (1x3), it was extremely fast, but subject to noise and low gradients. The ads

we looked for did not always have very strong edges, especially when they were far

away. The edges frequently fell below the threshold, and weren't detected or passed onto

the correlator to be validated. Also, noise on the edge of the ad or a slight slope in the

vertical edge of the ad often caused the edge assembler and correlator to get the length of

the edge incorrect, causing the ad to be scaled incorrectly, and causing the correlation to

fail. With more time, however, the edge detection method could be improved, possibly

implemented with a Hough Transform to improve the edge assembly from high pass filter

output. A broader or better filter than the [-1 2 -1] filter we used could be applied, to

make the high pass filtering produce better output. Broadening the filter runs the risk of

increasing the noise in the output, however, this is an acceptable tradeoff for the increase

in valid points returned, as the extra noise will be filtered by later steps.

CORNER CORRELATION

Another attempt to use the relatively stable geometry of the advertisement with

regards to rotation and scale was a corner correlation. Even as the ad rotates, scales, or

skews slightly, the corner will stay as a right angle, and most of the information will not

change significantly. Therefore, by selecting only a small region (10x10 in our case) of

the filter at the corner, we can find the corners of the ad, derive the geometry of the ad in

the image, and replace it more accurately.

Using the top left corner of the filter, the routine correlated the image with the

small section of the filter. After the top left corner was found, the area directly

downward from the upper left corner was correlated with a filter made from the lower left

corner of the ad filter. When the bottom left corner was found, the height of the ad was

computed, the width of the ad was extrapolated from the known aspect ratio of the

advertisement, and the whole ad was correlated around the center of where the ad should

be, according to the corners.

This method increases the speed of the whole-image correlation by only

correlating a small section of the filter, for increased performance results. Additionally,

the correlation can use a downsampling factor of 2 for increased speed performance. The

corner filter also contains a small section (1 pixel wide line) of the background, to

minimize the detection of larger bulk parts of the ad or other corners of the ad, and peak

the correlation at the appropriate corner only, minimizing false positives. This

information is especially important when detecting the bottom left corner, as the points

inside of the ad will produce high correlation results with the corner filter. The bottom

left corner detection could also be implemented with a high-pass filter to determine

where the ad ends, thus obtaining the height of the ad.

This algorithm was less effective than predicted. The relatively small size of the

filter meant that several local areas (such as lights, crowd noise, and players' uniforms)

matched the filter, and sometimes produced higher results than the actual corner of the

ad. To minimize processing time, the routine was set only to look at the peak point in the

image, so these local erroneous points cause a failure of the whole detection algorithm, as

suitable bottom left corners or whole ads could be found. Additionally, the small size of

the filter meant that noise over top of the corner of the ad or the camera panning such that

the upper left corner was out of the frame meant that the ad would be undetected, while

still in frame. With more time, a more flexible detector that used several corners with

better handling of invalid points could have been implemented, at the loss of speed

performance, but with a significant increase in accuracy and robustness.

COLOR WALK

The algorithm that performed with the best results was partioned into three stages,

a binary check of pixels to see if they could be a part of the ad, a "pixel walker" stage

which generated geometry information of probable ads, and a final correlation stage

which checks that the ad area is actually an ad. In the first stage, the program runs

through all of the pixels of the frame and if a particular pixel is a color that is in the ad,

the program sets its location to a 1. If the pixel is not a color that is in the target ad, its

location is set as 0. In the second stage the program starts at every pixel labeled as a 1,

and attempts to ÒwalkÓ the edges of the ad by moving up and to the right along 1 pixels.

To avoid noise overtop of the ad, the routine will skip over a single 0 pixel and continue

following 1 pixels. When the walking routines stop, the coordinates are noted, giving us

the 4 corners of our potential ad. To save time and processing effort, the program does

not return locations that are located within the bounds of another, larger potential ad

location. The list of generated co-ordinates is then passed on to a correlation routine,

which re-shapes the filter to the size of the potential ad, which is derived from the corner

coordinates, and then correlates within this frame to find the maximum correlation. If the

correlation peak is high enough, then a replacement is made.

