
Not-So Live MP3 Encoder

18-551

Project Final Paper

GROUP 14:

Thomas McElroy

Charlie Oswald

Domenic Senger-Schenck

5/8/2000

2

Introduction:

Today, portable MP3 digital audio decoders/players are

everywhere. These devices are easy to implement because

decoding takes relatively little computation. Encoding,

however, is a more computationally expensive operation and,

as a result, has not yet been implemented on any portable

devices. As of now, the power of a computer is needed to do

the encoding and is usually a fairly slow process. There

are, however, some algorithms that can encode CDÕs to MP3

format in real time using very fast, high-end machines

(http://www.qdesign.com/MP3sdk.htm). But, a standalone, portable

unit to do MP3 encoding in real time does not yet exist.

There is certainly a market for such a device. Sony

MiniDisc recorders use a compression scheme called ATRAC

(Adaptive Transform Acoustic Coding) so that they can fit

the same amount of music as a compact disc onto a much

smaller disc. If MP3 encoding could be implemented in the

same context, one could improve upon both compression rate

and sound quality. But MP3 encoding would be most useful

in an application such as web broadcasting. Because of its

low bit rate, MP3 encoded music can be transmitted using

far less bandwidth than standard PCM encoded audio, or

ATRAC encoded music for that matter. A real time encoder

3

would allow live broadcasts from anywhere without the need

for a computer. A DSP could be packaged in a box with an

analog input from the concert audio and an Ethernet

interface for broadcasting over the internet. Thus, MP3 has

uses in both recorded and broadcast music.

As stated above, encoding is relatively complicated

compared to decoding. Technology now exists to decode fast

enough on a portable device for real time playback of

musical tracks. It is only a matter of time before the

development of a real time encoder. It was our goal to

implement such an encoder on the C67.

Background:

The main point of MP3 encoding is to analyze an audio

signal to find out which elements of the signal are

unnecessary because they are inaudible to the human ear.

Masking effects are accounted for in both the time and

frequency domain, though there is usually more to be gained

in the frequency domain. In order to perform this analysis

and filtering, the MP3 encoding process makes use of a

polyphase filterbank, a modified discrete cosine transform

(MDCT), and a psycho-acoustic model which uses an FFT in

part of its analysis. The results from these steps are

4

then further compressed by using standard Huffman encoding.

The signals-based steps are discussed below, leaving out

the details of Huffman coding.

Goal:

The goal of our project was to implement an MPEG-1

Layer-3 encoder on the Texas Instruments C67. We believed

that many of the stages of the algorithm could be executed

faster, more efficiently, and, most importantly, eventually

in a stand-alone fashion, on the C67. By developing code

for the PC based on this ISO standard algorithm, these

stages could be executed either on the PC or C30 or a

combination of the both.

We planned to have dual functionality in our MP3

encoder/recorder. The first step of the project was to

implement an MP3 encoder to convert from a digital Wave

file (PCM encoded) on the PC with 44.1 kHz sampling rate.

The goal here was simply to process the encoding as fast as

possible so that the speed needed for real time encoding

was available. Our next plan was to then make our DSP code

able to convert an analog signal directly from the A/D RCA

jack on the EVM board (sampled at 44.1 kHz). Again, this

5

was to be done in real time, the only useful speed at which

to encode a live analog input.

Psycho-acoustic Analysis:

The first step in the encoding process is the psycho-

acoustic analysis. It is done to weight the sub-band

information based on how a human will hear it. For

example, an intense tone at 1000 Hz will mask a 1100 Hz

tone that is soft. So, because the ear cannot hear much

detail on the 1100 Hz tone, very little detail needs be

stored as to its exact shape and magnitude. In MP3

encoding, the psycho-acoustic model takes a 1024 point FFT

of the input signal (audio signal to be encoded) which

gives it relatively high frequency resolution. The signal

is thereby effectively split into 63 frequency bands.

