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Introduction

MOTIVATION Electrocardiograms are used by hospitals to monitor patients with known or potent
heart problems.  By studying the electrocardiograms of the patients, cardiologists 
detect rhythmic problems, heart rotation, and some symptoms of certain diseases
While automatic pattern recognizers cannot replace cardiologists in detecting hear
problems, the time required for cardiologists to detect abnormalities may be cut sig
cantly if such a recognizer is run before the cardiologist looks at the ECG.  The ca
ogist’s attention can be drawn quickly to unclassifiable beats and to those beats w
amplitudes or rhythms are unusual. The recognizer can give an overall summary o
beats recognized and their regularity, as well as timing of the beats so the cardiolo
has some pre-compiled statistics on the patient without a time-consuming study of
full ECG.

There have been several studies of automatic recognition of ECG data.  Some hav
approached abnormality detection by studying the first difference of the waveform.
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Others utilize the DFT of the waveform to detect periodic components. Neither
approach has produced highly accurate results.  For the DFT, the noise at 30 and 
tends to complicate detection of waveform components at those frequencies.  Our
approach was to use a set of neural network nodes, due to expectations of high acc
and the implementation seemed simpler than for a complete neural network.

BACKGROUND Normally an electrocardiogram is composed of 12 leads of data generated by atta
12 separate electrodes to the patient. The electrocardiograph records the data and
each lead out separately on a graph paper with a printed time axis for rhythm and 
rate determination.  The data can be read electronically from the electrocardiograp
output, but it is in a proprietary format.  For an in-depth discussion on electrocardio
gram leads and use, see [2], [6]. For this project we are using 2 lead data selected b
Harvard-MIT Division of Health Sciences and Technology group, and gathered at B
ton’s Beth-Israel Hospital (now the Beth Israel Deaconess Medical Center). The 2 le
used in each record vary between different records.  Leads used in the top signal
include:  V5 and MLII from a normal 12 lead configuration; leads used in the botto
signal include:  V1, V2, V4, V5 and MLII.  Patients are adults, both female and ma
with known heart problems and symptomatic descriptions included in the record an
tations.

According to the MIT website, http://ecg.mit.edu, the "analog outputs of the playba
unit were filtered to limit analog-to-digital converter (ADC) saturation and for anti-
aliasing, using a passband from 0.1 to 100 Hz relative to time, well beyond the low
and highest frequencies recoverable from the recordings. The bandpass-filtered si
were digitized at 360 Hz per signal relative to real time using hardware constructed
the MIT Biomedical Engineering Center and at the BIH Biomedical Engineering La
ratory.  The sampling frequency was chosen to facilitate implementations of 60 Hz
(mains frequency) digital notch filters in arrhythmia detectors. Since the recorders w
battery-powered, most of the 60 Hz noise present in the database arose during play
In those records that were digitized at twice real time, this noise appears at 30 Hz 
multiples of 30 Hz) relative to real time."

Samples were digitized such that the intersignal sampling skew was on the order o
few microseconds.  The ADCs "were unipolar, with 11-bit resolution over a 5 mV
range.  Sample values thus range from 0 to 2047 inclusive, with a value of 1024 co
sponding to zero volts. [3]" All records are annotated for every beat. These annotat
are included in a file separate from the data file.  These annotation files can be rea
with the data by using wave.exe which is available online and in the CD-ROM for t
database.  There is a program that allows users to strip out the time stamp in seco
the absolute time stamp in samples, the annotations, and subannotations.  We use
program in testing our accuracy and picking our testing samples.

