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1. Abstract 

 For  our 551 project , we implemented a real-t ime, musical vocoder on the DSK.  We 

use the term “musical vocoder” to dist inguish our project f rom the other kinds of vocoders; 

namely, the telecommunications vocoder and the phase vocoder.  The primary method we 

used was l inear predict ive coding (LPC), which was accomplished using the Levinson -

Durbin algorithm.    

2. The Problem 

A musical effect that has been popular for decades is making an instrument sound as 

though it  is talking.  The musical applicat ions for doing this are extremely diverse, but two 

of  the most popular uses are making a human voice sound robotic (see ELO’s “Mr. Blue 

Sky” or Styx’s “Mr. Roboto”),  and causing one human voice to sound l ike many (see Infected 

Mushroom’s “Cit ies of  the Future”).  One of  the earliest methods of  achieving this was a  

“Talk  Box”, used heavily by Peter Frampton.  This device was basically just a speaker with a 

tube that was inserted into the mouth, so that when the guitar was played, the note of  the 

guitar was transferred to the user’s mouth, which could then be shaped by the mouth to 

form speech-like sound.  Following soon af ter was the analog musical  vocoder (Vocal 

Coder), a device that accomplishes the same thing, except instead of  direct ly shaping the 

sound with one’s mouth, the user speaks into a microphone and the formants f rom the 

user’s speech are applied to the guitar.  Our project models a musical vocoder on the 

C67 DSK .  W ith a vocoder, not only is it possible to make your voice sound l ike anything 

(especially when used with a synthesizer),  i t  also can be used to create vocal harmonies 

when given mult iple excitat ion signals, the goal of 2006’s Group 9. Our vocoder uses two 

inputs, a microphone (for speech) and a l ine -in (for excitat ion instrument).  LPC is  

performed on both inputs, the instrument signal is inverse f i l tered to produce its residue 

(excitat ion) signal,  which is then used as the input to a (dif ferent) f i l ter which models the 

formant structure of the microphone input.  The ou tput of this combination is the sound of 

the input instrument speaking the words uttered by the user into the microphone.  
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3. Novelty 

There are two main aspects to the novelty of  any project:   

1. The project or goal itself ,  and 

2. The algorithms/methods used to achieve that goal.  

Our project is novel for item #1 in that no other group has used the DSK for the exact 

applicat ion we are using it  for;  that is, modeling an analog vocoder (combining speech and 

music components). The project with the closest relat ion  to ours in this respect is the “Sing -

Synth” project f rom 2003’s Group 9.  Theirs is simi lar to ours in that it  combines two signals 

(the user’s voice and a synthesized musical signal) to produce the output.  However, their 

approach (item #2) is  completely  dif ferent f rom ours, as they used pitch detect ion and 

subtract ive synthesis rather than l inear predict ion.  The result  is that their method results in 

only the note being preserved f rom the user’s voice, while in our project,  the words the user 

is saying (the formants) are preserved instead, while the actual note is discarded.  

As for item #2, our approach is l inear predict ion, which has been used in many previous 551 

projects. Some of these projects dealt  with coding speech signals to transmit them more 

qu ickly and eff iciently (e.g. the CDMA Modem project f rom 2000’s Group 16), while others 

have dealt with speech morphing.  When taking both item #1 and item #2 into account, 

these speech morphing projects (e.g. “Hey, stop sounding l ike me!”) are the most sim i la r to  

ours, since they tried to make a person sound l ike another person, while we have tried to 

make a guitar sound l ike a person.  However, our project contains an addit ional challenge 

since we are sampling both input signals in real -t ime, while all of  the speech-morphing 

projects had at most one input and a training set.  

 It  must also be noted that, while our project sounds l ike it  might relate to projects  

using a “phase vocoder” algorithm (such as 2008’s Group 2), it  does not.  This is because of 

the two dif ferent uses of  the word “vocoder”: one (“ musical vocoder”) is a device that 

combines speech and an excitat ion signal,  which our project aims to model (item #1), while  

the other, (“phase vocoder”) is a computer algorithm (item #2) used for many things , 

including t ime scaling and pitch shif t ing, but not combin ing dif ferent signals together.  The 
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phase vocoder is simply named af ter the musical vocoder because it  works simi larly  

(separating excitat ion signals f rom residue signals, processing, then recombin ing); however, 

they are quite dif ferent because one IS an applicat ion (our project) while the other HAS an 

applicat ion.  To be even more clear : 

Our Project:       2008 Group 2: 
1. Goal:  Combine speech and music (musical vocoder) 1. Goal: Beat detection/synchronization 
2. Method/Algorithm: LPC using Levinson-Durbin 2. Method/Algorithm: STFTs and phase vocoder 

 

4. Solution 

To obtain an output to sound l ike the musical instrument talking we separated the formant 

structure of the speech and then applied  the shape of  that formant structure to the 

excitat ion signal that we formed by generating the residual of  the instrument signal  [ 4 ] .  

Separating the formant structure is done using Linear Predict i ve Coding which f rom now on 

wil l be referred to as LPC. Figure 4.1 shows a very simple f low diagram of  the process we 

used to compute the desired output.  

