

The Music Really Speaks to Me

Real-Time Musical Vocoder

Final Report

18-551 Fall 2009

Group 6

Si (Laura) Cai (scai@andrew.cmu.edu)

Pritish Gandhi (pgandhi@andrew.cmu.edu)

Chris Guida (cguida@andrew.cmu.edu)

mailto:scai@andrew.cmu.edu
mailto:pgandhi@andrew.cmu.edu
mailto:cguida@andrew.cmu.edu

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

2

TABLE OF CONTENTS

1. ABSTRACT 3

2. THE PROBLEM 3

3. NOVELTY 4

4. SOLUTION 5

5. W HAT IS LINEAR PREDICTIVE CODING OR LPC 6

6. THE LEVINSON DURBIN ALGORITHM TO CALCULATE LPC

 6.1 THE LEVINSON-DURBIN RECURSIVE ALGORITHM

 6.2 COMPARISON OF LEVINSON-DURBIN ALGORITHM W ITH

 OTHER ALGORITHMS

9

12

13

7. PROCEDURE AND ALGORITHM 15

8. SPECIFICATIONS 19

9. FUNCTION PROFILE T IMES, SPEEDS, LATENCY &

 OPTIMIZATION

20

10. ERRORS PROBLEMS & THEIR SOLUTIONS 22

11. CODE INFORMATION 24

12. DEMONSTRATION 26

13. F INAL W ORK SCHEDULE 27

14.REFERENCES 28

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

3

1. Abstract

 For our 551 project , we implemented a real-t ime, musical vocoder on the DSK. We

use the term “musical vocoder” to dist inguish our project f rom the other kinds of vocoders;

namely, the telecommunications vocoder and the phase vocoder. The primary method we

used was l inear predict ive coding (LPC), which was accomplished using the Levinson -

Durbin algorithm.

2. The Problem

A musical effect that has been popular for decades is making an instrument sound as

though it is talking. The musical applicat ions for doing this are extremely diverse, but two

of the most popular uses are making a human voice sound robotic (see ELO’s “Mr. Blue

Sky” or Styx’s “Mr. Roboto”), and causing one human voice to sound l ike many (see Infected

Mushroom’s “Cit ies of the Future”). One of the earliest methods of achieving this was a

“Talk Box”, used heavily by Peter Frampton. This device was basically just a speaker with a

tube that was inserted into the mouth, so that when the guitar was played, the note of the

guitar was transferred to the user’s mouth, which could then be shaped by the mouth to

form speech-like sound. Following soon af ter was the analog musical vocoder (Vocal

Coder), a device that accomplishes the same thing, except instead of direct ly shaping the

sound with one’s mouth, the user speaks into a microphone and the formants f rom the

user’s speech are applied to the guitar. Our project models a musical vocoder on the

C67 DSK . W ith a vocoder, not only is it possible to make your voice sound l ike anything

(especially when used with a synthesizer), i t also can be used to create vocal harmonies

when given mult iple excitat ion signals, the goal of 2006’s Group 9. Our vocoder uses two

inputs, a microphone (for speech) and a l ine -in (for excitat ion instrument). LPC is

performed on both inputs, the instrument signal is inverse f i l tered to produce its residue

(excitat ion) signal, which is then used as the input to a (dif ferent) f i l ter which models the

formant structure of the microphone input. The ou tput of this combination is the sound of

the input instrument speaking the words uttered by the user into the microphone.

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

4

3. Novelty

There are two main aspects to the novelty of any project:

1. The project or goal itself , and

2. The algorithms/methods used to achieve that goal.

Our project is novel for item #1 in that no other group has used the DSK for the exact

applicat ion we are using it for; that is, modeling an analog vocoder (combining speech and

music components). The project with the closest relat ion to ours in this respect is the “Sing -

Synth” project f rom 2003’s Group 9. Theirs is simi lar to ours in that it combines two signals

(the user’s voice and a synthesized musical signal) to produce the output. However, their

approach (item #2) is completely dif ferent f rom ours, as they used pitch detect ion and

subtract ive synthesis rather than l inear predict ion. The result is that their method results in

only the note being preserved f rom the user’s voice, while in our project, the words the user

is saying (the formants) are preserved instead, while the actual note is discarded.

As for item #2, our approach is l inear predict ion, which has been used in many previous 551

projects. Some of these projects dealt with coding speech signals to transmit them more

quickly and eff iciently (e.g. the CDMA Modem project f rom 2000’s Group 16), while others

have dealt with speech morphing. When taking both item #1 and item #2 into account,

these speech morphing projects (e.g. “Hey, stop sounding l ike me!”) are the most sim ila r to

ours, since they tried to make a person sound l ike another person, while we have tried to

make a guitar sound l ike a person. However, our project contains an addit ional challenge

since we are sampling both input signals in real -t ime, while all of the speech-morphing

projects had at most one input and a training set.

