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1 Problem Description

1.1 What Feedback Is

Acoustic feedback is caused when an audio system boosts a signal so the microphone

producing that signal receives it louder than the original level.  This causes a signal to get

continually louder until limited by some component of the system (such as a

compressor/limiter or the microphoneÕs maximum output).  This is usually very

distracting to an audience and can often be loud enough to injure peopleÕs ears.

Feedback can be problematic in a small setting, such as a speaker at a conference, though

the problem is far worse at live musical concerts.  This project aims to eliminate in a way

conducive to such a setting.  Any speaker can ÒringÓ with feedback, though the most

problematic are stage monitors.  Artists use these to hear themselves, and therefore they

are pointed directly at the microphone.

1.2 Traditional Elimination methods

Normally when a concert is being set up, engineers go through a process called Òringing

outÓ; they attempt to induce feedback through the speakers then they reduce the gain on

problematic frequencies with a graphic equalizer until a sufficient overall gain is reached.



This process requires talented ears to be able to detect which frequencies are ringing.

Sometimes engineers use Òreal-time analyzersÓ or other methods of showing relative

loudness of frequencies to help find the feedback, but it still takes a trained engineer to

know what is truly the feedback.  Occasionally there are rings during the performance,

but ideally they should all be removed prior to the concert.

1.3 What feedback looks like

Feedback is generally constrained to a very narrow band of frequencies, and sometimes

harmonics of those frequencies.  Over time, feedback increases exponentially to where it

reaches the limit of gain in the system.  At that point it continues to ring at painful

volumes until an engineer decreases gain or the performer move the microphone farther

from the speakers.

In Figure 1 below, you see a song with feedback interjected in the middle of it (around

1.25 seconds in) at approximately 6kHz.  The feedback grows very quickly from the

noise floor and the frequency band is only about 4 bands wide (about 150 Hz).  In figure

2, that one frequency is expanded so the development over time of this frequency can be

watched.  The y scale is in dB, so a linear growth actually represents an exponential

growth in amplitude of the signal.



Figure 1

Figure 2



1.4 Approach to elimination

Sabine owns the patent on feedback elimination.  Their method is looking at the FFT of a

single time slice and determining what frequencies look strange.  This is good, but since

feedback grows as time goes on, in an exponential manner, a better method is to look at

the changes of specific frequency components of the sound as time goes on.

Through experimentation, three types of feedback were found.  Some of the feedback is

barely sustained, and gets slightly louder over a large period of time.  Unfortunately this

is similar to a note that is being held and is hard to distinguish.  Fortunately, only

computers are capable of actually doing this, so the recommendation is to not use

computerized devices or eliminate this feature.

The second type of feedback grows at a fast but measurable pace.  By experimentation it

seems to categorically increase by a factor of 2.5 every time slice (23 ms).  4-5 time

samples are needed to verify that this is indeed feedback.

The final type of feedback increases quickly enough that it cannot be detected by

watching increases over time.  Within one or two time slices it reaches a threshold value

for volume.  The threshold method is rarely utilized in real life testing of the system.



2 Code

2.1 Algorithms

With this algorithm, the eight previous FFT values from the input sound are kept in a

circular buffer.  This number was chosen due to memory constraints, as all of the data is

being kept on-chip.  Were external memory to be used, many more previous samples

could be kept.  Current algorithms rely only on the immediately previous value.  In

Matlab, some more complex algorithms have been tested.  These take into account

multiple previous values and calculate a best-fit curve.

A general ÒvalueÓ on each frequency is held, this indicates the likelihood to be feedback.

This value is overloaded for different operations as explained below.

