
18-551

Group 18:

License Plate Recognition

Final Report

Pierre Ponce | Stanley S. Wang| David L. Wang

Ponce | sswang | wang4

The purpose of this report is to explain the implementation of our

project, ÒLicense Plate Recognition SystemÓ. This report will begin

with sections on motivation, past projects, and constraints. It will

then proceed to describe our system in broad terms to provide a general

overview of our project to the reader. It will then describe each

subsystem in detail. For each subsystem, we have included explanations

for why we chose our methods, performance of our methods, under what

conditions would our methods fail, and how can we improve our methods.

The report ends with a discussion on possible future work using more

evolved image processing techniques and acknowledgements.

- 2 -

Table of Contents

Section Page No.

Introduction 3

Past Projects 3

The Constraints 3

System Overview 4

Image Acquisition 5

Image Processing Overview 6

 Candidate Selection: Histogram Equalization 7

 Binarization 8

 Sobel Edge Detection 9

 Choosing Candidates 10

 Candidate Verification: Local Histogram Eq./Binarization 12

 Elimination by Heuristics 13

 Elimination by periodicity 15

 Choose License Plate by 2D correlation 16

 Character recognition: segmentation 17

 OCR by 2D correlation 21

Display Results/Demo 23

Memory Allocation 24

Performance, Accuracy 25

Performance, Speed 26

Future Work 28

Acknowledgements 29

- 3 -

Introduction

Monitoring vehicles for law enforcement and security purposes is a difficult

problem because of the number of automobiles on the road today. An example

is this lies in border patrol: it is time consuming for an officer to

physically check the license plate of every car. Additionally, it is not

feasible to employ a number of police officers to act as full-time license

plate inspectors. Police patrols cannot just drive in their cars staring at

the plates of other cars. There must exist a way for detecting and

identifying license plates without constant human intervention. As a

solution, we have implemented a system that can extract the license plate

number of a vehicle from an image Ð given a set of constraints.

Past Projects

Although there have been no similar 18-551 projects in the past, we have been

able to find a few research papers on the topic of license plate recognition

systems as well as several commercial license plate recognition systems.

Among the research papers: Hermida, Xulio; Fernandez, Fernando Martin;

Rodriguez, Jose Luis Fernandez; Lijo, Fidel Pita Sande; and Miguel Perez

Iglesias. ÒAn OCR for V.L.PÕs (Vehicle License Plate)Ó, ICSPAT, 1997. Among

the commercially available systems: Hi-Tech Solutions, See/Car LPR

(http://www.htsol.com/Profile.html); Electro-Optical Technologies, Inc.,

(http://users.erols.com/lnelson/lpir.html).

The Constraints

Due to the limited amount of time we have, a set of constraints have been

placed on our system to make the project more manageable, they are as

follows:

• Image of the vehicle taken from fixed angle.

• Image of the vehicle taken from fixed distance.

• Vehicle is stationary when the image was taken.

• Only standard Pennsylvanian license plates will be dealt

with(figure 1).

Figure 1, standard Pennsylvanian license plate

- 4 -

System Overview

Our license plate recognition system can be roughly broken down into the

above block diagram. The image acquisition is done by hand via a digital

camera and stored on the PC; an interface on the PC side then transfers the

image from the PC to the EVM, where the actual image processing is occurred;

at the end of image processing, the system returns to the PC the license

plate number of the vehicle in the image. The details of each subsystem are

to follow in the following sections.

Image

Acquisition
Display

Results

Image Processing - EVM

PC

PC

Candidate

Verification

Candidate

Selection

Optical

Character

Recognition

- 5 -

Image Acquisition

Description of the method:

The images of vehicles were taken with a Sony digital camera, borrowed from

the MEMS lab, with a resolution of 480x640. On average, the images were

taken seven feet away from the vehicle. They were stored in color JPEG

format on the camera. We use Matlab to convert the color JPEG images into

gray scale raw format on the PC. An interface on the PC side then transfers

the images to the EVM for processing.

Rationale:

We chose the resolution of 480x640 because it is the highest resolution the

digital camera would allow. We want to take the image as far away from the

vehicle as possible such that it is more similar to a real-world system and

more challenging. Given the 480x640 resolution, we can be seven feet away

from the vehicle and still capture the license plate with adequately clarity.