 It must also be noted that, while our project sounds l ike it might relate to projects

using a “phase vocoder” algorithm (such as 2008’s Group 2), it does not. This is because of

the two dif ferent uses of the word “vocoder”: one (“ musical vocoder”) is a device that

combines speech and an excitat ion signal, which our project aims to model (item #1), while

the other, (“phase vocoder”) is a computer algorithm (item #2) used for many things ,

including t ime scaling and pitch shif t ing, but not combin ing dif ferent signals together. The

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

5

phase vocoder is simply named af ter the musical vocoder because it works simi larly

(separating excitat ion signals f rom residue signals, processing, then recombin ing); however,

they are quite dif ferent because one IS an applicat ion (our project) while the other HAS an

applicat ion. To be even more clear :

Our Project: 2008 Group 2:
1. Goal: Combine speech and music (musical vocoder) 1. Goal: Beat detection/synchronization
2. Method/Algorithm: LPC using Levinson-Durbin 2. Method/Algorithm: STFTs and phase vocoder

4. Solution

To obtain an output to sound l ike the musical instrument talking we separated the formant

structure of the speech and then applied the shape of that formant structure to the

excitat ion signal that we formed by generating the residual of the instrument signal [4] .

Separating the formant structure is done using Linear Predict i ve Coding which f rom now on

wil l be referred to as LPC. Figure 4.1 shows a very simple f low diagram of the process we

used to compute the desired output.

Figure 4.1: Simple f low diagram of our solution

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

6

The following steps explain the procedure shown in Figure 4.1. A detailed explanation of

this procedure is discussed later once the algorithm is explained.

a) The two inputs are fed into each channel of the l ine-in and are sampled direct ly by the

ADC of the C67 DSK. A Hamming window is used to operate on the microphone signal

so that the coeff icients wil l have all the required information and drast ic f requency

changes at the beginning and end of each f rame due to Gibbs phenomena are avoided.

The size of the f rame selected is crit ical to the delay and resolut ion of speech. This is

discussed later.

b) The LPC coeff icients for both the inputs are calculated. New LPC coeff icients are

calculated once every f rame

c) The LPC coeff icients f rom the microphone signal are used to develop a f i l ter. The LPC

coeff icients of the instrument signal are used to generate the excitat ion signal f rom the

musical instrument.

d) The residue is calculated by passing the instrument signal through an inverse f i l ter

developed by the signal ’s own LPC coeff icients.

e) This residual signal wil l function as the excitat ion signal which is then passed through

the f i l ter created by the LPC coeff icients of the speech signal.

f) The output thus formed has the characterist ic sound of the musical instrument , f i l tered

to sound as though it is talking .

5. What is Linear Predictive Coding or LPC? [1]

The source-f i l ter model of speech production models speech as a combination of a sound

source (i.e. the vocal cords), and a l inear acoustic f i l ter, the vocal tract (and radiat ion

characterist ic). An important assumption that is made in the use of the source -f i l ter model is

the independence of source and f i l ter. In such cases, the model should more accurately be

referred to as the "independent source-f i l ter model".

http://en.wikipedia.org/wiki/Vocal_cords
http://en.wikipedia.org/wiki/Vocal_tract
http://www.rothenberg.org/source-filter-lives/Source-Filter-Lives-paper-as-presented5.pdf

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

7

Figure 5.1: Analogy between source fi l ter model for voice production and

A digital system using LPC [1]

Linearity is def ined mathematically for a system (or mathematical function) that has an

independent variable (the input) and a dependent variable (the output). The term describes

certain relat ions between the input and output. Without going into mathematic al detail, i t

can be shown that a hard -walled system of tubes with no sharp bends, extreme

constrict ions or sharp project ions into the f low path (demonstrated as a trumpet horn) is a

l inear acoustic system for sounds of reasonable amplitude. The vocal trac t is a fairly l inear

acoustic system, if vibrat ion of the softer walls, such as the cheeks or velum can be

neglected. Physiological systems are generally non -linear, though a l inearity assumption is

plausible and is required for our applicat ion.

LPC starts with the assumption that a speech signal is produced by a buzzer at the end of a

tube (voiced sounds), with occasional added hissing and popping sounds (sibilants and

plosive sounds). Although apparently crude, this model is actually a close approximation to

http://en.wikipedia.org/wiki/Sibilant
http://en.wikipedia.org/wiki/Plosive

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

8

the reality of speech production. The glott is (the space between the vocal folds) produces

the buzz, which is characterized by its intensity (loudness) and f requency (pitch). The vocal

tract (the throat and mouth) forms the tube, which is characterized by its resonances, which

give rise to formants, or enhanced f requency bands in the sound produced. Hisses and pops

are generated by the act ion of the tongue, l ips and throat during sibilants and plosives.

LPC analyzes the speech signal by est imating the formants and est imating the intensity and

f requency of the remaining buzz. This decomposit ion of speech sounds is done in two parts:

1. A f i l ter function consist ing of LPC coeff icients

2. A source function which is the excitat ion signal of a musical instrument in our applicat ion
but can also be a person’s voice or an impulse signal generated by a computer at a
part icular fundamental f requency.

A vocoder uses the LPC coeff icients and re -synthesizes speech by f i l tering the excitat ion
signal through the speech f i l ter (i.e . f i l tering 2 through 1) .

Figure 5.2: Shows how LPC depicts the fi l ter response of the original signal [2]

http://en.wikipedia.org/wiki/Glottis
http://en.wikipedia.org/wiki/Formants

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

9

6. The Levinson Durbin Algorithm to calculate LPC [3]

There are three types of f i l ter design modeling that can be used.