2.1.1 Fast Growth, Slow Growth

Any time a frequency component is greater than or equal to its value in the previous time

slice, Ò1Ó gets added to its feedback value.  If this frequency component is greater than or

equal to some factor times the previous value (2.5 in this implementation), it is marked as

fast growing feedback and gets an additional Ò1000Ó added to it.  If neither condition is

satisfied, the value gets reset to 0.

    for(i=0;i<FFTSIZE/2;i++) {
        temp=buff[i];
        tracking[current][i]=temp;
        if(temp > MAXVOL) {
            finaltrack[i]=S_INAROW;



        } else if(((temp > THRESH) &&(temp > (tracking[((S_INAROW+current-
1)%S_INAROW)][i])*FACTOR))){
                if(time_running>10) {
                    finaltrack[i]+=1001; /* counts as fast and slow */
                }
        } else if(((temp > THRESH) &&(temp > (tracking[((S_INAROW+current-
1)%S_INAROW)][i])*S_FACTOR))){
                if(time_running>10) {
                   finaltrack[i]++;  /* just counts as slow */
                }
        } else {
                finaltrack[i]=0;
                time_running++;
                }
    }

Then, the value array is scanned to find any values that indicate feedback.  For example,

if a value modulo 1000 is greater than 8, it is marked as slow feedback and eliminated.  If

the value in itself is greater than 5000, it is fast feedback and eliminated as such.

    if(time_running>10) {
       for(i=0;i<FFTSIZE/2;i++) {
           if((((finaltrack[i]/1000) > (INAROW-1) )||
              ((finaltrack[i]%1000) > S_INAROW-1)) && (buff[i] > NOISEFLOOR)) {

        
   x=FREQ[i];

               insert_filter(i); /* code eliminated for space */
          }
       }
    }

2.1.2 Threshold

A certain threshold is set such that any time a frequency component exceeds that

threshold even once, it is eliminated indiscriminately.  The value is set to 8

instantaneously so it registers as feedback on the output.

2.1.3 Other Options

This value method is conducive to doing more calculations on the same value array, by

using modulo 100 or 10000.  In addition, only some amount could be subtracted rather



than resetting to 0 in the case of a dip.  This would be helpful since feedback does not

always grow monotonically.

2.2 Components

Figure 3



2.2.1 Codec

The Codec on the EVM board was operating at 44.1kHz.  There is an automatic Ð6dB on

the signal between input and output.  This is ignored for the current project.  It is trivial to

counteract this by doubling the amplitude of the output on the transmit interrupt.

For preliminary tests, a function generator was used on the line in, and an oscilloscope on

the line out.  In real-time testing the function generator was replaced by a Shure SM-58

vocal microphone and a pair of Altec-Lansing computer speakers to generate real-time

feedback replaced the oscilloscope.  The microphone was chained through the Sound

Blaster sound card in the PC for gain control and mixing with a CD.

2.2.2 FFT

The original design utilized the TI benchmark Radix-4 FFT in assembly.  Due to

constraints with the interrupts, this could not be used.  The radix-4 FFT is not

interruptible, so it must either be done inside one interrupt, or interrupts must be disabled.

Since interrupts are critical to sound quality, disabling interrupts for any period of time is

not an option.  The Radix-4 FFT does not finish quickly enough on a 1024 long sample to

be done within an interrupt.

Because of this, the c code supplied with the benchmark assembly to calculate the FFT

was used.  This completes in short enough time to fit into the detect algorithm and has no

issues with interrupts.



2.2.3 Detection

The detection is completed within 1009 interrupts, almost 4 million clock cycles.  Within

this time, the detect function must perform an FFT, then traverse all 512 data points

twice, once to calculate current value, then once to determine if it is now feedback.

These could be combined into one step as an optimization.  After traversing, if feedback

is detected, a filter must be set in place.  More details of this algorithm are provided

above.

2.2.4 Equalization

The input signal passes through a 2nd order Butterworth high pass filter at 160 Hz.  This is

necessary due to the properties of the speaker and microphone used.  The quality of the

output sound is greatly improved.

The output signal passes through the graphic equalizer, which consists of a maximum of

6 out of a possible 31 2nd order Butterworth band pass filters centered 1/3 octave apart

with a filter width of one half octave to either side of the center frequency.

2.3 Interface

A way was needed to get output from the EVM while it was working.  This would help to

identify run-time errors and ensure that the algorithm was functional.  The standard

console application was forgone in favor of a good interface.  A Real-Time Analyzer



(RTA) was implemented which would show the Fourier Transform of the input signal.

Such RTA outputs are a staple of sound-related software (i.e. mp3 players).

The interface was made using standard MFC components and OpenGL. The MFC App

wizard was used to generate a dialog-based application. To this was added a CRichEdit

control to handle text output and an OpenGL rendering context to display the RTA.

