
ObjTrack Group 15
Anson Chan asc@ece.cmu.edu
Andrew Y Ng ayn@ece.cmu.edu
(Sabi Varon svaron@ece.cmu.edu)

Final Report

18-551
Digital Communication and Signal
Processing System Design

Chan, Ng, Varon
2

Object Tracking via Optical Flow in Video

Anson Chan, Andrew Ng, (Sabi Varon)
Department of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

{asc,ayn,(svaron)}@ece.cmu.edu

Abstract

This project aimed to implement

algorithms for tracking moving object in

an AVI compressed video sequence.

The system uses KLT (Kanade-Lucas-

Tomasi Tracker) to select and track the

good features on the object specified by

the user. In addition to tracking, our

system uses the tracked points and the

change of velocity vectors to do object

distribution analysis on the selected

region. And a perspective-transformed

diagram of the selected region shows a

histogram of the distribution of the ball.

ItÕs particularly useful for some sport

videos when determining where of the

ball hits the ground is of an interest. (i.e

tennis, volleyball).

Originally, we divided up the tasks up

into three major parts, the KLT,

software, and EVM porting. And we

split up the work among the members.

We were actually ahead of schedule

before spring break, meaning that

Andrew and Anson had the working

software by spring break. The software

was tested thoroughly by Andrew during

spring break, and was handed to Sabi to

take care of the EVM coding before

Chan, Ng, Varon
3

April, which gave him a month to finish

it, which was plenty of time for just

porting a few functions which was

originally written in ANSI C anyway.

However, we last found out that Sabi

was unable to port the code to EVM, and

that he hadnÕt started working on it until

late April. Therefore we really regret to

give him full responsibility on his part.

However, since Anson and Andrew did

everything (including the homework)

before the EVM part, we felt that Sabi

should contribute at least a little in the

project.

Architecture

May 3, 2000 Chan, Ng, Varon 6

KLT runs on EVM

(or does it?)

KLT runs on EVMHardware

MFCCOMSoftware

KLT-based optical
flow tracking

Three-Frame
matching primitive

Algorithm

FinalInitial

Initially we proposed using the Three-

Frame Matching Primitive for doing

tracking, this method also uses the KLT

tracking algorithm to compute the

optical flow, however it uses 3 frames

for doing the chaining of the object

motion. Supposedly this method is more

accurate due to the trilinear constraints,

however the paper did not provide

enough details when we actually wanted

to implement the algorithm.

We were going to use COM, MicrosoftÕs

Component Object Model, to do the

Chan, Ng, Varon
4

software. We thought that it would

enable integration easier and so forth.

However, only one of our members were

familiar with COM, therefore it was not

feasible using it. We therefore switched

to pure MFC application, which is

simple enough for at least two members

to program in.

KLT Feature Tracking Method

Feature tracking is a widely researched

topic in the Computer Vision

community. The most commonly used

methods for feature tracking employ

image correlation or sum of squared

difference (SSD) techniques. With small

inter-frame displacements, a window can

be tracked by optimizing some matching

criterion with respect to translation and

linear image deformation. Our current

system tracks features on the frame

using the method proposed by

Tomasi.et.al (KLT system). The KLT

(Kanade Lucas Tomasi) feature tracking

system identifies and tracks features by

monitoring a measure of feature

dissimilarity. Features with good texture

are selected and are tracked using an

affine tracking model, which can

compensate for translation and linear

warping. The affine model is computed

numerically using Newton Raphson

minimization technique. Translation

gives more reliable results than affine

changes when the inter-frame motion is

small, but affine changes are necessary

to compare frames with large motions to

determine dissimilarity. We tested the

tracker on a few sport sequences and

observed that features which were

identified were tracked satisfactory

given that the ball move less than 20

pixels away in the subsequent frame.

Chan, Ng, Varon
5

The feature tracker works in realtime at

around 3Hz for a 320 x 240 video.

We obtained a fully implemented KLT C

library from Stanford University [1].

There are two main functions we used.