- 6 -

Image Processing Overview:

Once the gray scale image is received by the EVM from the PC, the image

processing process begins. Image processing can be further broken down into

three phases: Candidate selection, candidate verification, and optical

character recognition. First, the system uses edge detection to compile a

list of candidates. Second, it chooses a candidate to be the license plate

based on discrimination operations performed on the original gray scale

image. Lastly, optical character recognition was performed on this region

designated as the license plate. The details of the subsystems are discussed

in the following sections.

Candidate Selection Candidate verification Optical Character

Recognition

Histogram

Equalization

Binarization

Sobel Edge

Detection

List possible

License

Binarization

Elimination

by

2D

Correlation

Character

Segmentation

2D

Correlation

Localized

Histogram

For each candidate do:

- 7 -

Image Processing:
Candidate Selection → Histogram Equalization

Description of method:

Histogram equalization is an image transformation that computes a histogram

of every intensity level in a given image and stretches it to obtain a more

sparse range of intensities. This manipulation yields an image with higher

contrast than the original. The process is based on the creation of a

transfer function that maps the old intensity values to new intensity values.

For instance, if we let T be the transfer function, ÔT(34) = 44Õ denotes that

each pixel value of 34 present in the image will be replaced by a 44. The

transfer function is based on the computed probabilities of each intensity

value appearing on the image. This has the end effect of spreading out the

most commonly appearing pixel intensities to cover a larger range. The

following images demonstrate the effect of histogram equalization on sample

input images.

Rationale:

The candidate selection process utilizes the guaranteed contrast between the

characters and the license plate. Therefore, it is crucial for us to

preprocess the image in enhance contrast. To increase the contrast of the

gray scale image from the PC, histogram equalization is used. As shown

below, the histogram equalized image on the right has much better contrast,

especially around the license plate region, than the original image on the

left.

Before Histogram Equalization After Histogram Equalization

- 7 -

Image Processing:
Candidate Selection → Binarization

Description of method:

For a given gray scale image, we examine the intensity value of each pixel.

If it is above a threshold, we mark it as white; otherwise we mark it as

black. The threshold chosen for the candidate selection process is 102

(given intensity values ranging from 0 to 255). This threshold is chosen

based on examining and experimenting with our training set images.

Rationale:

Having only black and white pixels makes the image much easier to work with,

as demonstrated below with the example of Sobel Edge detector output:

As one can clearly see, a binarized image is much less confusing to the edge

detector. Thus binarizing the image is desirable in candidate selection.

Possible Problems/Weaknesses:

Although the binarization threshold is chosen based on extensive

experimentation, there is always the chance that the threshold we chose will

not work well for some images, in spite of the histogram equalization.

Possible Solution:

Instead of using an arbitrary threshold, perhaps an adaptive threshold

is possible.

Image Processing:
Candidate Selection → Sobel Edge Detection

Description of method:

Output of Sobel edge detector

of binarized image

Output of Sobel edge detector

of gray scale image

- 7 -

Given the binarized image from the previous step, we perform vertical edge

detection with mask A and horizontal edge detection with mask B. Since we

are not interested in the direction of the edge, we take the absolute value

of the output of the mask to obtain edges present in all four directions

(Thanks to Pete for this idea). Wherever an edge is present we mark the

pixel as a 1, otherwise, we mark the pixel as a 0.

−−− 121

000

121

Rationale:

If the binarization threshold is appropriate, performing edge detection on

the black and white image should result in a great deal of edges in the area

of the license plate due to the characters. This is a property we can use to

choose possible license plates.

Possible Problems/Weaknesses:

The 3x3 masks we currently use detect edges that are relatively thing

comparing to the lines of the characters on a license plate. Therefore, the

edge detector will detect much more thinner edges in addition to the edges of

the characters of the license plate.

Possible Solution:

Construct masks that specifically detect lines that are roughly the

thickness of the characters on a license plate to minimize false

alarms.

Because we were strained for time toward the end, we were only able to use

the quadruple ÒforÓ loop to performing the edge detection. Although we

unrolled the inner loops, it is still not nearly as fast as it could be.

Possible Solution:

Do what we did in lab 3. Move chunks of image into on-chip memory and

then performing the edge detection.

−
−
−

101

202

101

Mask A Mask B

- 7 -

Image Processing:
Candidate Selection → Choosing Candidates

Description of method:

Knowing the approximate distance of the vehicle, we can estimate the size of

the license plate. In our case, the license plate is roughly 23x79 pixels.

To actually locate possible candidates, we start at the upper left hand

corner of the Sobel edge detector output and count the number of edges within

a 23 x 79 window. If the number of edges is within 900 - 1500, then we mark

that coordinate as a possible candidate. The window is then moved in

increments of 5 pixels to cover the entire Sobel edge detector output. At

the end of candidate selection, we end up with a list of possible candidates

for the license plate.