In order to recognize patterns in the ECG leads, it is first necessary to locate the Q
complex, if it is present.  The QRS complex is a waveform that appears in most no
and abnormal signals in an ECG. The elements of an ECG may include a prelimina
wave, a Q peak (negative amplitude), an R peak (the most prominent feature), an S
(negative amplitude), and a T wave, as shown below in Figure 1[2]:
2 The Tell-Tale Heart
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FIGURE 1. ECG Waveform

Once the QRS is determined to be present and it located (if it is present), pattern m
ing can be performed to determine the characteristics of the beat.  Some characte
that may be checked for include rhythm, duration, amplitude, maximum and minim
slopes. Abnormalities can be detected by comparing beats with a generalized form
normal and abnormal beats.  Humans have different normal heartbeats and their a
mal beats will vary accordingly.  In order to computationally characterize one perso
abnormal heartbeats, the beats must be similar enough to other people’s abnormal
that a system can detect them and classify them properly.

GOALS The goals are to locate QRS complexes in the data, to match the waveform corres
ing to the QRS complex with a generalized waveform, and output a useful collection
statistics and labels so users can identify the waveforms on an ECG.

QRS Complex Detection

INTRODUCTION One of the most obvious characteristics of the QRS Complex is the large peak in R
wave.  A simple detection routine would just look for a periodic peak.  However,
because of the noise present in the aquisition of ECGs, this technique will return fa
waves.  As a result, something more involved is required.
The Tell-Tale Heart 3
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ALGORITHM The detection algorithm that was used is based on a Pascal program written by W
Engelse and C. Zeelenberg, "A single scan algorithm for QRS-detection and featu
extraction", Computers in Cardiology 6:37-42 (1979). [1]

The first sample is read and copied into variables that will be used to store the ten
recent samples.  An FIR filter then variables that will be used to store the ten most
recent samples.  A threshold is set which is actually a slope criterion.  This thresho
adjusted if more than two seconds have elapsed since a QRS was detected.  If thi
tion is satisfied, a timer is set to 160 msec and the sign of the slope and the current
relative to the previous beat is saved.

Each time the filter output crosses the threshold, another slope is recorded and th
gram begins looking for a threshold crossing of the opposite sign, which must occu
within a specified time.  The maximum absolute value of the filter is recorded for e
tual use in updating the threshold.  Once a sufficient interval has elapsed following
last threshold crossing, if there were between 2 and 4 slopes, the program (appare
found a QRS complex.  If there were 5 or more slopes, the program records an ar
annotation, which designates an artificial beat. If only 1 slope was found, it is assu
to represent a baseline shift and no output is produced.  [1]

Neural Network for Classification

INTRODUCTION The system primarily uses the neural network nodes for waveform classification. W
other algorithms were considered, we decided that using a neural network would giv
the best general functionality with other algorithms used secondarily for specific an
alies.  When the secondary algorithms were abandoned for implementation issues
neural network became the sole classification algorithm. After reading into the cap
ities and implementation of neural networks, and considering the waveforms from 
database, we decided that we could achieve a simpler functionality by just using b
neural network nodes.  The way we define a single neural network node is a single
ron in the hidden layer that accepts 300 inputs (300 samples centered about the Q
complex) and has one output (see figure 3.1 for clarification).

In basic operation the input array is dot multiplied with the weights of the hidden la
neuron.  The activation threshold of the neuron is subtracted from the result of the
product.  If the dot product is greater than the activation threshold, theta, then a on
passed to the output layer, and if the dot product is less than the threshold a zero 
passed to the output layer.

After the waveform being classified has been analyzed by all the nodes using the v
function, the program attempts to choose the best classification for the waveform. I
the nodes return zero for their activation, then the wave is determined to be unclas
able. If only one node is active, then the wave is considered to be the type of the si
active node. If multiple nodes are active, then the node one with the highest dot pro
result with the waveform is choosen to classify that wave.
4 The Tell-Tale Heart
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FIGURE 2. Node Diagram

NODE FUNCTIONS All of the source code for the neural network nodes is contained in nnet.h and nne
The nodes are created as structs that contain the values of theta (the activation th
old), the weights, the node’s learning rate, and a text label to identify each node w
waveform.  The three functions, which define the action of the nodes  are initialize
learn, and verify.  All three of these functions depend on the functions normalize a
dotprod, which will be discussed later as support functions.