These bands are compared against one another to test for

masking. Furthermore, the psycho-acoustic model will use

the FFT results to split the data into long and short

blocks, depending on whether high frequency or high time

resolution is needed, respectively. Using pre-calculated

tables that tell the psycho-acoustic model which frequency

bands are masked and by how much so that it can decide how

much quantization error is allowed. Actual testing of

human hearing, using controlled experiments, was used to

6

generate these tables. As it works out, a loss of 1 bit in

quantization results in 6dB of error. This means that if a

signal is below the masking threshold it can be ignored,

but if it is above the masking threshold, it can afford

some quantization error so long as that error does not rise

above the masking threshold. In this way you can disregard

certain frequency bands and inject imperceptible error in

others, reducing the resultant bit rate.

The psycho-acoustic model also takes into account the

effects of time domain masking. To do this it needs to

perform some prediction since it can account for masking

both before and after a strong signal. A strong sound will

mask other sounds coming immediately after and right before

the dominant sound.

Polyphase Filtering:

The polyphase filtering step of the encoding process

is called after the psychoacoustic analysis step. As

implemented in the code we are using, the polyphase filter

takes one channel from one granule at a time. Filtering is

done by nested loops multiplying and adding by a constant

matrix that represents the necessary filter. This produces

7

32 separated sub-bands that can now be operated on to

further encode before using perceptual information.

Modified Discrete Cosine Transform:

The MDCT, or modified discrete cosine transform, is

similar to a fast fourier transform, but the way it is used

on the outputs of the filterbank is to finalize pure, non-

perceptual lossy encoding by breaking up each sub-band into

primary components and send them off to be compressed. The

benefit of using an MDCT instead of an FFT is that temporal

aliasing is eliminated. The MDCT uses 50% overlapping

windows to compute coefficients for each given sub-band.

Process:

Because the encoding process is so complex, we decided

to start with existing MP3 code. It was first necessary to

remove the user interface from the code, since this would

not be used. But the program was still too large for the

available memory on the EVM. So we next needed to trim out

all unnecessary elements of the code. Because we were only

doing stereo, 44.1kHz sampled, encoding to 256 bits/second,

we could eliminate much of the code allowing switching

between these and other available options. Finally, as we

were to find out very late in the semester, it was also

8

necessary to get rid of as many doubles from the code as

possible.

Implementation of Code Modifications:

We started with the source code to a command line

multi-platform MP3 encoder and wanted to implement an MP3

encoder that was fast and lean and able to run on the EVM.

To move from start to finish took a lot of work.

First of all, we needed to gain a good understanding

of what procedures and function calls implemented what

high-level filters and operations and figure out how much

of the code we really needed. This took quite some time,

not only due to the complexity of the algorithm and the

enormous volume of code that allowed the source code great

cross-platform ability, but also due to the fact that it

had been programmed and optimized for very general use on a

processor with a large store of RAM.

For example, the interface to the encoding function

was very obscured by massive volumes of user interface

code, but the biggest obstacle by far was the unrestrained

use of global variables. The data flow through the program

was made opaque by having data flow through global

9

variables because we could not trace them through function

calls. Contributing to the difficulty of figuring out

program flow was the fact that there were almost no

comments and the variable names were incredibly arcane, and

not grouped by functionality. For instance, there were a

few buffers that represented the coefficients for filters

that were initialized towards the beginning of the code,

and then used later, but they werenÕt named in such a way

that belied their purpose, and there were often local

variables that were either named the same thing, or local

pointer variables that were set to point to the global

variables so that the global data could be accessed more

simply.

Once we had the code stripped down to the functions we

wanted, we had to begin the process of getting it to work,

and work quickly on the EVM. To start off this task we

worked on getting it to load into the EVM memory which took

a little bit of rudimentary learning on how to set

functions to go where and what else needed to occupy memory

(.cinit, .stack, .sysmem, using pragma, etc.). Once this

was complete, we worked on the necessary communication

channel between the PC and the EVM. We spent some time

testing it and found that there were some definite problems

10

going on in just the communications channel. This was a

bit unexpected because we were using working code from lab3

to do the communications.

Once we had the communications working (or working

better at least) we started at the task of testing the MP3

encoder on the EVM. It didnÕt work. We were running the

same code on the EVM and the PC and it just would not work

in ways we couldnÕt understand. We came to understand from

Steve that there might be something ÒflakyÓ about the

doubles on the EVM, so we asked Pete what the situation

was. He concurred that there was definitely something

wrong with LDDW when accessing off chip memory, but he

wasnÕt sure. This worried us severely as it was close to

the deadline. We got the full story from TI the next day.