SelectGoodFeature and TrackFeature.

Both of these functions are computation

intensive which involve 2D convolution,

and quite a few loops for iterative

minimization and sorting. Here's how

the KLT algorithm works. After the user

select an elliptical region, the GUI sends

the images to the function

SelectGoodFeature and identify N "good

and trackable" points within the region.

To identify "goodness", first, gradients

are computed from the resulting image

by convolving with derivative of a

Gaussian of sigma. These gradients are

used to select the features. Generally,

pixels throughout the elliptical region

are considered. The goodness of each

pixel is measured as the minimum

eigenvalue of the 2x2 gradient matrix

around the window. After all the pixels

have been considered, their goodness are

sorted in descending order. Only those

whose value are greater than the

"min_eigenvalue" defined by the

tracking context are selected as "good

and trackable points". Then the KLT

will try to find these points in the next

image in order to track the object.

To find the object in the second frame,

he function TrackFeature creates a

multi-resolution image pyramid and

subsampled between each level. At each

resolution, tracking is accomplished by a

iterative minimization between the

intensities of the two windows. Five

possible reason to cause the tracking to

stop, each "good" feature identified in

Chan, Ng, Varon
6

the first image will fall into one of these

group.

The feature moves by no more than the

"min_displacement" defined by the

following criterias:

1 . the tracking context. Successfully

tracked

2. The determinant of the 2x2 gradient

matrix is too small.

3 . The number of iterations exceeds

limit.

4. The feature is out of bound (happen

when the object is close to the

border).

5 . The average intensity difference

between images is too large.

Only the first group of points is tracked,

our GUI will display red dots to show

it's successfully tracked.

More Details of Kanade-Lucas-

Tomasi (KLT) Feature Tracking

Algorithm

Feature tracking is an essential element

in many computer vision systems. Most

3-d reconstruction from motion or stereo

systems requires relatively high quality

(reliable and accurate) feature

correspondence information to generate

a coarse model of the world. For our

project, we emphasize the tracking of an

object through the video. Someone

might ask why we use this algorithm

rather a simpler correlation filter to find

where the object is in the subsequent

frame. Keep in mind that this algorithm

is more than just a object tracker, it is a

feature tracker meaning that it is able to

handle any translational or rotational or

sizing (zooming) changes and all

features can move to different directions

Chan, Ng, Varon
7

and be tracked successfully. The

Kanade-Lucas-Tomasi algorithm for

feature tracking is an excellent choice

for one reason: KLT both reliably tracks

features across frames and determines

whether a feature is still "good" enough

to continue tracking.

The general idea of the KLT tracking

algorithm proceeds as follows:

GUI selects region, then a feature

selector initially selects features.

These features are then tracked through

the image sequence using a Newton-

Raphson method in order to minimize

sum-of-squared difference between the

feature windows in two successive

frames.

After the new location of the feature is

determined in the next frame, the quality

of this feature is evaluated and bad

features are dropped.

Using the remaining features, repeat the

process starting from step 2 for the next

image in the sequence. If not enough

features remain; new features can be

added using the original feature selector.

Luckily, we were assisted and directed

by Prof Chen to use an implemented C

library from Stanford. The library we

downloaded has about thousand lines of

code, so it is quite computation intensive

and took us a while to understand.

Before getting into all the signal

processing and mathematical details of

KLT, letÕs get familiar with some of the

important parameters for the use of the

tracker. These parameters are contained

in the tracking context (tc), whose

members we now list, along with a brief

description of each:

Chan, Ng, Varon
8

int mindist; /* minimum distance between

selected features */

int window_width; /* dimensions of feature window */

int window_height; /* dimensions of feature window */

KLT_BOOL sequentialMode; /* whether to save most recent

image */

KLT_BOOL smoothBeforeSelecting; /* whether to smooth image

before selecting features */

KLT_BOOL writeInternalImages; /* whether to write

internal images for later viewing */

int min_eigenvalue; /* smallest eigenvalue allowed for

selecting */

float min_determinant; /* min determinant for declaring

tracking failure */

float min_displacement; /* amount of pixel shift for

stopping tracking iterations */

int max_iterations; /* max iterations before

declaring tracking failure */

float grad_sigma; /* sigma of gaussian for

computing gradient */

Chan, Ng, Varon
9

float smooth_sigma_fact; /* sigma factor of gaussian for

smoothing image */

float pyramid_sigma_fact ; /* sigma factor of gaussian for

computing image pyramid */

int nSkippedPixels; /* used to speed up feature

selection */

int nPyramidLevels; /* number of pyramid levels */

int subsampling; /* amount of subsampling between

pyramid levels */

Chan, Ng, Varon
10

Procedures of our system

Step 1: GUI selects the region of

the object

This is the region where the slect feature

function will find the ÒgoodÓ features.

Step 2: Select Good Features in the

first frame

KLTSelectGoodFeatures() takes

the first frame of the video. If t c -

>smoothBeforeSelectin g is set to

TRUE, then the image is smoothed by

convolving with a Gaussian of

sigma = tc->smooth_sigma_fact *

max(tc->window_width, tc-

>window_height);

otherwise, the image is not smoothed. In

either case, gradients are computed from

the resulting image by convolving with

the derivative of a Gaussian of

sigma = tc->grad_sigma .

These gradients (one in the x direction

and the other in the y direction) are used

to select the features.

Pixels throughout the selected region

from step 1 are then measured as to their

"goodness", which is a measure of their

trackability. The parameter t c -

>nSkippedPixels can be used to

speed up the process in the following

way: its default value is zero, in which

case every pixel within the interior is

considered; if it is set to one, then every

other pixel within the interior is

considered; setting it to two causes every

third pixel to be considered; and

similarly for higher values. Since

neighboring pixels generally have

similar goodness values, then skipping

every other one will probably not

Chan, Ng, Varon
11

noticeably decrease performance, at the

same time, it can speed up the run time.

The goodness of each pixel is measured

as the minimum eigenvalue of the 2 by 2

gradient matrix computed from the tc-

> w i n d o w _ w i d t h by t c -

>window_height window around the

pixel. After all the pixels have been

considered, they are sorted in descending

order according to goodness. Then, one

by one the top fl->nFeatures

features (or pixels) whose minimum

eigenvalue is a t least tc-

>min_eigenvalue are selected,

ensuring that each new feature is at least

tc->mindist pixels away from all

the other features.

If tc->writeInternalImages is

TRUE, then the smoothed image and the

image derivatives are written to

"kltimg_sgfrlf.pgm",

"kltimg_sgfrlf_gx.pgm",

and

"kltimg_sgfrlf_gy.pgm",

respectively. This allows the user to

more intelligently select the parameters

for smoothing and differentiating.

Basically, the feature selector used a

corners algorithm. Corners were

detected by computing the gradient over

the entire selected region, computing the

matrix C for each point, and selecting

the points with corresponding

eigenvalue, lambda of C, (the smaller of

the two eigenvalues) greater than a given

threshold (tc->min_eigenvalue).

Chan, Ng, Varon
12

Step 3: Track Features in

subsequent frame(s)

KLTTrackFeatures() takes two

images, frame 1 and frame 2. The

tracking context has a member called

sequentialMode which, when set to

TRUE, causes KLTTrackFeatures()

to store the gradients of the second

image, along with its smoothed version,

into the tracking context. This can

greatly speed up the tracking process

because when we tracked frame 2 and

frame 3, we do not have to compute all

the things for frame 2 again. KLT

ignores its second parameter and

replaces it with the previously stored

image (except for the first time the

function is called, in which case it must

use both images). In either case (doing

sequential mode or not), the resulting

images are smoothed by convolving with

a Gaussian of

sigma = tc->smooth_sigma_fact *

max(tc->window_width, tc-

>window_height).