Initialize. The first step in training the nodes is initialization. The first training wave
used as the input to the initialization function, which sets the weights of the node to
(see below) normalized version of the input training wave. The activation threshold
theta is set to 1.  Because the learning rate is set to the number of waves used in 
training set, setting the initial weights to the first waveform allow for equal represen
tion by all the waves in the training set and gives faster learning than if random weig
had been used.

Learn. After the node has been initialized, the rest of the training waves are sent a
inputs to the learning function of the node.  The incoming wave is normalized and 
multiplied with the weights of the node.  If the product is less than the current value
theta then theta is set to the value of the product.  Next, the weights are adjusted u
the Widrow-Hoff algorithm. The new weight is the current weight plus the result of t
adjustment value.  The adjustment value is the current weight minus the correspon
input element, all divided by the learning rate. Once the weights have all been adju
in this way, the weights vector is normalized (see below).

Verify. The verification function is used by the classification methods, though by itse
does not classify the waveform.  Instead, the function tries to determine the similar
between the input waveform and the node’s set of weight. The input waveform is n
The Tell-Tale Heart 5
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malized and the dot product of the normalized wave and the weights is calculated. I
product is greater than the activation threshold of the node the node is considered a
if not it is considered inactive. Both the product and the result that indicates activity
returned by the function using the verReply struct defined in nnet.h.

SUPPORT FUNCTIONS The functions normalize and dotprod are essential to the functionality of the neura
work node functions.  The code is contained in the files normalize.c, normalize.h, d
prod.h, and dotprod.c.

Normalize. The normalization function is applied to both incoming waveforms and t
weights of the node.  Normalization finds the mean of the array passed to it, and s
tracts the mean from all values in the array, making the new mean of the array zer
Next, all the values of the array are squared and summed.  The sum of the square
then square rooted to create a normalization factor.  The whole array is then divide
the normalization factor to finally create a normalized version of the input vector.  T
is done to bound the dot product of the normalized incoming waveforms and the n
malized weights between negative one and positive one.  On this scale one indica
complete match, while negative one indicates that the two are additive inverses.  T
motivation to approach the input and weight values in the way comes from Albert
Nigrin, "Neural Networks for Pattern Recognition" and it is also part of the Widrow-
Hoff algorithm.

Dotprod. The dot product of two arrays is taken multiple times between learn and v
ify, but the function itself is very simple.  A single loop adds the product of correspo
ing array values and keeps tract of the sum of the products.  The function then retu
the final sum of all the products.

DESIGN DECISIONS While doing reading on neural network training and weight adjustment we did not co
upon as many refrences to gradient search as opposed to Widrow-Hof.  So, we im
mented the simpler, thought less efecient, Widrow-Hoff algorithm.  Also, since the 
sentation and demonstration we have been considering the suggestion of using ba
processingof training inputs. However, we are unsure if this would effect the end re
of the Widrow-Hoff algorithm or if it would only aid if using a gradient search.

System Level Implementation

In terms of computation, the system did equal amounts of work on both the PC an
EVM. Since libraries existed for the PC from the MIT ECG website [1], the PC did t
ECG specific functions while the EVM implemented the neural network.
6 The Tell-Tale Heart
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SIGNAL FLOW FIGURE 3. Signal Flow (Training)

FIGURE 4. Signal Flow (Classification)

WAVEFORM EXTRACTION Before any processing could be done on the ECG records, a useable version of th
must be extracted.  Since the data is stored in the database as 11-bit integers, sim
reading in the file and using the results to generate the waveform was impossible.
DB library however, provided a host of functions which could not only extract the wa
form from each record, but could also extract annotation information and signal inf
mation (such as sampling rate).  The waveforms were extracted and stored as floa
since the EVM had problems loading doubles.

QRS EXTRACTION Once each waveform was stored, the PC chunked the waveform into a set of QRS
plexes and stored them in a seperate data structure which also contained a text st
denoting the type of lead the signal was extracted. Modifications had to be made to
existing library functions provided by the MIT DB library.  Since the algorithm was
optimized for signals sampled at 250 Hz, changes needed to be made to center the
peak at the center of the waveform.  Since the algorithm returned an approximate 
tion we looked for the biggest value in a 10 sample range around the returned loca
Each complex was then sent one-by-one over to the EVM for processing.