At this point our push became to try and get it to

work despite this problem. We first tried naively changing

all doubles to floats and changing all calls to math

functions to be mathf. The conversion of doubles to floats

worked for some of the variables, but, for others, it

appeared to ruin the functionality of the program. So, we

went back to the doubles, but kept the mathf functions. We

then tried to figure out if we could get rid of some of the

11

doubles while keeping the others there, and we had limited

success with that, but there were still quite a few global

variables that were doubles. At this point we changed

tacks and just tried to get all the global doubles to fit

in on chip memory so that LDDW would work. We did manage

to do this, using both on chip data and program memory

spaces. Still, the program would not work on the EVM.

We had moved all the doubles on chip, including all

static variables in functions that, as static doubles,

would get allocated off chip. However, this still yielded

an error despite the fact that the exact same code worked

on the PC. We could only guess that this was due to the

volume of LDDWs happening from on chip memory that have

slim chances at error.

So, after the due date and demo had passed, we worked

on trying to remove all global doubles. When we really

delved into this task we realized that the reason the code

had failed when we did a na�ve replace of doubles with

floats was due to the amount of global pointer passing. As

mentioned previously, there are local pointers that are

initialized at the beginning of functions to point to

global variables, and then accessed to change the data

12

pointed to by the global pointer. During this process, the

doubles we had set to floats were being coerced back to

doubles because a double pointer was pointing at the memory

location. This, of course, was resulting in all types of

errors.

We spent some time sifting through all the functions

that these global variables touched, having to change all

the locations at once to keep the data consistent for

testing on the PC. In this way of finding all references

to a global variable through using some of the advanced

browse features in MS Development Studio, and persistence,

we were able to eliminate all the global Double variables,

leaving only the doubles local to functions. However,

despite the fact that it compiled and ran correctly on the

PC (with a little distortion due to the lack of precision),

it would no longer run to completion on the EVM. The

problem would appear at first glance to be a memory problem

causing a stack overflow, however, we have set our stack

size to be very large, our Ò.textÓ section is split up

between ONCHIP_PROG and SBSRAM_PROG, and yet, when a

couple of our functions return, they jump to garbage

addresses. We also checked the stack pointer, register B15,

to make sure it was pointing to a valid address. The

13

pointer was fine, but apparently the return function

address it was pointing to had been corrupted.

At this point we gave up yet again. We do not know if

it is the slim chance of the onchip LDDWs failing something

in TIÕs memory management or something we are not setting

up for correct stack management, but it seems there is

little more we can do but comment the code we have been

working on so that someone else can come in and modify it

with much more ease.

It is at this point where we now find ourselves. We do

not know if there are still problems using LDDW, even

though all doubles are on chip. The TI errata sheet

(published on January 18, 2000 and posted to the class web

page May 3, 2000) states that LDDW only fetches the lower

32 bits of a 64 bit word, even on chip in some cases.

Please see page 7 of the C6700 Silicon Errata sheet

referenced from the lab files section of the course web

page. When using doubles, even on chip, an error will be

caused when Òstepping throughÓ the program using the

debugger any time an LDDW occurs, making the debugger

useless when any double is loaded. This problem will be

fixed with the new Version 1 silicon boards and it is

14

suggested that these boards be used in the years to come,

or to switch to a different EVM.

Conclusion:

Our attempt at the end of the road was to set up

things to be carried by another group if this project is

ever attempted again. We tried not to reiterate details

about the encoding process from last yearÕs paper, as that

can be used in conjunction with our paper and code as a

starting point for the next group. We believe, that as

engineers, commenting our code and describing the problems

encountered was the best way to spend our time, so the next

group will not have to struggle through the same issues.

One suggestion that all of our group members strongly

advise following is that this project should not be

attempted again until new version EVMÕs are installed in

the lab. Although it may be possible to implement on the

current EVM, the semester will probably just be spent

chasing doubles instead of implementing signals algorithms.

15

References:

http://www.ece.cmu.edu/~ee551/Old_projects/s99_projects.html

Previous 551 project on MP3 encoding.

http://www.qdesign.com/MP3sdk.htm

Web site demonstrating current capabilities of

software encoders to encode in real time.

http://bladeenc.mp3.no/

Web site containing the source code for our encoder.