 

Figure 4.1: Simple f low diagram of our solution 
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The following steps explain the procedure shown in Figure 4.1. A detailed explanation of 

this procedure is discussed later once the algorithm is explained.  

a) The two inputs are fed into each channel of the l ine-in and are sampled direct ly by the 

ADC of  the C67 DSK. A Hamming window is used to operate on  the microphone signal  

so that the coeff icients wil l  have all  the required information and drast ic f requency 

changes at the beginning and end of  each f rame due to Gibbs phenomena are avoided.  

The size of  the f rame selected is crit ical to the delay and resolut ion of speech. This is 

discussed later. 

b)  The LPC coeff icients for both the inputs are  calculated. New LPC coeff icients are  

calculated once every f rame 

c) The LPC coeff icients f rom the microphone signal are used to develop a  f i l ter.  The LPC 

coeff icients of  the instrument signal are  used to generate the excitat ion signal f rom the 

musical instrument.  

d) The residue is calculated by passing the instrument signal through an inverse f i l ter 

developed by the signal ’s own LPC coeff icients. 

e) This residual signal wil l  function as the excitat ion signal which is then passed through 

the f i l ter created by the LPC coeff icients of the speech signal. 

f ) The output thus formed has the characterist ic sound of the musical instrument , f i l tered 

to sound as though it  is talking . 

5. What is Linear Predictive Coding or LPC? [1]  

The source-f i l ter model of  speech production  models speech as a  combination of  a sound 

source (i.e. the vocal cords), and a l inear acoustic f i l ter,  the vocal tract  (and radiat ion 

characterist ic).  An important assumption that is made in the use of  the source -f i l ter model is  

the independence of source and f i l ter.  In such cases, the model should more accurately be 

referred to as the "independent source-f i l ter model".  

http://en.wikipedia.org/wiki/Vocal_cords
http://en.wikipedia.org/wiki/Vocal_tract
http://www.rothenberg.org/source-filter-lives/Source-Filter-Lives-paper-as-presented5.pdf
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Figure 5.1: Analogy between source fi l ter model for voice production and  

A digital  system using LPC [ 1 ]  

 

Linearity is def ined mathematically for a system (or mathematical function) that has an 

independent variable (the input) and a dependent variable (the output).  The term describes 

certain relat ions between the input and output. Without going into mathematic al detail,  i t  

can be shown that a hard -walled system of  tubes with no sharp bends, extreme 

constrict ions or sharp project ions into the f low path (demonstrated as a trumpet horn) is a 

l inear acoustic system for sounds of  reasonable amplitude. The vocal trac t is a fairly l inear 

acoustic system, if  vibrat ion of  the softer walls, such as the cheeks or velum can be 

neglected. Physiological systems are generally non -linear, though a l inearity assumption is 

plausible and is required for our applicat ion.  

LPC starts with the assumption that a speech signal is produced by a buzzer at the end of a 

tube (voiced sounds), with occasional added hissing and popping sounds ( sibilants and 

plosive sounds). Although apparently crude, this model is actually a close approximation to 

http://en.wikipedia.org/wiki/Sibilant
http://en.wikipedia.org/wiki/Plosive
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the reality of  speech production. The glott is (the space between the vocal folds) produces 

the buzz, which is characterized by its intensity (loudness) and f requency (pitch). The vocal 

tract (the throat and mouth) forms the tube, which is characterized by its resonances, which 

give rise to formants, or enhanced f requency bands in the sound produced. Hisses and pops 

are generated by the act ion of  the tongue, l ips and throat during sibilants and plosives.   

LPC analyzes the speech signal by est imating the formants and est imating the intensity and 

f requency of  the remaining buzz.  This decomposit ion of  speech sounds is done in two parts: 

1. A f i l ter function consist ing of  LPC coeff icients 
 

2. A source function which is the excitat ion signal  of a musical instrument in our applicat ion 
but can also be a person ’s voice  or an impulse signal generated by a computer at a 
part icular fundamental f requency.  
 

A vocoder uses the LPC coeff icients and re -synthesizes speech by f i l tering the excitat ion 
signal through the speech f i l ter (i.e . f i l tering 2 through 1) . 
 
 

 

Figure 5.2: Shows how LPC depicts the fi l ter response of the original signal  [ 2 ] 

http://en.wikipedia.org/wiki/Glottis
http://en.wikipedia.org/wiki/Formants
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6. The Levinson Durbin Algorithm to calculate LPC [3]  

There are three types of  f i l ter design modeling that can be used.  

1. The moving average (MA) model has zeros but not poles:  

H(z) = B(z)  

2. The autoregressive (AR) model has poles but not zeros:  

H(z)= G/A(z)  

3. The third type of  model has both poles and zeros and is called the autoregressive  

moving average (ARMA) model:  

H(z)= B(z)/A(z)  

 

Of  the three types of  f i l ter design by modeling, the all -pole AR model is the most  

commonly used, largely  because the design equations used to obtain the best -f it  AR model 

are simpler than those used for MA or  ARMA modeling. Serendipitously, the all -pole model 

also has the abil i ty to describe most types of speech sounds quite well,  and for that reason 

we have used it  in our vocoder. 