1. The moving average (MA) model has zeros but not poles:

H(z) = B(z)

2. The autoregressive (AR) model has poles but not zeros:

H(z)= G/A(z)

3. The third type of model has both poles and zeros and is called the autoregressive

moving average (ARMA) model:

H(z)= B(z)/A(z)

Of the three types of f i l ter design by modeling, the all -pole AR model is the most

commonly used, largely because the design equations used to obtain the best -f it AR model

are simpler than those used for MA or ARMA modeling. Serendipitously, the all -pole model

also has the abil i ty to describe most types of speech sounds quite well, and for that reason

we have used it in our vocoder.

Figure 6.1: The Autoregressive Moving Average (All Pole) Model

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

10

The transfer function for an all -pole f i l ter model can be given by:

Where H(z), Y(z) and X(z) are the z -transforms of the f i l ter, output and input respectively.

Gain is denoted by G, α k
(P)

 denotes the LPC coeff icients of a P t h order model.

Since the representat ion is not orthogonal, all the coeff icients change when the order of the

model (P) changes.

The inverse z-transform of this function would yield:

Now we want to obtain a f i l ter transfer function of the form in Eq(1) to an arbitrary desired

f i l ter transfer function, H d(z). This is done by minimiz ing the average square error between

the magnitude of the f requency response of the desired f i l ter H d(e j ω) and all the all -pole

f i l ter that is obtained H(e j ω).

Applying Parseval’s theorem to Eq. (3) we obtain,

Since h[n] is the system’s response to the unit sample function δ[n], we obtain f rom Eq. (2),

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

11

And

For a part icular model order P we solve for each α k by writ ing Eq. (6) with a dif ferent

internal dummy variable, obtaining the derivat ive of ξ 2 with respect to α k and sett ing the

result to zero.

Since the system is causal G wil l not enter into the solut ion. Hence our f inal form is,

Using the auto-correlat ion function symbol Φ[m] this Eq boils down to,

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

12

Assuming here that P=4 (4 predictor coeff icients) .

It can be writ ten in the form of a vector such as,

This is of the form:

Rα = P

where R is a P X P matrix of autocorrelat ion coeff icients, α is a P X 1 vector of the {αk}, and

P is a P X 1 vector of autocorrelat ion coeff icients. This equation is known as the Wiener-

Hopf equation.

A direct solut ion to the Wiener Hopf equation can be obtained by pre -mult iplying both sides

by the inverse of R:

α= R - 1 P

The inversion of the R matrix can be accomplished by Gaussian elimination and other

simila r techniques,

which are in O(N 3)computational complexity. In our project , however, a simpler solut ion

known as Levinson-Durbin recursion is used because the correlat ion matrix R is Toeplitz; al l

the matrix elements of each diagonal, major and minor, are identical . Exploit ing this

symmetry the Levinson-Durbin recursion has a complexity of O(N2).

6.1 The Levinson - Durbin recursive Algorithm:

Levinson-Durbin recursion provides for {αk} a faster solut ion for in the system of equations

for situations in which the matrix on the left side of the equation is a Toeplitz matrix. In our

applicat ion, the {αk} represent the autocorrelat ion coeff icients o f the random process y[n].

The solut ion {αk} are the P t h - order predictor coeff icients for the best -f it l inear predict ive

model that transforms a white random process x[n] into a random process that has

autocorrelat ion coeff icients phi according to the equation.

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

13

The equations of the Levinson -Durbin recursion, which are used to compute the

corresponding ref lect ion coeff icients and LPC parameters are:

The coeff icients {k i} for 1 ≤ i ≤ P are referred to as the ref lect ion coeff icients. They

constitute an alternate specif icat ion of the random process y[n] tha t is as unique and

complete as the LPC predictor coeff icients {a k
(P)}. The ref lect ion coeff icients are not

required in our applicat ion and so they are discarded in our project but they have to be

computed since they are required to calculate the next LPC c oeff icients.

If the magnitude of the ref lect ion coeff icients |k i | is less than 1 for 1 ≤ i ≤ P , all of the roots

of the polynomial

wil l l ie ins ide the unit circle. This means that if |ki| < 1, the result ing f i l ter H(z) wi l l be

stable. It can be shown that deriving {k i} the in the fashion described above using Levinson -

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

14

Durbin recursion guarantees that |ki |< 1. This means that the Levinson Durbin Algorithm

guarantees that the system is a lways stable.

6.2 Comparison of Levinson-Durbin (LD) Algorithm with other algorithms:

LD v/s Cholesky Decomposit ion: The Cholesky decomposit ion is a method used to f ind the

inverse of a matrix which has Hermit ian Symmetry . However the computational complexity

of the Cholsky decomposit ion is O(N3) as compared to the LD algorithm which is O(N2)

since LD exploits the fact that LPC analysis has Toeplitz Symmetry.

LD v/s Schur Decomposit ion: The Schur decomposit ion states that every square matrix A

is unitari ly similar to an upper triangular matrix T with A=UHTU. This method is also slower

than the LD algorithm.

