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1. Introduction
Our goal for the 18-551 project was to implement a system which could detect a userÕs motion and recognize the gestures being made. As a motivation for the

project,  we  decided  to  encapsulate  this  functionality  in  a ÒSimon SaysÓ game for children. If all  went well,  the system would prompt the user to make a

certain gesture. After detecting the userÕs motion the system would compare it  with an ideal version of the motion stored in memory, and then give the user

feedback through a simple graphical user interface.
 
We thought this project was important for several reasons. First,  motion tracking and gesture recognition could have applications beyond a simple game. A

userÕs  gestures  could  be  used  in  place  of  mouse  input  on  a  personal  computer,  to  interpret  an  orchestra  conductorÕs  signals,  or  any  of  a  number  of

applications. Second, none of us had worked with video before and wanted to try it  out. Third, previous 18-551 classes had used a less powerful DSP; we

wanted to see if the new C67s were robust enough to handle video.
 
We decided on a few details about the internals of the system beforehand. First, rather than detecting all motion in the input, the system would follow a target

object held in the userÕs hand. By searching in each frame for this object and then storing the points where the object was found, the system would be able to

follow the userÕs motion. In the final version of the system, we found that a closed fist actually worked quite well as a target object, removing the need for a

separate object.
As for the actual gestures that would be recognized, we chose to use simple shapes: triangles, squares, pentagons, and circles. The recognition problem would

be accomplished by storing ÒcriticalÓ points. This method will be described in detail later.
 
To work properly, our system would obviously have to work in real time. We hoped that in its final stage our system would be able to capture images from a

camera, search for the userÕs fist, interpret the motion, and give the user feedback. For various reasons that will be covered later, we fell short of this goal. Our

final system had to use as its input sequences of captured images that were stored on disk beforehand.
 
From looking at the projects of previous 18-551 classes, it  seemed that our project was fairly unique. In the spring of 1995, one group (Vishant Bhatia, John

Cosnek, Dan Kodesh, Andrew Vaz, and Chris Wise) had attempted a video surveillance tracking system. Some of the requirements of such a system Ð real

time motion tracking, for example Ð would be similar to ours. Unfortunately, this group had trouble even locating the necessary hardware for their project and

had to improvise extensively. We found that their project was not really useful as we went ahead with ours. This was the only project we could find that was

remotely similar to ours. No one else had attempted a motion tracking system.
 
Before  we  really  knew  the  capabilities  of  the  EVM,  we  had  five  frames  per  second  in  mind  as  a  goal for the system. By using some creative searching

techniques (hierarchical searches, limiting the size of the search window to a certain space around the previous detection point, etc.), we were actually able to

achieve much higher frame rates.
 
2. System Description
Below our system is broken down into several stages. The first is the system input that gets the images and sends them to the EVM. The second is the object

detection  algorithm  that  finds  the  target  object  in  each  frame.  We  considered  several  different  algorithms,  which  are  explained  below  along  with  the

optimizations  we  made  to  speed  up  the  system.  Next  we discuss the method we used to track the userÕs motion. Finally, we describe how the different

shapes  were  detected  and  how  the  user  was  given  feedback  through  the  GUI.  A  char  that  illustrates  the  system  flow  is  presented  in  Fig  1.
 

 
 
 
 
Fig 1. System Flow
2.1 System Input
Input to the system was accomplished

in  two  stages. First the images had to
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be  captured  using  a  camera  from

Logitech  and  code  we  found  on  the

web. After converting to RAW format, the images had to be transferred to EVM. Once they were in the EVMÕs on chip memory, they would be ready for

processing.
 
2.1.1 Hardware
We chose a Logitech QuickCam VC as the video input device for our system. The Quickcam VC can capture images at a variety of resolutions and numbers of

colors. We felt  that this would be useful if our goals for the image resolution changed or we decided to use color. The camera cost $88.42 directly from the

Logitech web site.
 