Rationale:

Because of the characters, a license plate has a typical number of edges

present. To extract a list of candidates, the most straightforward solution

is to look for regions that have this typical number of edges. The range of

900 to 1500 was chosen based on experimentation: in all our training set

images, no license plate has an edge value that is lower than 900 or higher

than 1500. By moving the window in increments of 5 pixels allows this part

of the system to run faster without sacrificing much accuracy.

Possible Problems/Weaknesses:

The candidate selection routine (locate) is the slowest part of the entire

system because it has to sum the pixels values of a 23x79 window many times.

Possible Solution:

Since we are moving the window in increment of 5 pixels, there exists a

lot of overlapping. Instead of summing the entire window every time,

we can save portions of the current window and only compute a small

portion of the next window and sum them together to save computation

time. This was not implemented due to time constraints.

- 7 -

Image Processing:
Candidate Selection → Choosing Candidates (continued)

Although the range of 900 to 1500 always captures the true license plate as a

candidate, the generous range also results in a large list of candidates at

times. On average, an image has 56 candidates. However, a few images can

have up to 200 candidates. This is a serious setback on performance for

candidate verification.

Possible Solution:

Make the range adaptive. Perhaps start out with a narrow range and

iterate through the system. If the system cannot find the characters,

then increase the range.

- 7 -

Image Processing:
Candidate Verification → Local Histogram Eq./Binarization

Description of method:

A candidate region is copied from on-board memory into on-chip memory to

improve the performance. The region is then locally histogram equalized and

then binarized with a threshold value of 153 (given intensity values ranging

from 0 to 255). This threshold value was derived by examining the specific

grayscale intensities on the edges of characters on a set of license plates.

Rationale:

Given the list of candidates, we proceed to choose one to be the license

plate. Black and white images are easier to work with, therefore, we chose

to locally histogram equalize each candidate and then binarize. The local

histogram equalization enhances contrast and yields much better binarization

result. As shown below:

Each candidate region is copied from on-board memory to on-chip memory

because we perform a good deal of operations on the region, therefore, the

performance will increase if we were to copy the region to the faster on-chip

memory first.

Original Locally Equalized

- 7 -

Image Processing:
Candidate Verification → Elimination by Heuristics

Description of method:

Three simple heuristics were used to eliminate obviously wrong candidates:

1. Check for large amount of white pixels on left or right:

• Given 23x15 regions on the left and right end of the candidate, if

either region contains more than 250 white pixels, the candidate is

eliminated.

2. Check for large amount of black pixels on left or right:

• Given 23x15 regions on the left and right end of the candidate, if

either region contains less than 60 white pixels, the candidate is

eliminated.

3. Check for thick white column in the middle of region:

• If there exists a solid white column of more than four pixels wide

in the candidate, it is eliminated.

Rationale:

We frequently have to discriminate against a large amount of candidates.

Instead of computing the FFT and 2D correlation on each one, we can improve

the performance somewhat by eliminating the obviously wrong candidates.

- 7 -

Image Processing:
Candidate Verification → Elimination by Heuristics (continued)

Possible Problems/Weaknesses:

Sometimes the license plate will have a large amount of white or black pixels

on the left or right end. This is usually because the license plate is

either too large or too small. If the true candidate were eliminated, the

candidate verification phase would choose an inferior candidate to be the

license plate, thus causing problems in OCR.

Possible Solution:

Make sure that the image was taken from the designated distance. Not

much improvement could be made to the heuristics Ð they have been

tweaked to death during our Matlab prototyping phase.

- 7 -

Image Processing:
Candidate Verification → Elimination by Periodicity

Description of method:

We collapse the candidate onto its x-axis and take the FFT of the resulting

1D signal to check for periodicity. A typical license plate has high

frequencies (meaning .31 pi to .5 pi) present. Therefore, we examine the

value of the FFT in this range and if they do not fall within a range of 9500

and 14000, we eliminate the candidate; the range is obtained though

experimentation.

Rationale:

A license plate has a typical periodicity due to the regularly spaced

characters, as shown below. This property can be used to further

discriminate against the candidates.

Possible Problems/Weaknesses:

If the 1-d column sum is similar to that of the correct candidate, it will

let it through. This happens when the candidate contains part of the license

plate, perhaps 3-4 characters of the license plate.

Possible Solution:

Add 2-d Correlation to further eliminate candidates.