LD v/s Widrow-Hoff (Least mean square or LMS) a lgorithm: The W idrow algorithm is not

a l inear predict ion algorithm but an adaptive f i l ter technique that can be used to predict the

f i l ter structure similar to LPC. Howe ver the W idrow-Hoff algorithm does not guarantee

minimum phase systems and stabil i ty. Since LD creates a minimum phase system (all poles

and zeros l ie within the unit circle) so it is always stable and even its inverse is always

stable. It is important tha t the system is minimum phase since we use the inverse f i l ter to

f ind the residual. Although the Widrow-Hoff method is a more elegant and accurate method

of predict ion, it is considerably slower than the Levinson -Durbin Algorithm. Table 6.2.1

shows the comparison of clock cycles per f rame for a 180 sample f rame size with speech

sampled at 16kHz. [6]

Table 6.2.1: Comparison of the overall t ime taken by the Widrow-Hoff and Levinson
Durbin Algorithm [6]

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

15

7. Procedure and Algorithm

Input: As we stated earlier, we needed to input two signals to the C67 DSK simultaneously.

One was f rom the microphone and the other the musical instrument. For this we used the

stereo l ine-in input of the DSK. Since the l ine -in is a stereo input we fed both, the

microphone and the inst rument, to each individual channel of the l ine-in of the DSK. The

microphone was fed into the right channel while the instrument into the lef t channel. (The

reason why we couldn’t use both the l ine -in and the mic-in simultaneously to sample the two

inputs is discussed in later Section 10) Since the microphone and instrument signals are

implicit ly mono there was no loss of information by feeding them mono into the DSK (i.e 1

on each channel of the stereo input). Pre-amplif iers were required before feeding the

signals into the l ine-in since the microphone and instrument (guitar in our demo) s ignals are

of the order of a few mill i volts. They thus have to be amplif ied to ~1 volt before inputt ing

them to the l ine-in of the DSK.

The two signals were sampled at a rate of 16kHz . Since all speech information is present

between about 500-3500 Hz, we could do with a sampling rate of 8 kHz to accurately

capture all of the vocal f requencies but since one of our inputs was a musical instrument we

decided to select a higher sampling rate to accommodate higher f requencies which would be

generated by the instrument.

Once the inputs were sampled by the ADC (analog-to-digital converter) of the DSK they

were stored in a circular buffer. A c ircular buffer is a buffer which is only a f ixed length long

(f ixed memory locations). Once the buffer is fully accumulated the pointer wil l move back to

the f irst location of the buffer and wil l s tart replacing t he old data. Figure 7.1 shows the

working of a circular buffer.

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

16

Figure 7.1: Functioning of a Circular Buffer

Each piece of data stored in the buffer is a 32 -bit unsigned integer value with the lower 16

bits holding the data of the right channel (micropho ne) and the upper 16 bits holding the

data of the left channel (instrument). W e split these signal’s data into two separate f loat ing

point buffers to process them individually. Since the Levinson -Durbin recursive algorithm

works on f loat ing point we had to type cast them to f loat ing point values.

Processing: Al l the processing that was done in our project was done on the DSK. We did

not need to use the computer for any part of the processing since the memory and

processing power of the DSK was suff icient fo r our applicat ion. The clock cycles and t ime

taken to run these functions are described in Section 9.

The operations or processing was broken up into 6 steps.

a) Windowing: Just processing on a short f rame of data assumes a rectangular window.

This means that the entire input signal is mult iplied by a rectangular function which is 1

for durat ion of the f rame and 0 otherwise. Using a rectangular window on the input

causes Gibbs phenomena to occur on the f rame. Gibb s phenomena are the ringing

art ifacts that occur during processing as a result of the abrupt cutoffs at the beginning

and end of the f rame. The method to avoid this is to window the signal choosing an

appropriate window function. In our applicat ion we choose a Hamming window since its

f requency response is more tapering in the higher f requencies and so it f i l ters the higher

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

17

f requencies better. The length or size of the window function is def ined by the f rame

size. A hamming window is def ined by the expression,

where n is the length of the window (f rame size in our case).

Figure 7.2: The Hamming window and its frequency response

b) Autocorrelation [5] : To calculate the LPC coeff icients using the Levinson -Durbin

algorithm, P+1 autocorrelat ion values of the signal are required (where P is the order of

the LPC), as shown previously in Section 6. Autocorrelat ion can be calculated by

shif t ing the copy of the signal over itself and summing up all the overlapping values of

both functions over n (where n are samples). It is computed using the following

expression.

c) Levinson-Durbin Recursion [5] : The Levinson-Durbin recursive algorithm as was

discussed in Section 6 is used to compute the P order LPC coeff icients using the

autocorrelat ion values that were computed earlier. This algorithm calculates P

coeff icients f rom P+1 autocorrelat ion values ite rat ively. Along with the LPC coeff icients

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

18

the algorithm also computes the ref lect ion coeff icients which are not required to form

the all-pole f i l ter but are needed to predict the next LPC coeff icients. It also returns the

deviat ion or error between the actual f requency response and the predicted response for

each f rame. The error obtained for each frame is to be divided by 10000 2 since it has to

be normalized l ie between 0 -1. Since the ADC of the DSK gives values between -10000-

10000 instead of 0 -1.