The QuickCam family of cameras has become quite popular and we found video capture code for windows on the web quite easily. We chose to use code

from a site called www.kolban.com/video/index.htm. The program was called memcap.c and it used the video for windows library (vfw32.lib) from Microsoft.

Initially  we  had  trouble  compiling  this  code,  but  this was due largely to our inexperience with Windows programming. With some effort we were able to

compile it  and it  worked well.  The basic function of this program is to pipe the video from the camera to a window. When the user selects ÒstartÓ from the

control menu, a callback function is enabled and called repeatedly until the user presses the escape key. In its given form, the callback function did nothing, but

this  was  the  place  to  add  any  frame  processing.  We  planned  to  add  in  the  PC  side  of  the  systemÕs  code  in  this  function.
 
Unfortunately, this turned out to be the biggest obstacle to our goal of a real time system. Obviously, integration of the image capture code with the PC side

of the EVM code would be essential to achieving a real time system. When we attempted to combine the two, we discovered that everything, including frame

transfers  to  the  EVM  and  the  object  detection,  had  been  tied  to  very  odd  window  event.  Basically,  nothing  would  happen  unless  the  user  repeatedly

minimized and maximized the window. We spent quite a while attempting to resolve this but we couldnÕt identify the portion of the code which was causing

this. We chose to move ahead with more essential components of the system rather than spend more time on image capture. As a partial solution, we edited

the  callback  function  so  that  it  would  simply  write  each  frame  to  disk  in  a  sequence  titled  Òframe0.raw,Ó  Òframe1.raw,Ó  etc.
 
2.1.2 Software
For ÊsimplicityÕs sake we Êchose to use RAW formatted images. The RAW format is completely uncompressed. It is simply a long sequence of bytes, with

each byte representing a pixel value. Although this generally increases storage requirements, it makes for much simpler EVM code. The memcap.c code stored

each frame as an uncompressed ÊÊbitmap, so the Êcallback Êfunction handled the conversion to RAW format.
 
We chose to use black and white images to keep our storage requirements down. From the available resolutions of the QuickCam VC, we chose 160 x 120.

This was mostly because our initial tests on the EVM used 128 x 128 images and 160 x 120 was the closest to that. The size of each image was 19,200 bytes.

The  target  objects  were  stored  in  16  x  16  frames  (256  bytes).  This  meant  that  our  storage  requirements  could  be  met  completely  on  chip.
 
Communication  between  the  PC  and  the  EVM  was  accomplished  with  an  interface  consisting  of  several  commands.  The  commands  are  listed  below:

1)      Send an image to the EVM
2)      Send the target image to the EVM
3)      Retrieve the detection point from the EVM
4)      Exit the program
5)      Retrieve the type of shape from the EVM

One of the more frustrating experiences in implementing our project was the transfer of the frames to the EVM. We had hoped to use asynchronous DMA

transfers to send each image from the PC. This would allow the EVM to process the current frame while retrieving the next one from the PC. It would also

complicate  our  memory  management  slightly. The EVM would do its computations on an image stored on chip; while this was happening, the PC would

transfer the next one to off chip memory. The image in off chip memory would then be copied to internal memory. However, this was certainly not overly

complicated and would save time.
 
Initially,  we  believed  we  had  the  DMA  transfer  working.  We  used  a  set  of  test  images  just  to  confirm that it  was and found that it  worked with some

consistency.  Later, when we were putting the pieces of our project together, we found that the DMA only seemed to work on that particular set of files.
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Other sets of files caused the DMA to freeze and the whole system to hang. We could not explain this since the new sets of images were the same size and

format. This forced us to change our transfer to use the HPI. Transfers via the HPI are synchronous, so the EVM couldnÕt process one image while receiving

another.  Additionally,  the  memory  swapping  code would not be necessary. In the end, it  seemed that the computation rather than the transfer dominated

system performance, so we donÕt believe this had a hugely detrimental effect on our system.
 