False

Candidate

License

Plate

Sum

vertically

- 7 -

Image Processing:
Candidate Verification → Choose License Plate by 2D Correlation

Description of method:

The remaining candidates were correlated against a license plate template

(shown below). The candidate with the highest correlation output was chosen

to be the license plate.

Rationale:

In the earlier versions of the system, we had planned to scrutinize the FFT

to choose the license plate. However, we realized that the FFT alone is not

enough to discriminate between a candidate that has three-fourth of the

license plate in it and the true license plate. Therefore, we added the 2D

correlation routine.

Possible Problems/Weaknesses:

One of the major problems in 2-D correlation is that it is very sensitive to

the size of the license plate within the picture. This could result in a

higher correlation for a candidate that does not have the license plate

rather the candidate with the license plate

Possible Solution:

Adaptive Scaling of the picture to make sure the license plate is

always a certain size could be a possible solution. Better photography

skills are also another solution so that the variance of the size of

the license plate is very small, which is probably due to angle and

distance of the camera shot.

- 7 -

Image Processing:
Character Recognition → Segmentation

Description of method:

After the license plate has been chosen, the character segmentation begins.

This routine starts off by extending the license plate region five pixels in

each direction. In another words, the 23x79 region chosen to be the license

plate would be 33x89. This was done to ensure that we have all the

characters in the region.

The process of character segmentation can be broken down into the following

four steps:

1. Vertical segmentation:

The chosen license plate is collapsed onto its y-axis. We then

search the row of characters by looking for at least fifteen

continuous values that are within 22 (low threshold) and 50 (high

threshold) in the 1D signal. If we cannot find fifteen such values

continuously, we would decrease the low threshold to 21, then 20 and

so forth. If the low threshold is decreased to 5 and we still have

not found the row of characters, we would reset the low threshold to

22 and increase the high threshold to 55 and once again begin to

decrease the low threshold until we find the row of characters. The

iteration continues until the high threshold reaches 80, at which

point the routine breaks and indicates that it cannot find the row of

characters.

Original

License Plate

Collapsed onto Y-axis

Vertically segmented

License plate

- 7 -

Image Processing:
Character Recognition → Segmentation (continued)

2. Horizontal segmentation

The chosen license plate is collapsed onto its x-axis. We then look

for possible characters by stepping through the 1D signal and record

peaks that value more than 4 (threshold). If we find less than eight

possible characters, we increase the threshold and step through the

1D signal again; if we find more than twelve characters, we decrease

the threshold and step through the 1D signal again. We iterate until

we either find eight to twelve characters or the threshold has

reached zero or thirty three. Note that there are frequently junk on

either side of the license plate (border, stickers, etc) and they

would be listed as possible characters. This part does not attempt

to distinguish between a sticker and a character; rather, it simply

marks anything that could be a character.

Collapsed onto Y-axis

Vertically segmented

License plate

Horizontally segmented

License plate

- 7 -

Image Processing:
Character Recognition → Segmentation (continued)

3. Choosing characters

After horizontal segmentation, we have to distinguish possible

characters from junk. We do so by looking for the keystone on the

Pennsylvanian plate. The keystone is located by counting the number

of white pixels in each possible character regions. If a region has

less than 25 white pixels, then it is marked as the keystone. Once

the keystone is located, the three character candidates to its left

are designated as alphabets and the four character candidates to its

right are designated as numerals.

4. Check for ÔHÕ or ÔLÕ:

The alphabets ÔHÕ and ÔLÕ are special cases. ÔHÕ is always segmented

as two characters while L is always cut short. The ÔHÕ problem is

solved by searching through the list of characters and look for two

alphabets that are spaced only one pixel apart and coalesce them if

they exist. The ÔLÕ problem is solved by searching through the list

of characters and looks for an alphabet that is less than four pixels

wide and extends it by four more pixels to the right if one exists.

Rationale:

Since we chose to use 2D correlation to recognize the characters, it is

essential that we segment the license plate into individual characters.

Alphabets

keystone

Numerals

Junk

- 7 -

Image Processing:
Character Recognition → Segmentation (continued)

Possible Problems/Weaknesses:

The character segmentation routine works extremely well on most of the images

because it has thresholds that change based on the result from the previous

iteration. However, the character segmentation routine is the most

problematic part of the entire system because of this adaptive property.