d) Residual [4] : The original signal of the instrument contains a f i l ter shape of the

instrument (characterist ic of the instruments body, pick -ups, electrical f i l ter due to l ine

inductance and shunt capacitance). The residual of the signal is obtained by separating

the original signal of the instrument f rom its formant structure. This is done by f inding

the formant shape using LPC analysis and then passing the original signal on the

instrument through an inverse f i l ter generated by its own LPC coeff icients (i.e . an all-

zero or FIR f i l ter).This residue is used as an excitat ion signal which is shaped by the

speech formants. Using the original signal direct ly as the excitat ion would lead to a n

output signal containing both the f i l ter shape of the instrument and the speech which

would distort the output. It is important to take care of the init ia l condit ions while

applying a f i l ter to any signal. Here since P LPC coeff icients are used the order of the

f i l ter is P. Thus the instrument signal variable has P init ia l val ues to compute the output

of the f irst sample. So the size of the instrument variable we used was f rame size + P

and at the end of every f rame the f irst P samples of the instrument were overwrit ten with

the P last input values of that f rame which were the init ia l condit ions of the next f rame.

So the f irst actually input sample was the P t h sample of the input variable since the

previous P samples were just init ia l condit ions.

e) Filter: To obtain the desired output f inally the residual of the instrument has to be

passed through an all -pole (autoregressive) f i l ter developed using the LPC coeff icients

of the speech signal. This applies the shape of the speech formants to the residual. The

function implemented is a simple dif ference equation of the form

output[n] = input[n] + Σ α k output[n-k]

where the summation k ranges f rom 0 to P (order of LPC coeff icients computed) for the

n t h sample. It is important to take care of the init ia l condit ions while applying a f i l ter to

any signal. Here similar to the residual function, to take care of the init ia l condit ions the

output variable was f rame size + P samples long and at the end of every f rame the f irst

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

19

P values of the output variable were overwrit ten by the last P samples of that f rame

which became the init ia l condit ions for the next f rame. So the f irst actually output

sample was the P t h sample of the output variable since the previous P samples were just

init ia l condit ions.

f) Output : The f inal stage is the output. The output is then stored in an output buffer which

can be sent to the l ine -out. One output and one playback buffer was used to avoid

overwrit ing of old data if the processing speed is faster than the output speed. This

technique is called the ping -pong technique by which processing of the next frame

continues while the DSK outputs the values of the previous f rame.

8. Specifications

a) Sampling Rate: As discussed earlier the sampling rate we choose was 16kHz. Though

8kHz would have been suff icient to model the speech signal without any l oss of

information. However since the other input was a musical instrument we decided t o use

a higher sampling rate.

b) Frame Size: Variable

The f rame size was variable to set to any value that gives the best output. However

select ion of an optimal f rame size is important. The f rame size should be as small as

possible to avoid large delay between the input and the output since each f rame is

outputted only after one complete f rame is processed. Opposed to this a smaller f rame

size also reduces the information content that describes the LPC coeff icients for that

f rame. So smaller the window, less accurate or less resolved are the LPC coeff icients.

Thus a window size between 250 -600 samples proves to be the good f it considering

these l imitat ions since a human ea r cannot dist inct ively identify a delay of 25 -32ms.

c) Frame Rate: For a sampl ing rate of 16kHz and a f rame size of 512 samples the f rame

rate = sampling rate/f rame size = 31.25hz . In other words in every 1/31.25 = 32ms a

new f rame is loaded.

d) Output Data Rate: The DSK outputs 16bits (1 sample) every 0.000625sec. So in 1 sec it

outputs 256kb/s or 32kB/s.

e) Code Size: ONCHIP_PROG = 51,360 bytes

 ONCHIP_DATA = 52,579 bytes

 SDRAM = 65,536 bytes

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

20

9. Function Profile Times, Speeds, Latency and Optimization

The following prof i le t imes in Table 9.1 are for a f rame size of 512 and 32 predictor

coeff icients.

 Function Name Clock Cycles Time

Hamming W indow 114,823 0.505 ms

Autocorrelat ion 69,004 0.3 ms

Levinson-Durbin 17,981 0.0791 ms

Residual 244,843 1.07 ms

Filter 267,745 1.17 ms

Table 9.1: Measured clock cycles and t ime taken for each function

Table 9.1 shows that the total processing t ime for all the functions per f rame was 2.6696ms.

Including the for loops in the main to copy data into the input variables and the output back

into the playback buffer the total processing t ime per f rame was about 5ms. The t ime taken

to load one f rame of 512 samples at a sampling rate of 16kHz is 32ms. This shows that the

processing is real fast and thus could be implemented in real t ime.

To improve the performance, we manually unrolled the innermost loops of the nested

for-loops in the f i l ter and residual functions. That is, replace the small inner loop with the

necessary number of mult iplicat ions and addit ions, direct ly referencing the array locations

to be used. In the original nested for -loop, the innermost loop is performed 32 t imes. Since

the number of iterat ions of the loop is quite large, we unrolled part of the loop so it is only

performed 8 t imes. This aids the compiler in optimization.