2.2 Object Detection 
Object detection is performed to locate the target object within the given input frame if it presents. Using the target frame and input frame that are stored in

the internal memory, detection algorithms are applied to estimate the location of the target object, in our case the userÕs fist. These algorithms are optimized to

achieve  a  frame  rate  that  is  needed  to  reasonably  follow  hand  movement during live capture. Additional tweaks are also added so that the system is less

vulnerable to fist rotation and changes in lighting condition.
 
2.2.1 Detection Algorithms
Detection algorithms detect the presence of a target object within the input frame and estimate its location when it is present. Two algorithms were considered

for this project. They are correlation  and frame  differencing . 
Ê 
2.2.1.1 Correlation 
Correlation is the operation that is performed to see if the target frame correlates with a section of the input frame. When it  is correlated, the result of the

correlation operation: the correlation coefficient will be high. When this value is above a certain threshold, it  can be assumed that the target object is in that

particular section of the input frame.
 
The correlation operation is described by the following equation:

C(section,target) = Sk={0,T-1} Sl={0,T-1} section(k,l) * target(k,l)

Note that section  and target  represents the section of the input frame and the target frame respectively. Additionally, T represents the width and height of

the target frame, which are the same in our case. 
 
To find the most correlated section, and thus the best match for our target, the correlation operation needs to be performed across the whole frame, resulting in

a  search  time  of  O(MNT 2 ) multiplications where M and N are the width and height of the input frame. One can see from the number of multiplications

involved  that  correlation  is  an  expensive  operation.  For  that  reason,  another  algorithm  that  performed  similar  task  is  considered.
 
2.2.1.2 Frame Differencing 
Frame differencing is the operation of taking the difference between the pixels value of the target frame and sections of the input frame. When the difference is

small  enough  to  be  below  certain  threshold,  it  can  be  assumed  that  the  target  object  is  inside  that  particular  section of the input frame. In essence, this

algorithm is similar to the correlation algorithm mention in the previous section.
 
The frame differencing operation is described by the following equation:

FD(section,target) = Sk={0,T-1} Sl={0,T-1} | section(k,l) - target(k,l) |

Similar to correlation, frame differencing also needs to be performed across the whole frame. However, instead of O(MNT2) multiplications, we now have

O(MNT2) subtractions. Since a subtraction in general takes less time than a multiplication, frame differencing is on average faster than correlation. However,

given  the  systemÕs  dimensions  of  input frame and target frame, the number of operations that needs to be performed per frame is still  too great.  For that

reasons, we looked to further optimize our system.
 
2.2.2 Optimizations
Several optimization options are explored in order to speed up the search time. These optimizations include hierarchical search, software pipelining, and FFT

based correlation. At the end, the former two are implemented, while the latter is not.
 
2.2.2.1 Hierarchical Search
Hierarchical search is a multilevel search. The basic idea behind it is that the correlation between a target and the input can be obtained even on downsampled

version of their image frames. Although doing so will resulted in a less accurate estimate of the location, the estimate should be close enough that a local full

resolution search is sufficient to determine the better estimate.
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When  the  search  are  performed  using  images  downsampled  by  a  factor  of  X  in  each  dimension,  the  search  time  is  reduced  by  a  factor  of  X 4 :

O(MÕNÕTÕ2) = O(M/X N/X (T/X) 2) = 1/X4 O(MNT2)
Note  that  this  performance  increase  is  offset  by  a decrease in accuracy. Since the frames now hold less information, it  is less likely that a false detection

occurred.  In  the  end,  we  decided  to  implement  a  two  level  hierarchical  search.  A  two  level  search  will  give  us  a  performance  gain  of  16  while  offering

reasonable accuracy given that our target frame size is 16x16.
 
Although this optimization presented a great saving in calculation, it did not fully take advantage of the C67 hardware specs. For that reason, parallelization in

the form of loop  unrolling  is explored next.
 
2.2.2.2 Loop Unrolling
Loop unrolling is a coding technique that takes advantage of having multiple ALUs by utilizing as many ALUs as possible in every cycle. An example of this

technique is given in Table 1.