NEURAL NET TRAINING Before any type of classification could be done, training of the neural net was necess
The training process is as follows.  First 5 exemplar waveforms are extracted from

data from
database

break into
frames

training

storage

EVMPC
weight

weights
create
nodes

data from
database

break into
frames

classifcation

storage

EVM

PC

get

result
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database, for each type of anomaly that was to be classified.  The PC sends over 
mation conveying to the EVM that it was about to be trained.  The waveforms are s
over and the weights for a node is generated, as specified in the previous section.
the weights are sent back over to the PC and labeled with the type of waveform th
weights were trained on.

This was done for each type of anomaly that was to be detected.

NEURAL NET
CLASSIFICATION

Once all the weights for the neural network were gathered, the system was then re
for verification.  The first 500 waveforms from each database entry were gathered 
used for our test set.  First, the PC sends the weights of each of the nodes over to
EVM which creates the appropriate nodes.  Then the PC sends over a waveform w
is sent into the neural network. Once the network makes a decision on the type of w
form it was presented, the result is sent over to the PC and saved to disk. This proc
repeated for any number of waveforms in the record (this is a command line option

Performance

MEMORY The largest source of memory useage lies in the storage of the waveforms and of 
neural network node weights. Each waveform is stored at 300 floats and the weigh
each node are also stored as 300 floats.  Because of the unreliability of the extern
memory on the EVM, it was decided that we would store all the nodal weights and
nals on-chip.  The only limitations that resulted were the number of anomalies that
could be detected.  Since only one waveform was stored on-chip at any one time, 
approximate memory usage was around 24kB.  In the end, a total of 19 different n
were used.  Paging was not used since all variables were stored on-chip.

SPEED The overall speed of our system was very good.  Generation of the weights was o
limited by how fast the PC could display the communcation signals (transfer reque
etc) to the screen.  It took approximately 3 seconds to generate the weights for ea
node.

For verification, once again the limitation on speed was the display of communicat
signals to the screen. The QRS detection and segmenting routine took a few secon
complete, but after that, the verification sequence was very quick.

Profiling. Computationally, the biggest use the DSP is the verification routine.  This
routine is called for every node for each waveform.  As a result, the addition of mo
nodes causes the computation time to increase as a function of MN (M is the numb
waveforms, N is the number of nodes).  Therefore, this was the main focus of optim
tion.

Optimization. The verification function makes use of a normalization function whic
involves a series of multiplies and additions.  In order to take advantage of the mu
8 The Tell-Tale Heart
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arithmetic units, this multiples (which were called in a for loop) were rolled out.  Th
made a significate impact in the cycle numbers.  Before optimization, the verificatio
routine took approximately 85173.4 cycles to complete.  The complete verification
(from getting the wave from the CPU to the return of the result) took approximately

1.882x106 cycles to run.

After the above optimizations the verification routine took approximately 75822 cyc
to complete.  While this may not seem like much, in the long run each complete ve
cation now only takes 713405.6 cycles to complete.

Results

RECORD 113 For record 113, which we trained for normal and atrial beats, we get this accuracy

8 false negatives, all of normal beats id’d as unclassifiable
4 positive id of atrial premature beats
488 positive id of normal beats
98.4% accuracy

RECORD 124 For record 124, which we trained for: fusion, nodal premature, nodal escape, right
dle and premature ventricular beats, we get this accuracy:

1 false negative, atrial prem. Beat id as uncl.\
1 false negative, fusion beat id as unc
1 false negative, fusion beat id as nodal escape
7 false negatives, nodal prem. Id as nodal escape
266 false negatives, right bundle id as unc or other
202 positive id of right bundle branch block beat
22 positive id of nodal premature beats

44.8% accuracy

RECORD 109 For record 109, which we trained for left bundle branch block and premature ventric
beats, we get this accuracy:

2 false negative id of fusion beats as left bundle
17 false negative ids of left bundle as various
6 false negative ids of premature ventricular as left bundle
475 positive ids of left bundle branch block beats

95% accuracy

RECORD 105 For record 105, which we trained for:  normal and premature ventricular beats, we
this accuracy
The Tell-Tale Heart 9
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2 false negatives for Isolated QRS artifacts as normal
8 false negatives for normal as unclassifiable
13 false negatives for premature ventricular as normal
2 false negatives for premature ventricular as unclass..
1 positive id of Isolated QRS artifact as unclassifiable
474 positive id of normal beats

95% accuracy

RECORD 221 For record 221 which we did not train for, but which contains normal and prematur
ventricular signals, we get this accuracy:

165 false negatives on normals as various
80 false negatives for premature ventricular as various
240 positive id of normal as various normal types
15 positive ids of premature ventricular beats

51% accuracy

RECORD 219 For record 219 which we did not train for, but which contains normal and prematur
ventricular signals, we get this accuracy:

4 false negatives on atrial types
1 false negative on fusion beat
2 false negatives on missed beats
476 false negatives on normal beats
13 false negatives on premature ventricular beats
4 positive id of premature ventricular beats

.8% accuracy

DISCUSSION The results for the records which we trained nodes on are, in general, far better tha
results for the records which we did not train nodes on.  This result is not surprisin
The results for record 219 seem to be extremely bad but on further inspection, it bec
apparent that the normal waves include an inverted T-wave following the QRS com
and the Q and S peaks are extremely small in amplitude.  The normal waveform th
does not correspond to (even remotely) any of the other normal waveforms in the 
base.

Similarly, for record 221 the ventricular waves would have been more easily detecte
we had run the classification on the bottom lead, which we had not run it on.

In all cases, we only classified the first 500 beats of each record, so our results mi
have varied if we had performed the classification on the entire record.  We chose 
beats because this was 1/4 of the length of the record and it seemed like a good nu
at the time.
10 The Tell-Tale Heart
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Given more time, we would have performed parallel analyses on the top and botto
leads. We would have then perfomed some comparisons to determine if the leads r
the same classifications or different ones.  In some records, the bottom leads show
more prominent characteristics for certain abnormalities than the top lead does.  T
would require more nodes for classification though, because the bottom lead wavef
do not look like the top lead waveforms.  In some cases, the bottom lead is much m
noisy than the top, and rotation affects the bottom leads far more often than the to
leads. This is presumably due to the use of V leads for the bottom whereas the top
is almost always MLII.

Additionally, we might have performed some simple threshold analyses to pick off m
ima and minima in the data in order to locate the Q, R, and S peaks.  Given these 
tions, we might have compared rhythms between different waveforms in the same
record.  Rhythm changes are important to note for ECG analysis because they are
to detect escape beats, prematurity in beats, general rhythm changes, drastic rhyt
changes (which may be indicative of massive heart failure) and atrial premature bea
types which we cannot at present locate or classify.xs

Future Extensions/Current Problems

Because of the bug with LDDW in the version of the DSP chip that we have, there
many things that we would like to have done.  First, memory managment on the E
was more than painful.  There is a section of our code where the existence of a pr
statement prevented any strange behavior by the EVM.  Errors that were generate
the creation process include communication ghosts (the EVM mistakenly believed
was receiving signals from the PC) and resetting of memory.  We would like to hav
been able to use more nodes and a more complicated neural net.  Unfortunately, a
problems we had with the EVM used up the time that could have been used devel
and researching a better net.  Blame TI :)
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Appendix A: Training Waves

FIGURE 5. A Normal Waveform
12 The Tell-Tale Heart



Appendix A: Training Waves
FIGURE 6. A Fusion Beat

FIGURE 7. A Nodal Escape Beat
The Tell-Tale Heart 13



Appendix A: Training Waves
FIGURE 8. A Nodal Premature Beat

FIGURE 9. A Paced Beat
14 The Tell-Tale Heart
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