 Function Name Clock Cycles Time

Residual 135,713 0.597 ms

Filter 123,099 0.5416 ms

Table 9.2: Measured clock cycles and t ime taken for each function

Table 9.2 shows that after unroll ing the loops for the two functions, residual and f i l ter,

they both were around 100,000 cycles faster than the original functions. It is thus evident

that by manually unroll ing the loops, the speed of both functions increased signif icantly. To

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

21

improve the speed of crit i cal operations, we enabled code compiler to perform

optimizations. It helped to generate parallel code where possible. To enable optimization,

we set the Opt Level to “File(-o3)”, Program Level Opt. to “No Ext Func/Var Refs (-pm –

op2)” and Interl ist ing to “Opt/C and ASM (-s)”. In the Feedback menu, we check the option

box for Generate Optimizer Comments (-os). This wil l al low the sof tware to pipeline

schedules instruct ions f rom a loop so that mult iple iterat ions of the loop can execute in

parallel. From the assembly f i le the optimizer produces, we were able to obtain how many

iterat ions of the last loop not manually unrolled are run in parallel.

Function # of iterations run in paralle l

autocorrelat ion() 4 iterat ions

hamming() not qualif ied since there is a call

levinson() 4 iterat ions for the f irst loop; 2 iterat ions for the second loop

residual() 1 iterat ion for the f irst loop; 7 iterat ions for the second loop

f i l ter() 1 iterat ion for the f irst loop; 7 iterat ions for the second loop

main() 3 iterat ions for the f irst loop; 4 iterat ions for the second loop; 7
iterat ions for the third loop

Table 9.3: Compiler optimization (Level 3)

It can be seen f rom Table 9.3 that the in residual and f i l ter function, there are 7 iterat ions

found in parallel for the second loop. This number is quite strange since there are only 5

parallel i terat ions found in the assembly f i le, and as the assemble code indicated that the

compiler is only using 2 regis ters during these iterat ions. This could be a result of the

compiler f reely reordering the associative f loat ing-point operations and mistaking the

number of iterat ions. (TI Optimizing Compiler User’s Guide, section 3.9) It could also be a

result of the assembly statements that attempt to interface with the C/C++ environment or

access C/C++ variables have unexpected results. (TI Optimizing Compiler User’s Guide,

section 3.10)

In the main function, there are also 7 iterat ions found in parallel for the last lo op. Although

the number is a l i t t le bit high, it is at least conceivable , since the loop is used for export ing

data to playback buffer.

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

22

10. Errors, Problems & their Solutions

Processing t ime and playback buffer f ix :

We init ia l ly wrote our code to process the each f rame entirely between the last sample of

the previous f rame and the f irst sample of the incoming f rame, because we assumed

(naively) that the length of 1 sample (1/16000 of a second = 14,062.5 cycles) would be

plenty of t ime to do this processing. We later found, af ter prof i l ing our code, that processing

a f rame actually takes around 500,000 cycles or so, depending on the values used for

“FRAMESIZE” (number of samples per f rame) and “P_MAX” (order of the LPC f i l ter).

So instead of performing all of ou r processing between f rames, we switched to processing

each f rame while playing back the previous f rame. Thus, we gave ourselves the length of

one f rame to complete the processing, rather than just the length of one sample. We

achieved this by using Group 3’s double-buffer playback method.

There are two playback buffers, playback1 and playback2. Playback1 is f i l led while

playback2 is played back by the xmitISR() function. Then, when xmitISR() reaches the end

of the f rame, the pointers to the buffers are s wapped, and playback2 gets f i l led up while

playback1 is being played back. This method ensures that playback is always smooth, as

long as processing is done faster than the f rame takes to f inish playing back. Again, we

took this ingenious solut ion f rom Gro up 3, who generously offered it to us when we were

trying to f igure out a way to process a f rame during the previous f rame’s playback instead of

between f rames.

This method introduces a latency equal to the length of 1 f rame, which i s 32ms for a 512-

sample f rame. This negligible latency is necessary so that our processing code can f inish

completely before its output is played back.

Error gain:

The Levinson-Durbin algorithm works by f inding a f i l ter that introduces the smallest mean

squared error between the predicted values and the actual values. This small error

introduces a gain into the f i l ter when it is represented using the LPC coeff icients. If this

gain is not taken into account, the output of the vocoder is highly distorted.

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

23

We f ixed this by storing the f i l ter gain in a variable (af ter it is returned f rom the levinson()

function) and mult iplied this variable with the output for every f rame. This reduced the

distort ion in the output.

Receiving and processing two audio signals simultaneously :

At f irst we thought that the DSK, having two audio inputs (MIC -IN and LINE-IN), was

capable of processing these two inputs simultaneously. Realizing that there was nothing in

the CODEC documentation about this, we had to come up with a dif ferent solut ion.

The f irst idea we had was to take a sample in f rom the MIC -IN l ine, then quickly switch the

ADC to process the LINE-IN input, and take a sample f rom LINE -IN, and continue switching

back and forth between MIC-IN and LINE-IN at 16 kHz. This would have produced

satisfactory results because it would have enabled us to take in both inputs more or less

simultaneously. However, it seems that the ADC does not fully switch f rom one input to

another fast enough (1/32000 of a second) for this method to work, and the result was that

both signals were bleeding into the other signal’s input buffer.

We then realized that we could simply use the LINE -IN input for both signals. LINE-IN,

being a stereo input, can receive two mono signals simultaneously, and this was perfect for

our project since a microphone and an instrument both produce mono signals. The problem

with this solut ion was that both the instrument signal and the microphone signal were what

is referred to as “mic-level” signals (a few mill ivolts), while the LINE -IN jack is designed for

“l ine-level” signals (around 1 volt). Thus, our input signals needed to be amplif ied by a

couple of orders of magnitude before they would be of any use.