Original Loop Unrolled Loop

for(i=0;i<T;i++)
ÊÊ temp+=x[i];

temp1=0;temp2=0;
for(i=0;i<T;i+=2){
ÊÊ temp1+=x[i];
ÊÊ temp2+=x[i+2];
}
temp=temp1+temp2;

Table 1. Example of Loop Unrolling
Notice that in the unrolled loop, two additions are performed in every iteration. Since these additions are written to two different temporary variables, they

can be performed in parallel.  And at the end, an extra addition can be done to combine the two temporary variables in to one. In contrast, in the unrolled loop,

each addition has to be finished before the next addition can be performed.
 
In our system, the code section that gets executed the most is the inner loop of frame differencing function. Therefore, that particular section is unrolled into

four subtractions. The reason that there are only four instead of sixÊ (the number of ALUs in C67) operations is because our target size is a multiple of four

and not a multiple of six. Additionally, some ALUs are still needed to increment the index. This optimization boosted the frame rate to 5.5. 
 
2.2.2.3 FFT based Correlation 

Other optimizations that we studied were FFT based correlation and direct correlation.Ê Assembly code had already been written for
the C67 and was available on the TI web page at http://www.ti.com/sc/docs/products/dsp/c6000/benchmarks/67x.htm.Ê All of the
functions also came with formulas for the number of optimized cycles.Ê The formula for the cross correlation is: 

 

where nb is the length of the first array, and nr is the length of the second.Ê For optimization, nb must be a multiple of 4, greater than or equal to 4, and nr

must be a multiple of 2, greater than or equal to 4.Ê  This is a one-dimensional correlation, so in order to perform it on the two-dimensional images for our

project,  the  picture  must  be  flattened  into  a  one-dimensional  array. Ê  The  size  of  our  images  was  160  X  120  and  16  X  16,  for  the  frame  and  target,

respectively.Ê This results in nb = 19200, and nr = 256.Ê Both of these values meet the criteria for being a multiple of 4 or 2.Ê The total number of cycles would

be  2,458,248  per  frame  processed. Ê  However,  if  we  limited  the  search  to  a  32  X  32  window,  the  new  total  would  be  131,720  cycles  per  frame.
 
The FFT based approach involves multiple benchmarks from the TI web page.Ê First, there is a one-time operation of transforming the target to the frequency

domain.Ê  Then, for the first frame, the whole image must be transformed, with only the 32 X 32 window needing the FFT for succeeding frames. Next, the

transforms need to be multiplied by each other, taking the conjugate of one.Ê Then an inverse FFT needs to be applied.
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There are two assembly codes available for the forward FFT, the complex radix 4 FFT and the complex radix 2 FFT.Ê The radix 4 is a decimation in frequency,

with digit reversed output for a normal ordered input.Ê  The radix 2 is a decimation in time, with bit-reversed output for a normal ordered input.Ê  The two

equations for the number of cycles are: inverse ((2*N)+16)*log2(N)+25Ê bit reverse (N/4)*11+9

 

for the radix 4 and radix 2, respectively.Ê The equations for the radix 2 decimation in

 

frequency inverse FFT and bit reversal are:

 

Table 2 lists the calculations for our frame sizes.

 N Radix 4 FFT Radix 2 FFT Radix 2 IFFT Bit Reversal

16 X 16 256 3696 4286 4249 713

32 X 32 1024 18,055 20,716 20,665 2825

160 X 120 19200 478,272 546,720 546,639 52,809

Table 2. Frame Sizes
Overall,  this  method  would  use  3696  +  478,272  +  546,639  =  1,028,607  cycles,  in  addition  to  4,849,920  multiplications  (see  next  paragraph)  and  the

conversion to the conjugate.Ê Following frames would need 196,862 multiplications, plus the conjugate.Ê 
 
The method that we chose, frame differencing, uses only subtractions.Ê  For the first frame, when it searches the entire 160 X 120 image, the total number of

subtractions would be 256*(19200-256+1) = 4,849,920.Ê Subsequent frames would require 256*(1024-256+1) = 196,864 subtractions in the 32 X 32 window.
 