This method was moderately successful. At certain levels of color thresholding

only the ad was selected, however the ad would often be ignored. We found that if 2 or

more of the edges of the ad were off of the screen it would be impossible to determine the

scale of our potential ad and therefore correlations were poorly done and overlays were

problematic. Some problems also arose as a result of color variations in the ad (in the

Budweiser ad case, a black shadowing of the lettering, which added contrast to make the

words more readable) which would prematurely stop the walkers. This might be fixed

with a certain amount of blurring (by making a pixel the weighted sum of itself and its

neighbors) before computing the binary map. Excessive blurring, however, may lead to

false positives in the potential ad detection phase, and could also lead to inaccuracies in

the height and width calculation, leading to poor results in ad overlay.

UNUSED METHODS

A few other methods were contemplated and researched, but not implemented or

evaluated. Because of the large correlations we employed (320 x 240 pixel frames and a

55 x 200 pixel filter), a frequency-domain correlator was considered to reduce the

number of computations. A full-scale spatial-domain correlator is O(n^4), whereas a

frequency-domain correlator is simply O(n^2), with an O(n log n) operation for the fast

Fourier Transform. However, shortly into the project we realized that a full-scale

correlator was not feasible, for the reasons described above. The correlator algorithm

was retained for the limited scope of evaluation at a specific point, and we decided that a

spatial correlator would be more efficient in terms of memory usage and computation.

The memory usage was particularly notable because the fft routine has to store both the

real and imaginary results of the transform, doubling the memory requirements. The

frequency-domain correlator for the entire frame also would not solve of the problems

inherent in the spatial-domain correlator, most notably the sensitivity to geometric

distortions (such as rotation and scale changes), and the noise factor.

Most other methods were variations on methods we employed. One was the use

of a side-edge correlator, similar to the corner correlator we tried. This method was

abandoned in favor of the corner correlator because we thought the corner correlator

would be less sensitive to scale changes in the filter (as long as the target ad was taller

and wider than our corner filter).

Also, a two-dimensional Laplacian high pass filter was considered, from which

corner information could be extracted. Based on the poor results of the one-dimensional

Laplacian we tried, this method was not implemented either, as it did not appear that it

would solve any of the problem we encountered with edge detection. Additionally, it

would involve twice as many computations as the one-dimensional filter if it was

implemented as a separable filter, and three times as many computations if it was

inseparable.

Other methods of parsing the edge-detector output were considered, other than the

walk-style method we used. An algorithm of summing the high pass filter output by

columns, like the Marlboro pack example in class, was considered, but we found a great

deal of crowd, field, and other noise that interfered with any results we would have

gotten. A major characteristic of the Marlboro pack example was the fact that the

Marlboro pack was the focus of that image, and each result could be linked to a certain

feature of the pack. Our frames, however, did not focus on the ad at all, which would

have caused the signal to noise ratio to plummet. Background noise in the summation

could also not be directly linked to a feature of the ad, as a great deal of similar regular

features in the scenes (crowds, empty seats, other stadium features) could provide similar

outputs.

A Hough Transform was considered, but a lack of knowledge on our part and an

inability to find examples of actual implementation or base code, as opposed to

theoretical conjecture, led to the pursuit of other avenues of line-finding. The efficacy of

a full-frame transform after a full-frame filtering is also debatable, in terms of storage and

processing time.

DATA TRANSFER

The development of the data transfer routines was initially based on lab3's file

transfer structure. However, by the time the project was finished it had changed

substantially and boasted a lot more functionality. To handle the data transfer, frames

were stored in a variable called framebuffer that was eight frames long, which contained

memory for a status variable as well as data memory. By implementing an asynchronous

transfer as opposed to a synchronous one, we were able to process frames while data was

transferring back and forth from the PC and EVM. To achieve this it was necessary to

use callback functions and flags to block a second access to the PCI Bus while a transfer

was being processed, and to block frame processing code from attempting to work on

partially transferred data. The use of separate callback functions for our getframe and

sendframe commands allowed us to keep track of useful statistics such as number of

frames received and sent. In order to assure that the PC didnÕt receive a second PCI

request while it was still processing the last one, it was necessary to put small delay loops

in the callback functions of about 10,000 instructions.