At f irst we tried to solve this problem using microphone amplif iers f rom Radio Shac k, but

these proved to be too noisy and not loud enough. So instead we simply used our desktop

workstat ion as a microphone pre -amp (many computers with sound cards have a sett ing to

output direct ly f rom the microphone) to boost the signal to l ine level, a nd this produced

wonderful results. For the guitar, we at f irst used a second computer as the amplif ier, then

switched to a real guitar amplif ier (since that’s what they are for) which was already in the

possession of one of our members at the t ime.

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

24

Testing with the correct waveforms:

Formant f i l ters (the type of f i l ter that we are using) work by shaping the power spectrum of

the upper f requency bands of an input. Therefore it was impossible to use a sine wave as

the test signal for the instrument input, since a sine wave, having no f requency components

other than its fundamental, is not affected by the applicat ion of such a f i l ter. For this

reason, it is also impractical to use a square wave or a triangle wave for test ing, since

these also have much lower energy in the upper f requency bands than in the fundamental.

Once we began using a pulse wave (a signal with lots of high -f requency energy) as the test

excitat ion signal, our test results made much more sense. (The source-f i l ter model for a

human voice uses a pulse wave as the excitat ion, so this was the obvious choice).

11. Code Information

Vocoder using LPC:

Code type: Matlab code

Source: Given to us by Prof. Richard Stern (CMU)

Description: This Mat lab code takes a speech waveform f rom a f i le and shows how LPC

analysis is used to separate the formant structure of speech and re -synthesize it using a

pulse waveform generated by the code itself . It uses overlapping to obtain better speech

resolut ion (clarity) and has a f requency variable which can be changed (100hz, 200hz etc)

to set the f requency of the pulse wave which is used as the excitat ion signal. It can be

observed that by changing the f requency of the pulse wave the pitch of the speech at the

output changes accordingly, regardless of the original speech signal. The characterist ic

voice of the person speaking is lost and the output sounds robotic (the ch aracterist ic of a

pulse waveform). This code was not writ ten to work in real -t ime but it processed a stored

sound f i le in the wave format.

Instrument LPC:

Code type: Matlab code

Source: We wrote the code ourselves.

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

25

Description: Using Prof . Stern ’s Matlab code as a reference, we made our own Matlab code

modeling our vocoder. Two f i les, a speech f i le and an instrument f i le , are loaded into

Matlab. The code performs LPC analysis simila r to Prof . Stern ’s code on the speech signal

but that is extended to perform LPC analysis on the instrument signal too. The residual is

then computed by passing the instrument signal through an inverse f i l ter generated by its

own LPC coeff icients. This residual is used as an excitat ion signal to re -synthesize speech.

In this code the f rame size and the number of LPC coeff icients are variable. These can be

changed accordingly to observe how the output varies with dif ferent f rame sizes and number

of LPC coeff icients. This can be use to f ind the optimum specif icat ions to produce a

desirable output. This code is also not real -t ime.

Hamming Window:

Code type: C code

Source: We wrote this code ourselves

Description: This function applies the Hamming window def ined by the following equation,

Autocorrelation:

Code type: C code

Source: Online [5]

Description: This function computes the P+1 autocorrelat ion values of a signal of length

f rame size where P is the order of predictor coeff icients that are used to describe the

formant structure.

Levinson-Durbin:

Code type: C code

Source: Online [5]

Description : The Levinson-Durbin function computes the LPC coeff icients f rom the

autocorrelat ion values that were calculated earlier using the Levinson -Durbin recursive

algorithm that was discussed earlier. Along with the predictor coeff icients it also gives the

ref lect ion coeff icients and the error or each f rame. In our applicat i on since we do not use

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

26

the ref lect ion coeff icients we discard them. However they are calculates since they are used

to predict the next coeff icients.

Residual:

Code type: C code

Source: We wrote this code ourselves

Description: This function calculates the residual of the instrument by passing the original

signal through an inverse f i l ter (FIR f i l ter) generated using the LPC coeff icients of the

original instrument signal itself .

Filter:

Code type: C code

Source: We wrote this code ourselves

Description: This function applies the AR (all -pole) f i l ter to the excitat ion signal (residue of

instrument) to obtain the output.

12. Demonstration

In the demonstrat ion , the instrument we selected was an electric guitar which was plugged

into a guitar amplif ier whose output was fed into the DSK. We demonstrated the functioning

of the vocoder by singing into the microphone and simultaneously playing the guitar. The

output was fed into a speaker system that played it out loud. At f irst we demonstra ted the

clarity of the speech and its recognit ion in the output. We then varied the number of

predictor coeff icients (P) and showed that when P is too small the speech formants are not

well def ined and so the output speech is less recognizable. On increasi ng the predictor

coeff icients (P) the speech in the output got clearer. However, when P was increased too

much with a small f rame size the t ime taken for processing increased for greater P and so

the output had some distort ion, which sounded like whispers. Next we varied the frame size

to show how having a larger f rame size caused more delay since the latency was 1 f rame

since at one t ime an entire f rame is processed and then outputted altogether. By reducing

the f rame size too much, the information to form the f i l ter was too l it t le and so the

resolut ion of the predictor coeff icients reduced.