While vertical segmentation is quite robust, the horizontal segmentation loop

occasionally gets stuck in an endless loop. The endless loop occurs if the

act of increasing or decreasing the threshold by one results in changing the

number of characters found from less than eight to more than twelve. In this

case, the program would ÒoscillateÓ between two threshold values.

Possible Solution:

The temporary solution we have is to simply check for ÒoscillationÓ and

once it occurs, break from the loop. The criterion for oscillation,

usually a high number of iterations, is still subject to evaluation and

assessment.

To graders:

The character segmentation routine is very confusing to explain in words.

However, we have included the source code in the end. If you have any

questions please feel free to contact tech support at wang4@andrew.cmu.edu.

Our technical support specialist will do his best to clarify.

- 7 -

Image Processing:
Character Recognition → OCR by 2D Correlation

Description of method:

Given the chosen license plate and the coordinates that indicate where the

characters are, we begin the OCR process by 2D correlation. We correlate

each character with either the alphabet or the numeral templates then choose

the value of each character based on the result of the correlation. The

first three characters on the standard Pennsylvanian License Plates are

alphabets; therefore, we correlate each one of them with the 26 alphabet

templates. The latter four characters on the standard Pennsylvanian License

Plates are numerals; therefore, we correlate each one of them with the 10

numeral templates. The result OCR is chosen based on the maximum values of

the correlation for each character. However, we realized that certain

characters, such as ÒBÓ, ÒDÓ, and ÒRÓ, are frequently confused. As a quick

solution, we implanted a scheme to display possible alternatives. Those

characters that are identified as easily misinterpreted are subjected to a

correlation comparison with an array of other characters that is historically

known to be easily confused with the originals. If there is a possibility

that a letter or number can be confused with more than one character, the

characters are listed in the output in the order of decreasing likelihood.

This likelihood is based on the correlation values of the character with the

various templates, where high correlation denotes a good possibility.

However, this scheme only occurs if the given letter does not have a very

high correlation value (does not land above a nominal threshold).

Rationale:

OCR by 2D correlation is the option that seems to strike the best balance

between performance and difficulty in implementation. Details can be

observed in the character isolation portion of the source code.

Possible Problems/Weaknesses:

OCR by 2D correlation is sensitive to the size of the license plate, which

meant bigger or smaller alphabets and numbers in the picture. The 2-d

correlation was very sensitive to this and frequently gave back wrong results

due to different size license plates.

Possible Solution:

Normalize the size of the image somehow.

- 7 -

Image Processing:
Character Recognition → OCR by 2D Correlation (continued)

Sensitive to the template we chose. We found that when we changed the

templates size or even edited the templates it yielded different results.

Possible Solution:

More exhaustive experimentation with character templates.

- 7 -

Display Results / Demo

Our demonstration showcased how the output for the license plate recognition

system can look. It basically had a prominent display of what the system

considers to be the license plate characters, along with several likely

candidates in the event that the license plate was incorrectly identified.

The candidates are chosen depending on the specific characters on the plate

since there are some characters that are more easily confused than others.

An additional output for the system is the license plate candidate that the

system identified. This was given in the form of a binary file with binary

pixel values.

The demonstration was in the form of a simple command-line style output.

This can easily be ported into a more graphical interface simultaneously

displaying the license plate image, the input image, and the license plate.

The dashes represent Òwild-cardÓ operators where previously established

characters can be placed based on position.

CRN 7961

L-- ----

-B- ----

--M ----

--- --0-

--- --8-

- 7 -

Memory Allocation

On-chip:

On-board:

We made an effort to put all the templates on-chip in order to improve

performance. Note that for the character templates (charTemp[] and numTemp[])

the actual size is only 210 bytes. We had to transfer 212 bytes because HPI

would only transfer in multiples of four.

Variable Name Description Type Dimension Size (bytes)
list list of candidates unsigned short 200x2 800

result result of verification unsigned short 1x3 6
region candidate storage unsigned char 23x79 1817

charTemp[26] alphabet templates signed char 21x10 212
numTemp[10] numerical templates signed char 21x10 212
licTempFrame license plate template unsigned char 24x79 1896

fftCol result of fft of vertical sum float 1x2048 8192
fftRow result of fft of hor. sum float 1x2048 8192

Total 21327

Variable Name Description Type Dimension Size (bytes)
gframe gray scale picture unsigned char 480x640 307200

bwframe binarized picture unsigned char 480x640 307200
bwsob Sobel output unsigned char 480x640 307200

Total 921600

- 7 -

Performance, Accuracy

The accuracy of the license plate recognition system was evaluated by its

performance on a set of 33 test input images. The input images contain the

license plate, the back of the corresponding car, and the surrounding areas

outside the car. We measured the success rate of the system by the rate at

which it correctly identified the license plate and its individual

alphanumeric characters. In general, numerals were much easier to identify

than letters. This is most likely due to the larger differences (less

potential ambiguity) found between numerical templates.

