
1

Automatic Target Recognition in Synthetic Aperture Radar Images

Oren Laskin (laskin@andrew.cmu.edu)
Elaine Ramundo (eramundo@andrew.cmu.edu)

Andrea Okerholm (amo@andrew.cmu.edu)

Digital Communications and Signal Processing Systems Design
Department of Electrical Engineering

Carnegie Mellon University
18-551 Prof. Casasent

Spring 2000



2

Introduction:

Automatic Target Recognition (ATR) of synthetic aperture radar (SAR)

images is an area of ongoing research by all branches of the military and large

research institutions.  These images are being processed to locate interesting objects

within them, such as enemy military vehicles Ð which can be classified by type.

Another possible application of this technology is mapping; where landmarks could

be identified and automatically placed on a map at the correct coordinates.

Systems such as SAR generate very large amounts of data often in the form of

two-dimensional images.  Due to the large scale of these images and the relatively

small size of targets within them, finding the targets via ATR becomes a serious

issue.  Because of the research in the field of ATR, the basic methodologies are well

studied and can be divided into three main groups; statistical based systems, model

based systems, and neural network based systems.  Since we rely on an outside

source for our two-dimensional image database, we cannot work with a true model

based system.  We approached the problem of ATR from the statistical basis so that

we could focus primarily on the cascades of filters needed to perform the image

processing rather than generating and teaching a complex neural network.  While

such statistical systems are documented, implementation varies from system to

system depending on hardware and software optimization.  We attempted to

reproduce the accuracy percentages of other experiments on the laboratoryÕs Texas

Instruments C67000 DSP boards.
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The Database:

For this project we relied heavily upon synthetic aperture radar images

provided by MSTAR.  (Throughout this project we discovered that while these

images were very useful, they were also somewhat limited).   Although the MSTAR

CDs that were ordered during the semester were better documented than the original

image database we received from Professor Kumar, we still faced difficulties in

understanding the precise nature of the libraryÕs contents.  In general each MSTAR

CD contains 2 to 3 categories of Russian armored vehicle that contain the vehicle

from different angle positions overlooking the vehicle.  Within each folder

designated by angle, the same target is captured from multiple orientations and

directions, in a series of passes by the radar onboard an aircraft. Therefore while we

knew that each folder contained roughly 196 images we were uncertain where one

pass began and another ended.  Another issue we had was that these images would

always have the vehicles roughly centered in the frame on a background of what we

assumed to be a grassy or similarly flat, featureless, terrain.  This type of surface

provided only minimal clutter.  There was nothing that could be mistaken for a

target. The lack of clutter was a problem because it made us shift our focus from

generating a full fledged ATR system, to focusing on classification of the vehicles.

(Without ÒrealÓ clutter in the images, the CFAR and Discrimination stages of the

design were relatively unnecessary and rather trivial).  We went ahead and

implemented both stages under the assumption that eventually we would have

enough clutter in our images to need these stages but were never able to find a good

test image with both target and clutter present.
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The CFAR function:

The concept and design of the CFAR filter for our ATR system came directly

from ideas outlined in the Lincoln Laboratory Journals from 1996.  We attempted to

follow their design ideals in that we used the margin pixels to estimate image

statistics of standard deviation of image clutter, and average intensity of background

clutter.  These two values are combined to generate a threshold value for searching

the image for ÒtargetÓ pixels using the equation:

std

avgPixel

I

II −
 > Threshold

Where PixelI  is the intensity of the current pixel being tested, avgI  is the average

intensity of clutter, and stdI  is the standard difference of the clutter.  We selected our

threshold via trial and error. In the end we achieved satisfactory results by setting it

equal to one sixth of the average intensity of a tank (a constant set over all images

equal to roughly 43) and then manipulated per image by the generated average

intensity and standard differentiation.  The CFAR filter generates the threshold value

once per image, then uses it to search through every pixel in the 128x128 image

searching for target pixels, if the current pixel passes threshold test then it is checked