Since we were only looking to process 5 frames per second, frame differencing worked fine, just fine.Ê It was easy to write code for this, and could be tailored

for our individual needs.
 
2.2.3 Additional Tweaks
Although  the  above  algorithm  along  with  its  optimization  offers  a  fast  enough  search  time,  the  system  is  still  prone  to  noise.  The  two  most  apparent

problems:  fist  rotation  and  luminance  change  are  addressed  by  adding  code  for  rotated  target  and  adaptive  target  respectively.
Ê
2.2.3.1 Rotated Target
It is almost impossible for the user to keep the fist level when he is making a shape with it. If the system simply takes a level target, it might not find the fist

when it is rotated during capture. 
 
For this reason, the system is modified so that it  can takes as an input several template of the fist, each rotated at a certain angle. Whenever the result of the

level  two  frame  differencing  over  the  whole  frame  too high, the target frame is switched to other rotated version of that target in order to see if a rotated
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version  of  the fist exists instead. If all  of the targets is used and the search algorithm still  return a high value, then the system assumes that the fist is not

present.
The cost of this modification is an increase of the number of searches whenever the target is lost. In our system, we stored three template of fists rotated at

different angle. This method decreases the frame rate to 5.2. It  is able to find rotate version of the fist, however, from our testing, it seems that it needs more

than three version of the fists as it  fails to correctly detect the fist in more than half of the frames. Additionally, it is till prone to lighting changes, which is

addressed next.
 
 
 
2.2.3.2 Adaptive Target 
Another problem that applies to all target objects rather than just humanÕs fist is luminance changes. Frame differencing is vulnerable to luminance change as a

slight luminance difference between the input and target frame can result in a huge portion of the frame difference. This is true especially since the difference in

luminance  normally  affect  a  major  portion  of  the  input  frame  and  thus  the  difference  is  multiplied  by  the  size  of  the  target  frame.
 
For that reason, the system can be set so that it will continually adapt to the target. This is done by overwriting its target frame with the most recent section

of the input frame that it  acknowledged as having the target in it. This enables the system to adapt to gradual change in lighting. It even enables the system to

adapt to other changes such as slight size and orientation changes. The cost for this addition can be substantial, as it needs to be performed on every frame in

which  the  target  is  found.  Additionally,  there  is  the  risk  of  getting  stuck  with  a  wrong  target,  i.e.,  adapting  to a false target object.  For that reason, the

threshold must be set to be pretty low to avoid adapting to a wrong object. This method resulted in a frame rate of 4.3, which is significantly lower than the

previous frame rate of 5.2; however, using this method, our system is able to track the motion of a rotated fist 75% of the time. Given this reasonably accurate

and  fast  object  detection  system,  the  next  step  to  be  done  is  to  track  the  movement  of  the  object,  which  is  discussed  next.
 
 
2.3 Object Tracking
Object tracking is performed in order to follow the movement of the userÕs fist. Once the object detection code is performed, it is only a matter of streaming

the correct coordinates to other part of the system, namely GUI and motion recognition. In order to increase the performance of the tracking, we take into

account the extent of our application and came up with two ideas: limited  motion  and adaptive  filter .
 
2.3.1 Limited Motion 
Given that the user is not going to move his hand to fast,  the system can limit the initial search to a smaller window. That is,  once a location of the fist is

known, the system is going to assume that the fist is not going to be more than X pixels away from it in the next frame. Therefore, it can perform the initial

search  on  a  window  of size 2X+1 by 2X+1, where 2X+1 is the total range of the movement (-X,-X+1,É,0,ÉX-1,X). When the initial search fails,  a full

frame search still needs to be performed, in case the user moves his fist too fast that it went out of the limit window.
Ê
For  our  system,  we  set  X  to  be  15.  This  limit  allows  the  system  to  only  search  31  x  31  window  instead  of  160 x 120 that it  originally searches. The

performance increases dramatically as it resulted in a frame rate of 34.4. 
 