MEMORY ISSUES

We found that by moving the code from external to internal memory we could

improve our code's performance by a factor of 3, going from 3 seconds per frame to

about a second per frame. We also observed that this significantly increased the

instability of our code (this code crashed the PC on many occasions). We didn't receive

the blazing performance enhancement that one would expect from going "on chip"

because even though our code sat on the chip, the vast majority of our data was still

stranded in the RAM because of its size. Although we didn't attempt to do it, it may be

possible to rectify this issue by paging parts of a frame into "on chip" memory at a time.

DEMO/RESULTS

In the end, what we ended up with and what we demoed was a system using the

color walk algorithm. The result was not as good as we had hoped, since the system

picked up a number of false-positives and did not do a fair job of completely covering the

ad all of the time. Our system had problems when the ad was half off the screen, and we

decided that for a system of this nature to work, meaning, with no prior knowledge of

camera positioning and angles, at least two corners of the ad must be on screen at all

times. Our algorithm eventually averaged about 1 frame per second, however the time to

complete a specific frame could range from 0.1 seconds to about 5 seconds based on how

many potential ad regions were detected and had to be evaluated with a correlation.

POSSIBLE IMPROVEMENTS

Several improvements could be made to the program in general and to specific

routines to increase performance, accuracy, and efficiency. Each of the detection

routines can be improved and tweaked to provide better performance (or, indeed, any

positive performance at all), and the flow of the program could be improved for better

coherency and flexibility.

Currently, the dimensions and locations of the images and filters are hard-coded

by #defines into the PC code and the C67 code. For more robustness, these should be

variables, defined by the user in an actual user interface. This becomes a direct issue

when creating a marketable product, rather than a proof-of-concept project as we created

this semester.

The asynchronous transfers could be handled by a more complex routine, one that

would buffer both incoming and outgoing frames and administrate the depth of the

buffers based on the speed of the PCI bus and the computations for each frame. The

implementation of this would require more careful memory management, however, as the

more complex callback routine for the asynchronous transfers would be interrupting

frame computational routines.

Although transfer rates over the PCI bus were not a limiting factor in our project,

in future versions, this could become an issue. We measured a peak throughput of about

12 frames/second over the bus with no computation on either side. To bring this to full

speed video (30 frames/second), the transfer rate must be increased, or the frame size

must be reduced. To this end, PC-side processing could take a significant portion of the

load off of the C67. A small motion-detection algorithm on each frame in the AVI

stream could bring improvements by minimizing the area over which the processing

routines have to search, bringing significant increases in processing speed, and possibly

bringing the EVM side closer to real-time performance. The PC could send only then the

changed window or change information about the previous frame, with the EVM

returning only the changed information as well, reducing the data transfer on the PCI bus.

Alternatively, another data format could be used. We used uncompressed AVIs to

reduce our processing requirement in terms of time and complexity, but a slightly

compressed format could bring a reduction in transfers with only an incremental increase

in processing. This could become an important step for future projects if significantly

faster processors are used (such as the 800 MHz DSP rumored to be in development). A

much faster processor, coupled with a better find-and-replace algorithm, would have time

to do light decompression on the C67, meaning that a compressed format, such as MPEG,

could be used to reduce data transfer loads.

Other information from the AVI format could be used to speed processing as well.

Should a later project become hindered by PCI bus speeds, the timing information that

can be stored in the AVI stream could be used to simulate real-time performance for

displays. If the display system is not capable of 30 frames per second, the AVI display

program will only display the frame that is due at that time. Using this information, the

program could only find-and-replace on those frames that would end up being displayed.

This, unfortunately, could not be used to resave the AVI, as a faster-displaying system

would show the gaps in the changed AVI.