Finally, a "pause" button was added, which would halt the redisplay of the output. Note

that the pause button does not freeze the collection of data from the EVM.

For data collection, the dialog spawns a second thread called wait_thread(). This function

waits for the EVM to call PC_PRINT. The first call from PC_PRINT shows what data is

to follow in subsequent PC_PRINT calls. A "1" meant that a detected frequency was to

follow. A "2" meant that an eliminated frequency was to follow. A "3" meant that

amplitude information would come. And finally, a "4" would be followed by RTA data to

display. This RTA data was sent as 39 consecutive floats and the OpenGL rendering

context immediately displayed it.

A timer was instated for animation purposes. This refreshed the dialog contents every 30

milliseconds. So, while the data collection was occurring at odd intervals, the refresh

occurred regularly. This was done in anticipation of the Real Time Analyzer.

The RTA was forgone, because it interfered with the best possible performance from the

EVM.  This was due to sending of the RTA data, which caused the EVM to lose



interrupts and hence skip sound data.  Many trials were attempted to alleviate this issue.

Less data was sent at longer intervals, and in compressed formats, but this experiment

was not fully successful.  This should be explored further.

3 DSP methods

3.1 General/Memory

Code from some of the labs was used, especially from labs 1 and 2 to get the Codec

operating and the DSP performing the necessary operations to get data into the detect

function.

All of the program and data was placed in on-chip memory, with the exception of parts of

the libraries, which was left off chip at Pete BoettcherÕs suggestion.  This allows for

speedy memory accesses and execution of the program within the memory constraints.

  .rtstext      {-lrts6701.lib(.text)         /* putting libraries far away */
                 -ldev6x.lib(.text)
                 -ldrv6x.lib(.text)} > SDRAM0
  .rtsbss       {-lrts6701.lib(.bss)
                 -ldev6x.lib(.bss)
                 -ldrv6x.lib(.bss)
                 -lrts6701.lib(.far)
                 -ldev6x.lib(.far)
                 -ldrv6x.lib(.far)} > SDRAM0
  .rtsdata      {-lrts6701.lib(.const)
                 -ldev6x.lib(.const)
                 -ldrv6x.lib(.const)
                 -lrts6701.lib(.switch)
                 -ldev6x.lib(.switch)
                 -ldrv6x.lib(.switch)} > SDRAM0



The majority of the data memory used is occupied by historical FFT data, with

8*512*sizeof(float) in memory usage.  The tracking table is another 1*512*sizeof(float)

In addition the buffer is 1*1024*sizeof(float) and many local copies of that buffer.

3.2 Real-Time issues

The majority of the time was spent on real-time issues.  As it is extremely important to

not drop any interrupts, every new step that was added required different optimizations.

Profiling data is not available because this information is irrelevant if interrupts are not

taking place, and impossible to get with interrupts operating.

The FFT could not be conducted from inside an interrupt, and it failed if it was outside of

the interrupt, so C was used code for that.  The filtering code was also not interruptible,

so it was chosen to put that inside the interrupts.  The high pass filter went on the receive,

and the graphic equalizer was put on the transmit, mostly for time reasons, but also

because removing the low frequencies out before detect() even tried to eliminate it is

desirable.

The buffers, that were written to on the interrupts needed to be marked as volatile in

order to keep the compiler from optimizing out accesses to this memory.  Before this step

was taken, there were bad values in the FFT.

Making local copies of buffers that were accessed multiple times also sped up memory

accesses substantially.  For example, the following code could have been replaced with



input[2*I]=input[2*I]/6000; however this was much slower and actually caused interrupts

to be dropped when done in a loop of 1024.

  j=2*i;
                           z=input[j];
                           input[j]=z/6000;

The following code was necessary to make sure registers were not overwritten and that

the correct data was received across the PCI bus.

    haha=(float)(input[I]);
                tosend=(unsigned int *)(&haha);
                pci_message_sync_send(*tosend,TRUE);

The sync_send was necessary to make sure data did not get dropped on the way over,

async sends were not as reliable.  In addition, if just (unsigned int *)(&haha) was sent,

this operation fails the second time it is used.  In the future, getting async send to work to

allow for more data transfers should be investigated.