2.3.2 Adaptive Filter
Another  optimization  that  was  not  included  was  the  use  of  linear  predictive  coding  of  an  adaptive  filter. Ê  This  was also found on the TI web page, at

http://www.ti.com/sc/docs/psheets/abstract/apps/spra116.htm, but was optimized for the C30.Ê However, the only usefulness this packet presented was the

explanations  of  the  algorithms,  since  the  optimized  C  code  and  the  assembly  code  were  not  included. Ê  A  basic  algorithm  in  C  was  included:
 
void lms(float *x,float *h,float *y,int NumH,float *d,float ar, short NumY){
ÊÊÊÊÊÊÊÊÊÊÊ int i,j;
ÊÊÊÊÊÊÊÊÊÊÊ float sum;
ÊÊÊÊÊÊÊÊÊÊÊ float error = 0.0f;ÊÊ ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ 
ÊÊÊÊÊÊÊÊÊÊÊ for (i = 0; i <NumY; i++){
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ for (j = 0; j < NumH; j++) {
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ h[j] = h[j] + (ar*error*x[i+j-1]);
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ }ÊÊÊÊÊÊÊÊÊ 
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ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ sum = 0.0f;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ for (j = 0; j < NumH; j++) {
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ sum += h[j] * x[i+j];
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ }
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ y[i] = sum;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ error = d[i] - sum;ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ 
ÊÊÊÊÊÊÊÊÊÊÊ }
}
 
where  y  is  the  output,  x  is  the  input,  h  is  the  coefficient  array,  d  is  the  expected  output,  error  is  the  error,  and  ar  is  the  mew  value.
 
This was implemented in C and MATLAB to test the accuracy of the filter. Ê  In MATLAB, random numbers between 0 and 128 were generated and then

sorted  in  ascending  order. Ê  This was to simulate an unexpected change in acceleration by the user.Ê  The size of the filter was 8, and it  needed 8 previous

inputs.Ê  Some problems that were encountered were determining the initial values.Ê  The mew value needed to be different for varying inputs, and the initial

coefficients were to be determined by us. ÊWe ended up using a filter that just averaged the values initially.Ê In the end, the cost of recomputing coefficients for

8  previous  inputs  was  too  much,  especially  since high accuracy could not be obtained.Ê In was more efficient to start the search from the location of the

previous point and limit the motion rather than using an LPC filter.
 
2.4 Motion Recognition
Our system was intended to be able to determine the motion made by the user, given the recognized points, from a predefined list of basic shapes.Ê This was

done by in basically three steps: calculating the distance of the points, calculating the angle of the motion vector, and finally recognizing the shape from the

number of critical points.
 
The first step of calculating the distance is performed to filter out the points where the users fist does not move by a lot. The reason to filter these points out

is to enable a more accurate measurement of the angle of the motion vectors. In the second step, we determine the angle between two adjacent vectors to find

critical points, i.e.  points that are considered as corners of a shape. If a critical point is found, it is pushed in to a stack of critical points that the current shape

has. The minimum angle between the motion vectors for the point to be considered critical is 45%. The third step involves checking if the last tracking point is

close  enough  to  any  of  the  previously  stored  critical  points.  If  it  is  within  15  pixels  of  these  points,  it  means the user has drawn a closed shape. This

particular shape can be derived from counting the number of critical points that lies between the last tracked point that the critical points that it closes on.

That is,  two points corresponded to a line, three to a triangle, four to a square, five to a pentagon, and six or greater to a circle.Ê Once a shape was calculated,

the critical point stack is cleared and the process started over again.
 
2.5 GUI
The  best  way  to  observe  our  project  was  to  use a simple graphical user interface.Ê  We found one that could easily be implemented at http://fltk.org.Ê  A

window, buttons, text output, and frame were defined in main.Ê In order to update the picture captured from the camera, there was a redraw function that was

called after each frame had been processed by the EVM.Ê The image needed to be opened from memory and read into an array. This was done for each new

frame, while the nine images of the fists in different orientations were static.
 