Better memory management by paging parts of the large frames into the C67 on-

chip memory could greatly reduce computation time. Our early attempts at this were

overly ambitious, and ran into problems with paging too much memory onto the chip,

causing other variables to be overwritten, and leading to instability of the entire program,

as several program-level status variables (for example, the index of the frame being

worked on) were stored on-chip. A more conservative paging routine could provide a

performance enhancement, particularly for routines that access large sections of the frame

often, such as the correlation function and the first phase of the color walk routine.

In the processing routines, changes could be made to make them work better and

more efficiently. An automatic rule creator for the Color Walk algorithm could remove

some of the guesswork from the manual rule creation, and better account for the

variations of color in the ad. Creating and getting this rule creator to work would be

nearly an entire project by itself in pattern recognition and unsupervised classification

techniques. Although it could possibly be very computationally intensive, it would

fortunately only have to be run once for each ad the user wanted to remove.

The color walk algorithm would also benefit from optimization of the walking

strategies it used. The current rudimentary system of up-and-right, with a one-pixel

jump, only allows for minor variations in the ad due to shading or shadows, noise or

overlay by another object, unnoticed colors in the ad, or geometric distortions. By

incorporating an intelligent jumping algorithm, that could keep track of the umber and

size of jumps already made and change the jump strategy based on that data (like a

moving-average filter), the efficacy of the entire algorithm could be increased.

Additionally, modifying the thresholds for the color quality evaluation in the first stage of

the routine, or modifying the threshold of the final correlation evaluation, could lead to

better results for the detection algorithm. Although some calculation is possible based on

a statistical computation of the color compositions and variations in an average frame, the

best thresholds must be determined empirically, by a trial-and-error process. A longer

debugging and finalization cycle would be necessary for this step to take place.

Some morphological techniques, particularly a closing operation, implemented by

an erosion operation followed by a dilation operation, could smooth the colors and

boundaries of the ad in the frame, so that operations such as the color walk and edge

detection would better find the ad amidst noise on the boundaries of the ad. The Closing

operation would particularly help the edge detection algorithm, by eliminating isolated

points (helpful for removing high-frequency crowd noise), and closing gaps in the

vertical edges, eliminating noise there.

We ran into problems that appeared to stem from a memory problem regarding

some floating-point operations, which hindered our ability to rotate the filter or

replacement ads. Addressing this problem would allow for better results from the final

correlations and for more realistic replacement of the ad in the frame. Additionally, when

the ad was replaced at an angle, noise, such as players or shadows could be picked out

from the old ad in situ, and overlaid back upon the replacement ad, creating a more

realistic appearance.

Also, there are likely several other algorithms we did not think of, realize, or

consider feasible that another, later group could implement upon our project to create a

better and more marketable system. Although the task required is a difficult and complex

one, our project has demonstrated that with appropriate hardware and techniques, the

possibility of replacing ads from outdoor scenes is indeed possible.

Improving this possibility is the incorporation of camera or stadium information

into the search algorithm. If the location of the camera is known, the program would

know precisely where to look for the ad, based on camera movement information. As

camera movement in sports broadcasts in generally linear, with no strange angles or

movements to consider, a simple frame-motion-detection algorithm could be

implemented. With this knowledge, the search function could be completely removed, as

the location of the ad would be precisely known. Although this reduces the robustness of

the system (the stadium and camera information must be known beforehand, and

provided to the system), it would certainly increase the performance, and thus the

marketability of the product.

REFERENCES

http://msdn.microsoft.com

http://www.gamedev.net/reference/programming/features/avifile/

http://www.graphics.cornell.edu/~hector/rgbe2avi/avi.html

Lecture notes for 18-798, Image and Video Processing, taught by Professor Tsuhan

Chen.

Introduction to Fourier Optics, text for 18-793, Optical Image and Radar Processing.

Lecture notes for 18-793, Optical Image and Radar Processing, taught by

Professor David Casasent.

Notes for 18-551

TI Manuals for Memory allocation information.