4 Areas for Improvement

4.1 Improve slow detection to not be over-aggressive

A sine wave input from a function generator is detected as feedback.  This can be easily

eliminated by changing the slow-frequency ratio to 1.01 instead of 1, however this paves

the way for equilibrium feedback to manifest.  More testing is needed in this area.



4.2 Reduce Threshold

The noise floor is sufficiently high that feedback cannot be detected until sound is already

annoyingly loud.  If feedback could be detected before it gets above the noise floor, this

eliminator would be useful during the concert, not only for the ring-out process.

4.3 Parametric EQ

The fixed EQ has several issues.  The first problem is an extremely sharp drop-off at the

center frequency, approaching 60dB.  The second problem is that while border

frequencies are attenuated sufficiently, they are not attenuated as much as center

frequencies, so dynamically setting the center frequency would provide better quality and

finer filter resolution for less reduction in sound quality.

The first problem could be addressed by mixing the input signal with the filtered signal to

provide a more gradual drop off.  The second problem requires generating filter

coefficients real-time, which may be a problem due to tight time constraints on the

interrupts.

4.4 Transfers

Each pair of PCI data transfers causes an interrupt to be dropped.  If this problem were

eliminated, the real-time analyzer would work and more data could be transferred.



Bi-directional transfers without getting in the way of interrupts would be an additional

desired feature.  This way from the interface it would be possible to set modes of the

detector or even to select frequencies to eliminate.

4.5 New features

One of the best features would be a gradual decay of all filters put in place.  Because

room properties and the relative location of microphone and speakers change, it would be

nice for filters to expire without requiring explicit removal or resetting the system.

In addition, displaying a frequency response curve to the output window would allow for

better analysis by the engineer operating the equipment.

There are many more desired features, such as audio compression and more operator

control, but none as important as these two.

5 Results

As of the final demo, feedback elimination was working in that it was possible to get the
detector to eliminate any feedback.  Occasionally this feedback was not picked up until it
was already painful, but during Òring-outÓ this is not a major threat to functionality.

The detector rarely picked up non-feedback.  On a CD playing, at most it picked up one
frequency per song, and those could actually be real feedback.  With a function generator
input, it picks the sine wave up as sustained feedback, but this is easily corrected by
modifying the factor.

There is no distortion during normal operation, although one interrupt is lost each time
data is transferred.  This is not a major problem, as this is simultaneous with the filtering



which is a much larger distortion problem.  After more than three frequencies are
removed, there is audible distortion in music, but this is true of any equalization.

6 References

6.1 Feedback Elimination links

*Someone else's senior project:

http://www.isip.msstate.edu/publications/courses/ece_4012/1998/active_feedback/present

ation/

*2 patents on the subject - these link to many others:

        http://www.patents.ibm.com/details?&pn10=US04845757

        http://www.patents.ibm.com/details?patent_number=5245665

*Paper on Feedback elimination - Sabine's Propaganda

        http://www.SabineUSA.com/newsite/pdf/Positive-Feedback-v2.pdf

6.2 Audio Engineering links

*General Audio Engineering information - lots of really good links

        http://www.hut.fi/Misc/Electronics/audiopro.html



*Audio Engineering Society

        http://www.aes.org

*Sabine - make feedback exterminators

        http://www.SabineUSA.com/

*Behringer - also make feedback exterminators

        http://www.behringer.de/

*Shure - make microphone we will be using

        http://www.shure.com/sm58.html

*EAW - make speaker we will be using in demo

        http://www.eaw.com/

*BSS - make very good parametric and graphic EQ's - use DSP's in one EQ

        http://www.bss.co.uk/e_fds.htm#fds366

6.3 Misc

*ABTech - people we are renting equipment for demo from

        http://www.abtech.org/



*Wavelet tutorial

        http://www.public.iastate.edu/~rpolikar/WAVELETS/WTtutorial.html

*Wavelet.org

        http://www.wavelet.org/

*Matlab

        http://www.mathworks.com/web_downloads/

*TI code

        http://www.ti.com/sc/docs/products/dsp/c6000/67bench.html#filters