In order to show the motion that had been captured, a green line traced the recorded path of the fist. Ê  Once the recognition code recognized a point, it was

passed to the GUI.Ê This point was then stored in an array that kept tract of the previous 256 points.Ê  This was needed since each redraw erased the old

lines. Ê  This array was then used by a line draw command.Ê Once on object was recognized, the array was reset and all of the old lines on the screen were

erased.
 
The  two  buttons  that  were  implemented  were a simple stop and exit. Ê  The exit button just exited the whole program, while the stop button stopped the

transfers to the EVM.Ê The buttons used callback functions, which were called whenever a button was pressed.
 
The text window was used by the recognition code to display the shape it had determined.Ê Once the shape was decided, it updated the string and passed it to

the text box display.Ê  If the system had been implemented in real time, this window would have prompted the user for a specific shape.Ê If the shape was



Wednesday, June 28, 2000 Introduction Page: 8

file:///BEEJ/Desktop%20Folder/551-2000/G3.551.S00.html

correct,  it  would  say  that  the  shape  was  drawn  correctly  and  ask  for  a  new  shape. Ê  If  it  was  not  correct,  it  would  let  them  know  that  as  well.
 
3. Profile
The different optimizations and tweaks resulted in different tracking rates and frame rates. For that reason, it is useful to have a comparison of their profile.

We had problems while profiling the code on the EVM side using the profiling options available from Code Composer. Therefore, we used the clock function

on the PC side to measure both the transfer time and the calculation time. Transfer time is measured by calculating the difference between the time when the

EVM  request  for  data  arrived  and  the  time  when  the  EVM  indicated  that  the  transfer  is  completed.  The calculation time is measured by calculating the

difference between the time when the EVM indicated that the transfer is completed until the EVM requested the next frame. Note that since the units of the

value  that  the  clock  function  is  unknown,  we  ended  up  calculating  the  time  that it  takes to process about 400 frames with a stopwatch to find how the

numbers  given  by  the  function  translates  to  the  number  of  seconds.  The  result  of  these  measurements  is  displayed  in  Table  3.
 

 
 

 
Table 3. System Profiles
 
The profiles are listed in the

order they appear in this

report. Initially, when the system consisted only of a two level hierarchical search the system produces a frame rate of 4.7. The simple addition of software

parallelization increases the frame rate to 5.5. When Rotated Target code is added, the frame rate decreases to 5.2. However, the added benefit of being able to

track rotated fists seems to justify it. When the Adaptive Target is put in instead, the frame rate drops even more to 4.3. This is due to the cost of copying

the target at every frame. However, the tracking rate of this algorithm is really good. In addition to adapting to luminance change, this algorithm is able to

adapt to slight size/orientation of the fist. Finally, when we introduced motion limiting, we obtain a huge performance increase of 34.4 frame rate. This frame

rate is more than enough to track a fist on real time.
Given the result of this profiling, we decided on using a two level frame differencing search, optimized with loop unrolling and equipped with adaptive target.

Additionally we limit the motion to 15 pixels. This EVM signal flow for this system is illustrated in Fig 2.
 

 
 
 
 
 
 

Fig 2. EVM Signal Flow
 
4. Sumary
Our system met most, but not of our

goals. It successfully detected and

tracked the userÕs motion and did a

reasonably good job of determining

which shape the user was tracing. The GUI did a good job of providing the user with feedback and made it easier to tell if the detection portion of the code

was working. The chief failure was in the image capture portion. Our inexperience with Windows programming made it hard to integrate the capture code with

the rest of the project. Our workaround made it possible to complete the rest of the project, but for a completely successful system we would need to have

real time capability.

 HPI EVM Frame Rate
Hierarchical Search 1.9 196.1 4.7
Loop Unrolling 2.1 168.5 5.5
Rotated Target 2.3 179.0 5.2
Adaptive Target 1.8 217.0 4.3
Motion Limit 2.1 27.1 34.4