against the location of previously found ÒtargetÓ pixels, whose locations are stored in

an array of (x, y) pairs.  If the current location is within 20 pixels of any previously

found pixel then it is not added onto the array, if it is a new and distinct point the

array is updated accordingly.  The value of 20 was chosen because we chose the size

of 40x40 for the minimum size to capture a tank from our database so Òhalf an

imageÓ would be 20 pixels.  In Matlab the function was be implemented by calls to
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diff and sum followed by a for-loop through image.  For the EVM board we

implemented our own versions of sum and diff of array in order to maintain

simplicity of code.  We initially wrote the function to return a 40x40 image based

around one of its ÒtargetÓ pairs for debugging purposes, but then changed it to return

an array of ÒcoordÓ pairs for the discriminator function to examine.  Since each of the

for loops occurs separately the function resolves in linear time with 3,904,963.0

cycles when not optimized and 6,206,811 cycles with optimization flags turned on.

The main issues we had with building this function was not in implementation but in

the inflexibility of our database. Tests were run on images with clutter and with

tanks, but there were no images with tanks in fields of clutter.  The results of CFAR

on a standard ÒtankÓ image and then on a standard ÒclutterÓ image are attached to the

back of this report.

Discrimination:

The purpose of the discriminator is to reduce the number of false alarms from

the CFAR stage. The CFAR output is a series of coordinate pairs designating

possible targets. These targets could be tanks, buildings, trees, etc. In order to rule

out candidates containing trees and other Ònatural-clutterÓ objects, we ran a series of

statistical tests using our knowledge of an average tree and an average tank. The

discriminator output is fed directly into the classifier, so it is important to eliminate

as many images as possible without eliminating any actual tanks. We also desire to

eliminate Òman-made clutterÓ: man-made objects that are not targets. This

discrimination is beyond the scope of our project, but deserves some mention here.

Man-made clutter would include buildings and other types of vehicles.
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Tests we researched and/or used in our final demo were fractal dimension,

Sobel and Gaussian edge detection, weighted rank fill, and standard deviation. These

tests each have shown a statistical difference in their results for natural-clutter objects

and for target objects. To calculate threshold values for each test, we ran the tests on

10 target images and averaged their results. If an image passed one edge detection,

the standard deviation, and one of two weighted-rank fills at different thresholds, it

was declared to be a tank and returned. As in other sections of this project, we first

implemented the discrimination algorithms in Matlab, then in C, then on the EVM.

Threshold Values:

Standard

Deviation of

top 50%

Sum of the

Sobel of top

50%

Sum of the

Gaussian of

top 50%

Power in top

10%

Power in top

50%

13.0 80.0 70.0 35.0 75.0

Fractal Dimension:

Fractal Dimension is a measure of how close together the pixels in a binary

image are. The pixels in a man made object are generally closer together than the

pixels in a natural-clutter object, thus making fractal dimension an appropriate test to

use in natural-clutter detection. We threshold the image, taking only the most

powerful pixels, and then calculate their fractal dimension. A natural-clutter object

will have a fractal dimension of less than 1; whereas a target object will have a value

between 1 and 2.



7

One of the many methods of calculating fractal dimension is the box counting

method. It counts the number of boxes needed to cover a one pixel wide border,

increasing the size of the boxes from 2x2 pixels up. The fractal dimension is the

negative of the slope of the line (boxes vs box size) on a log-log plot.

We found code in C implementing the algorithm from "A FAST

ALGORITHM TO DETERMINE FRACTAL DIMENSION BY BOX

COUNTING", by Liebovitch and Toth, Physics Letters A, 141, 386-390 (1989). at

http://life.bio.sunysb.edu/morph/soft-out.html. This uses a form of the box counting

method. We were able to integrate this into our C code, however were not able to get

it working on the EVM. The EVM would infinite loop in the middle of a radix sort

done prior to the box counting. Because of these problems, the fractal dimension

function was left out of our final demo. A solution to the problem would have been

to either move the sorting algorithm to the PC side, or to rewrite the sort completely

so that it worked.