Then a multi-resolution image pyramid

i s c r e a t e d w i t h t c -

>nPyramidLevels levels and tc-

>subsampling pixels subsampled

between each level; smoothing before

sampling is accomplished with

sigma = tc->subsampling *

tc->pyramid_sigma_fact.

Gradients are computed at each level of

the pyramid by convolving with the

derivative of a Gaussian of

sigma = tc->grad_sigma.

In the feature list generated from step 2,

each feature that is not lost is tracked

beginning with the coarsest resolution

and ending with the finest resolution,

with each resolution providing the

starting point for the subsequent

resolution. At each resolution, tracking

Chan, Ng, Varon
13

is accomplished by a Newton-Raphson

iterative minimization between the

intensities of the two windows, one

window in each image. There are four

conditions that cause the iterations to

stop (only in the first case is the tracker

successful):

the feature moves by no more than tc-

>min_displacement. It means the

feature has been successfully tracked.

the determinant of the 2-by-2 gradient

m a t r i x i s l e s s t h a n tc-

>min_determinant. It indicates that the

feature has been lost due to the 2 by 2

gradient matrix having a small

determinant

the number of iterations exceeds tc-

>max_iterations. It means that the

feature has been lost because the number

of iterations exceeded the maximum

allowable.

the feature is out of bounds (i.e., it is

within tc->borderx or tc->bordery of

the border of the image) It means that

the feature has been lost because it was

out of bounds (i.e., it was too close to the

image border).

This translational tracker is actually a

simple optimization problem, where the

sum of square differences measure

(SSD) between the windows surrounding

the two corresponding points in the two

frames is to be minimized. Intuitively,

when this measure is minimized we have

the best match of features.

We define the SSD error function,

epsilon as:

where I and J are the two successive

images, x is the position of the feature

Chan, Ng, Varon
14

window, d is the translation, and the

integral is over the area of the feature

window. To find the translation of the

feature, we minimize the error function

by setting the derivative to zero:

Taking the first order Taylor series

expansion, this can be approximated as:

Which reduces to the following linear

system:

where A is equal to the double integral

on the left and e is equal to the double

integral on the right.

Using this equation, we iterate using

Newton-Raphson to lower the error

introduced by the Taylor series

approximation.

The translational tracker tracks all the

features by performing the above

computations for each feature between

each successive pair of images and

updating each feature location. A more

detailed description of translational

tracking can be found in TomasiÕs paper

of ÒGood Features to TrackÓ.

Step 4: Repeat Tracking Features

for the subsequent pair (of Step 3)

of images

If all the features were lost due to

whatever reason, we will let the user to

select the object manually again and we

started the process of selecting and

tracking features again.

Chan, Ng, Varon
15

Perspective transform for

distribution histogram

After the object is successfully tracked

through the entire video, our system is

able to show where the object hits the

user-defined region. For example, a user

wants to track a tennis ball in a full-

court-tennis-game video and is interested

to see a hit-distribution of the ball on the

tennis court. Our system is able to

pinpoint the points when the ball

bounces off the ground by detecting the

changes of velocity vectors. However,

since the camera can be in any direction

when shooting the tennis game, a

perspective transform is necessary for

the ball distribution histogram displaying

as if the camera is shooting from directly

above the tennis court.

The vertices of the quadrilaterals in both

the source (Image 1) and destination

image (Image 2) are then used to

compute an initial projective mapping,

M, that satisfies the following equation,

, where x is column vector representing a

point in the source image, and b is a

column vector representing a point in the

destination image. To compute the

forward mapping matrix M, there are

eight equations with eight unknowns (m0

- m7) for the vertices numbered

cyclically k = 0, 1, 2, 3:

Chan, Ng, Varon
16

This can be rewritten as a linear system:

After we calculate what m0-m7 are, we

have linear functions to direct map the

coordinates for the perspective

transform.

User Interface

We created a user-friendly interface to

our tracking application in Windows.