The license plate was located correctly approximately 73% of the time.

Incorrect identification of the license plate is characterized by an

incorrect identification of the spatial coordinates that define the location

of the license plate region. This includes a complete miss (for example,

identifying a patch of asphalt as a license plate) or a partial miss where

only a portion of the target license plate was identified.

The success rate of identifying numerals was approximately 96% (93 right out

of 96 numbers), while that of letters was around 70% (50 right out of 72

letters).

There were some characters that were more susceptible to error than others.

We suspect that this can be attributed to the similarity between different

templates. A possible solution to this situation is to redesign the

character templates to accentuate the difference between similar characters.

Currently, the templatesÕ pixel values are either Ð20 or 30.

- 7 -

Performance, Speed

The possibility of converting the license plate recognition system into a

commercial application depends heavily on the running time of the system.

This overall system is very modular in that each functional block can be

examined and analyzed independently of the others. This proves to be very

convenient for profiling and optimizing the overall system. Our analysis of

the system is done on a per-image basis. Although we examine each aspect of

the overall system, optimizations where mostly mathematical operations are

concentrated on those blocks where the input images are processed. These

blocks are executed once for each of the input images.

The following table displays the performance figures of each major functional

block (after all implemented optimizations):

 (italics denote blocks executed once per image)

These values were obtained from a final file compilation using Ôlevel 3Õ

optimization using the standard C6000 C compiler. Initially, all functions

were enabling using Ôlevel 1Õ optimization yielding running times (cycle

counts) 160% larger on average throughout each function. Several additional

Task Name Cycles (in

millions)

Time (sec)

(overhead) 50.6 0.337

gray_to_bin 20.3 0.1353

sobel1 57.3 0.3822

sobel2 49.7 0.3313

zero_edges 0.04 0.0003

locate 512.5 3.1457

chkpd 139.4 0.9293

isolateChar 1.3 0.0087

ocr 456 3.04

output 47.1 0.314

Total Image Processing 1283.64 8.2868

- 7 -

Performance, Speed (continued)

other optimization strategies were attempted and gave appreciable results.

Among those strategies was the use of loop unrolling of the Sobel functions,

which gave promising results for future optimization attempts.

Prior to unrolling the inner two loops of the Sobel filter functions, the

average execution cycles for each were 98.8 million and 90.8 million cycles,

respectively. Unrolling the loops yielded performance figures of 57.3

million and 49.7 million cycles, respectively, corresponding to an average

cycle reduction of 43.5%. This translates to a half-second reduction in

running time for optimizing a relatively small segment of the system. This

finding warrants the consideration of unrolling other segments of code with

similar nested loop structures, particularly in cycle-rich tasks.

Major performance improvements are expected through further investigation of

optimization techniques concentrating mainly on memory issues. Most

arithmetic operations and memory accesses occur using data stored in external

memory, which is much slower in terms of access than internal memory.

Buffering segments of external memory into internal memory can make speed

improvements. The use of internal memory paging will surely enable

improvements in performance. This has been proved with prior work in mask

filtering optimization techniques.

- 7 -

Future Work

Due to time constraints and the lack of experience in image processing in our

group, we are unable to make this license plate recognition system as

functional as it could be. There are numerous improvements that could be

made, such as:

• Instead of breaking out of the program after character segmentation

fails (which usually indicate that we have chosen the wrong

candidate), the program should have a system of selecting the next

best candidate and continue to perform OCR on successive candidates.

• Use more evolved image processing techniques to improve the accuracy

of the system. For example, we could use binary morphology to

eliminate edges that are thinner than the characters of the license

plate.

• Increase the resolution of the images. Currently, the only digital

camera we could obtain limits us to 480x640.

• Expand the system to work with variable angle and distance.

• Expand the system to work with non-Pennsylvanian License Plates.

- 7 -

Acknowledgements

Code:

• We got the FFT ASM code from the TI website at:

http://www.ti.com/sc/docs/products/dsp/c6000/62bench.htm

Ideas:

• Professor Casasent for the candidate selection idea.

• Pete Boettcher for taking the absolute value of Sobel output idea.

Assistance:

• Thanks to Steve and Pete for staying in the lab and help us out.