Other Tests:

Sobel edge detection used two kernels, one for each of the x and y directions.

The x kernel was [1/8,0,-1/8,2/8,0,-2/8,1/8,0,-1/8]; and the y kernel was

[1/8,2/8,1/8,0,0,0,-1/8,-2/8,-1/8]. The kernel used for the Gaussian edge detector was

[1/32,4/32,1/32,4/32,12/32,4/32,1/32,4/32,1/32]. We summed the returned image to

get a characteristic number, which could then be compared against the training

threshold. //Our Sobel and Gaussian edge detectors did not make it successfully to

the EVM due to an unexplainable floating-point problem.

Weighted rank fill returned an image with only the top n% brightest pixels.
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The percentage of the power of the image contained in these pixels also gave us

insight into the discrimination of the image.

Standard deviation of the image gives a measure of the contrast of the image.

We know that in general, natural clutter has a low standard deviation and target

images have a high standard deviation.

//We also researched a Canny edge detector but were not able to port it from

Matlab to C. Code was found in the IEEE IUE image processing library but it was

written in C++ and we never successfully ported it to C or the EVM.

Result:

In the end, the discriminator successfully passed our tank images with a X%

accuracy. It completed the task in 7,313,967 cycles not optimized and in 3,881,510

cycles with optimization flags on. We did not test for rejection of natural-clutter

images.

Classifier:

Certain assumptions had to be made for the classifier that was designed to

function correctly.  Due to the MSTAR database that we received, roughly 196

images of three types of vehicles existed.  We chose to train using 1/4 or 1/8 of the

196 images and the rest was used for testing purposes.  After converting the MSTAR

info into raw 128x128 at 8bpp we were ready to attempt to classify the images.  Our

first attempt was all in software on the Unix environment.
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Due to work I was doing with a partner in Image and Video Processing (18-

798), I chose to attempt to classify by using the Hough transform after doing

thresholding to the original image.  The thresholding was done by blurring the image

slightly and removing all parts that were below the mean+1.5*standard deviation.

The result of this was reasonably good for most images but ran into difficulties when

shadows fell upon the objects so you could run into an object that looked like it had

been bisected.

The Hough transform is a method of converting straight lines in an image into

slope-intercept form.  Using this transform gains you the ability to detect where lines

meet and comparing training images with the test images gives a good classification

result.  The rho and theta used for the Hough transform result were both 32.

Therefore the resulting picture was a 17x32 image at 8bpp since negative rho values

were ignored.

After doing Hough transforms on all the testing and training images a very

simple nearest neighbor algorithm based on using the mean squared error was used.

This has the advantage of being computationally very simple to use and gave

surprisingly good results so we continued to use it.

Certain things were tried and dropped while creating the classifier for this

project.  The first was a Sobel filter that was used to extract the outer lines of the

image before they were sent to the Hough transform.  This was removed when no

noticeable gains were coming from it.  Also, the computation for a Sobel filter is

very high when done on a large sized image.  The second major change was that the

Hough transform needed to be rewritten in the last week.  At first, we believed C

code downloaded from the Internet had been working but when the dataset was

changed from Professor KumarÕs images to MSTAR images, the classifier broke.

Therefore, Matlab Hough transform code that was proven to work became the basis

of a new C function that we wrote and implemented for classification.
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As stated earlier the final results were good enough that we moved the code

over to the DSP early.  Our original images were based on the one Professor Kumar

handed out for his Pattern Recognition Theory (18-794) class and the original

classifier was based off that.  Using 1/4 as training images and having Sobel edge

detection and the original Hough Transform, we received an 89% correct recognition

rate.  However, Professor Casasent wanted our classifier to be based directly from

using the MSTAR database images.  This was accomplished by getting the database

CDs, and necessary Unix tools, from the MSTAR home page.  A simple shell script

was created and the MSTAR database was converted to a series of numbered images

that contained magnitude information of the 128x128 images and ranged in values

from 0-255.  After the modification of the code I mentioned earlier, removing Sobel

and replacing Hough Transform, we had a 96% correct identification rate.  We

decided to test for robustness by making only 1/8 of our images be for training and

our accuracy rate only fell to 92%.  This 92% correct classifier was what was shown

in the final demo.