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

27

13. Final Work Schedule

Since we did not f ind any papers online that exactly described our applicat ion we had to

f irst study papers which described the use of LPC for othe r applicat ions such as voice

compression and transmission in telecommunication. We then studied the MATLAB code

that we got f rom Prof . Stern. This gave us a basis for understanding the algorithm , as well

as a convenient way to test dif ferent sett ings . We then re-wrote that code in MATLAB to suit

our project ’s purposes, then re-wrote that code in C and made it run in real -t ime on the

DSK.

Table 13.1: Final Work Schedule

Week Task Person

October 5 Studied Prof . Stern ’s MATLAB code Prit ish, Laura

 Wrote MATLAB code for our applicat ion Prit ish, Chris

October 12 Wrote C code to implement the Hamming
window, residue and f i l ter functions

Prit ish

 Implemented C code that we found online for
autocorrelat ion and Levinson -Durbin recursion

Prit ish

October 19 Test inputt ing 2 signals to the DSK
simultaneously

Chris, Laura

 Run parallel inputs together in real -t ime without
any processing

Laura

October 26 Implemented C code for the functions on the
DSK and compared them to the results obtained
by MATLAB

Laura, Prit ish

November 9 Adjusted C code for the DSK to process the
signals and run them in real-t ime

Chris

November 16 Debugged the code to run in real -t ime without
delay with correct processing

Chris, Prit ish

 Tested using excitat ion signal as produced f rom
a function generator

Everyone

November 23 Improved code by adding error correct ion and
reduced output distort ion and improved speech
clarity

Everyone

 Prof i led functions, optimized code and manually
unrolled loops to improve processing speed

Everyone

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

28

14. References

[1] The Source-Fil ter Model Lives, a paper by Martin Rothenberg at the voice

foundation 37 th Annual Symposium.

http://www.rothenberg.org/source-fi l ter- l ives/Source-Fil ter-Lives-paper-as-

presented5.pdf

-This paper explains under which condit ions the source -f i l ter model can be used for voiced

speech and how the vocal tract can be digitally modeled using LPC.

[2] Bob Beauchaine. A Simple LPC Vocoder.

http://www.bme.ogi.edu/~ericwan/EE586/Students/Vocoder.pdf

-Describes vocal tract modeling using LPC and separation of formant structure from the signal.

[3] http://cnx.org/content/m10482/latest/

-Theory of LPC analysis and Synthesis

[4] Nelson Lee, Zhiyao Duan and Julius O. Smith III. Excitation Signal Extraction for Guitar Tones.

https://ccrma.stanford.edu/~nalee/Publications_files/icmc07-1.pdf

-This paper describes the different methods that are used for extracting an excitation signal from a guitar

signal.

[5] http://www.musicdsp.org/showone.php?id=137

-We got the C code for autocorrelat ion and Levinson Durbin recursion f rom this webpage. It

is a repository of various functions and algorithms that can be used for music processing.

[6] Towards A Real -Time Implementation of Loudness Enhancement Algori thms on a

Motorola DSP 56600- Adnan H. Sabuwala

http://www.rothenberg.org/source-filter-lives/Source-Filter-Lives-paper-as-presented5.pdf
http://www.rothenberg.org/source-filter-lives/Source-Filter-Lives-paper-as-presented5.pdf
http://www.bme.ogi.edu/~ericwan/EE586/Students/Vocoder.pdf
http://cnx.org/content/m10482/latest/
https://ccrma.stanford.edu/~nalee/Publications_files/icmc07-1.pdf
http://www.musicdsp.org/showone.php?id=137

F a l l 2 0 0 9 , G r o u p 6 – T h e M u s i c R e a l l y S p e a k s T o M e

29

http://etd.fcla.edu/UF/UFE0000602/sabuwala_a.pdf

-Page 53 talks about the comparison in clock cycles, between the W idrow -Hoff and

Levinson-Durbin Algorithm. This paper also talks about the advantages of using W idrow-

Hoff algorithm for telecommunication as a replacement for Levinson -Durbin recursion. In

addit ion i t contains assembly code for Levinson Durbin, FIR & IIR f i l ters and the LMS

adaptive algorithm.

[7] A.O.Afolabi , A.Will iams and Ogunkanmi Dotun. Development of text dependent

speaker identi fication securi ty system.

http://medwel l journals.com/ful l text/r jas/2007/677 -684.pdf

-This paper shows how cepstral analysis can be used in speaker identif icat ion in security

systems.

[8] www.data-compression.com

-This website is a repository of programs and papers on data -compression. They have

various codes for LPC such as LPC-10, MELP 1.2 etc. Though we did not use any code f rom

this website since the LPC code was writ ten for telecommunication, it is a useful page to

understand LPC and other compression methods for audio and image processing

[9] http://www.youtube.com/watch?v=_D54kHes_cI

-Commerc ial applicat ion of the vocoder effect that we developed.

http://etd.fcla.edu/UF/UFE0000602/sabuwala_a.pdf
http://medwelljournals.com/fulltext/rjas/2007/677-684.pdf
http://www.data-compression.com/
http://www.youtube.com/watch?v=_D54kHes_cI