The application is MFC based

executable, and it allows both automatic

and manual tracking of features. It also

allow the user to select a region where

s/he wants features to be extracted, this

initializes the searching algorithm

(KLT). The application also pops up a 2-

D bird-view graphical representation of

the tennis court, and a hit-histogram can

be generated according to hit counts of

areas in the tennis court. Currently, the

tracking algorithm is unable to track a

tennis ball in compressed video format

(i.e.: avi), this is due to compression

artifacts (such as interlacing) and also to

the fact that the tennis ball is too small

and it moves too fast.

Below is a few screeshots:

Chan, Ng, Varon
17

Conclusion

Object tracking can provide useful

application such as analyzing

performance of tennis players, tracking

of ball in a ball game, etc. Object

tracking using the KLT tracker is very

accurate, nonetheless it is computation-

intensive. This prevents us from being

able to track in real-time. Also, video

compression artifacts such as interlacing

makes tracking more difficult. Also, in

some cases, such as tennis, the ball

moves too fast and is too small for the

tracker to handle.

Future work on this project could be to

improve the tracking algorithm, for

example, maybe implementation Kalman

Filtering instead of using the KLT

tracker. Kalman filtering guarantees the

minimum mean-square-error (MMSE)

estimate, and it is very easy to compute.

Also, the fact that the Kalman filtering is

an iterative filtering approach makes it

attractive to this application. Also, trying

to feed in uncompressed video (maybe in

YUV format) to ObjTrack and see if it

would be able to track the tennis ball or

other small fast-moving object would

give us more insights as to what are the

bottlenecks of the architecture.

Chan, Ng, Varon
18

From past experience in group project,

we learned that it was a good idea to

split up the work clearly, so that each

member would be fully responsible for

his or her part. In this project, it was

proven that this is not always a good

idea, if one or more of your members are

not up to the level of complexity of the

project. We regret not being able to get

the EVM part to work, it was a lesson of

organizational behavior, or Ògroup

thinkÓ. I guess in the future it would

always be wise to underestimate oneÕs

ability, that we wouldnÕt put ourselves at

risk at any time. The software version of

ObjTrack, however, totally meet the

initial goals we set up for this project.

We were able to accurately track the

object, and we also added enhancements

to it. The perspective transform is

extremely accurate because we actually

went ahead to compute the matrix

inverse by doing the LU decomposition.

All in all, we have all learned much from

this project, and it was by all means a

very present experience.

Chan, Ng, Varon
19

May 3, 2000 Chan, Ng, Varon 18

Roadmap and Deliverables as Planned
March 2000

More Research (All)

Preparing the
training inputs
(Sabi)

Implement the Lukas-Kanade
algorithm (Andrew, Anson)

Optimization (All)

Test and Demo (All)

Final
Documentation
and Report
(All)

Optical Flow
Demo Final Demo

Get it to work in software
(Andrew, Anson)

Porting KLT to EVM (Sabi)

Integration (All)

May 2000

Software testing
(Andrew & Anson)

April 2000

May 3, 2000 Chan, Ng, Varon 19

Actual Timeline
March 2000

More Research (All)

Preparing the
training inputs
(Sabi)

Optimization and Enhancements (Andrew)

Final
Documentation
and Report
(All)

Software
Demo!
(Andrew,
Anson) Final Demo

Get it to work in software
(Andrew, Anson)

Porting
KLT to
EVM (Sabi)

Integration
What
integration??
(All)

May 2000

Handed working code to Sabi
for EVM porting before April!!

April 2000

Chan, Ng, Varon
20

References

[1] Birchfield, Stan. ÒKLT: An Implementation of the Kanade-Lucas-Tomasi Feature

TrackerÓ. 1998. http://vision.stanford.edu/~birch/klt/ (2 February 2000).

[2] Bruce D. Lucas and Takeo Kanade. An Iterative Image Registration Technique with

an Application to Stereo Vision. International Joint Conference on Artificial

Intelligence, pages 674-679, 1981.

[3] Jianbo Shi and Carlo Tomasi. Good Features to Track IEEE Conference on Computer

Vision and Pattern Recognition, pages 593-600, 1994