Many improvements can still be made to this classifier.  First of all, the

thresholding on the image needs to be improved so that under any condition we can

accurately discriminate the entire vehicle and not have major shadows remove

portions of vehicle and at the same time prevent clutter noise from reducing our

accuracy.  I believe this can be done with some work on constant values and

removing parts of image that still remain that are too small to be our target.

However, now you must choose whether to trade accuracy for speed.  The Hough

transform is a major part of this classifier.  This can be unrolled to some degree and

optimized for greater parallelism and thus more speed without removing accuracy.

The rho values and theta values used should be adjusted to see what is optimal.  The

values of 32 were chosen arbitrarily, and we stayed with it due to the good results

that we had obtained.  What the optimal value is needs be determined and if you go
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too high it will make the next step, the MSE, a bit slower.  Finally the classifier is a

simple nearest neighbor method, taking the MSE of the training set compared to test

image that is minimal.  This is optimal for simplicity of code and speed but for

greater accuracy you would want to take the closest n neighbors and see which of the

classes is most represented in that set.  This will remove outlying cases from causing

errors.  These are simple improvements that could be made to follow on to this

project to make it more robust and faster. The Hough transform ran in 77,880,430

cycles with optimization flags turned on.

T-72

BMP-2

BTR-70
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Conclusions:

Now that our project is over we have mixed feelings about the actual results.

While the project was completed and demoed successfully there were several items

that we had really hoped to accomplish.  We had hoped to implement a full system

where the CFAR, discriminator, and classifier had all worked together rather than

demoing them separately.  Given more time we believe we could have better

information about managing on board memory, parallelization, and other

optimizations.  Also, for better testing we need images that not include just clutter or

just images, but both so we have a full test for the system.

A wish list for future classes includesÉ better description of EVM bugs.  An

EVM emulator on Unix so a full demo could be given without hardware bugs

causing problems.  We think the checkpoints should be arranged in this mannerÉ

proposal followed by C code on Unix and this followed by the code working with

this mystical EVM emulator before the final demo is shown.  Also, we believe this

class lacks a focus and should learn from other capstone design classes that have a

stronger focus such as 18-545 and 18-778.  The lectures given them become

appropriate for everyone rather than a small minority.  We believe that more could

have been learned from this class.  While the hands-on project experience was

valuable we felt the majority of our time was not directed at the DSP problems we

chose to investigate, but at what shouldÕve been simple EVM board and Code

Composer Studio interactions.



13

Bibliography:

http://life.bio.sunysb.edu/morph/soft-out.html

https://www.mbvlab.wpafb.af.mil/public/sdms/tools/index.htm

"A FAST ALGORITHM TO DETERMINE FRACTAL DIMENSION BY BOX

COUNTING", by Liebovitch and Toth, Physics Letters A, 141, 386-390 (1989).

Dudgeon, Lacoss, ÒAn Overview of Automatic Target RecognitionÓ. Lincoln

Laboratory Journal, vol 6, number 1, 1993. p 3-9.

Novak et al, “Performance of a High Resolution Polarimetric SAR Automatic Target

Recognition System”. Lincoln Laboratory Journal, vol 6, number 1, 1993. p 11-23.

Kreithen et al, “Discriminating Targets from Clutter”. Lincoln Laboratory Journal,

vol 6, number 1, 1993. p 25-51.

Verbout, et al, “Improving a Template-Based Classifier in a SAR Automatic Target

Recognition System by Using a 3-D Target Information” Lincoln Laboratory

Journal, vol 6, number 1, 1993. p 53-71.