 

 

Figure 6.1: The Autoregressive Moving Average (All Pole) Model  
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The transfer function for an all -pole f i l ter model can be given by:  

 

Where H(z), Y(z) and X(z) are the z -transforms of the f i l ter,  output and input respectively. 

Gain is denoted by G, α k
( P)

  denotes the LPC coeff icients of a P t h  order model. 

Since the representat ion is not orthogonal, all the coeff icients change when the order of  the 

model (P) changes. 

The inverse z-transform of  this function would yield: 

 

Now we want to obtain a f i l ter transfer function of  the form in Eq(1) to an arbitrary desired 

f i l ter transfer function, H d(z).  This is done by minimiz ing the average square error between 

the magnitude of  the f requency response of the desired f i l ter H d(e j ω) and all the all -pole 

f i l ter that is obtained H(e j ω). 

 

Applying Parseval’s theorem to Eq. (3)   we obtain, 

 

Since h[n] is the system’s response to the unit  sample function δ[n],  we obtain f rom Eq. (2),  
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And  

 

For a part icular model order P we solve for each  α k by writ ing Eq. (6) with a dif ferent 

internal dummy variable, obtaining the derivat ive of  ξ 2  with respect to α k and sett ing the 

result  to zero. 

 

Since the system is causal G wil l not enter into the solut ion. Hence our f inal form is,  

 

Using the auto-corre lat ion function symbol Φ[m] this Eq boils down to,  
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Assuming here that P=4 (4 predictor coeff icients) .  

It  can be writ ten in the form of  a vector such as,  

 

This is of  the form: 

Rα = P 

where R is a P X P matrix of  autocorrelat ion coeff icients, α  is a P X 1 vector of  the {αk},  and 

P is a P X 1 vector of  autocorrelat ion coeff icients. This equation is known as the Wiener-

Hopf equation. 

A direct solut ion to the Wiener Hopf  equation can be obtained by pre -mult iplying both sides 

by the inverse of  R: 

α=  R - 1  P 

The inversion of the R matrix can be accomplished by Gaussian elimination and other 

simila r techniques, 

which are in O(N 3)computational complexity. In our project ,  however, a simpler solut ion 

known as Levinson-Durbin recursion is used because the correlat ion matrix R is Toeplitz;  al l  

the matrix elements of  each diagonal, major and minor, are identical .  Exploit ing this  

symmetry the   Levinson-Durbin recursion has a complexity of  O(N2).  

 

6.1 The Levinson - Durbin recursive Algorithm: 

Levinson-Durbin recursion provides for {αk} a faster solut ion for in the system of  equations  

for situations in which the matrix on the left  side of  the equation is a Toeplitz matrix. In our 

applicat ion, the {αk} represent the autocorrelat ion coeff icients o f  the random process y[n].  

The solut ion {αk} are the P t h  - order predictor coeff icients for the best -f it  l inear predict ive 

model that transforms a white random process x[n] into a random process that has 

autocorrelat ion coeff icients phi according to the equation.  
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The equations of  the Levinson -Durbin recursion, which are used to compute the 

corresponding ref lect ion  coeff icients and LPC parameters are:  

 

 

The coeff icients {k i} for 1 ≤ i  ≤ P   are referred to as the ref lect ion coeff icients. They 

constitute an alternate specif icat ion of  the random process y[n] tha t is as unique and 

complete as the LPC predictor coeff icients {a k
( P)}.  The ref lect ion coeff icients are not 

required in our applicat ion and so they are discarded in our project but they have to be 

computed since they are required to calculate the next LPC c oeff icients. 

If  the magnitude of  the ref lect ion coeff icients |k i | is less than 1 for 1 ≤ i  ≤ P  ,  all of the roots 

of the polynomial  

  

wil l  l ie ins ide the unit  circle. This means that if  |ki| < 1, the result ing f i l ter H(z) wi l l  be  

stable. It  can be shown that deriving {k i} the in the fashion described above using Levinson -
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Durbin recursion guarantees that |ki |< 1. This means that the Levinson Durbin Algorithm 

guarantees that the system is a lways stable.  

6.2 Comparison of Levinson-Durbin (LD) Algorithm with other algorithms: 

LD v/s Cholesky Decomposit ion: The Cholesky decomposit ion is a method used to f ind the 

inverse of  a matrix  which has Hermit ian Symmetry . However the computational complexity 

of  the Cholsky decomposit ion is O(N3) as compared to the LD algorithm which is O(N2)  

since LD exploits the fact that LPC analysis has Toeplitz Symmetry.  

LD v/s Schur Decomposit ion: The Schur decomposit ion states that every square matrix A 

is unitari ly similar  to an upper triangular matrix T  with A=UHTU.  This method is also slower 

than the LD algorithm.  

LD v/s Widrow-Hoff (Least mean square or LMS) a lgorithm: The W idrow algorithm is not 

a l inear predict ion algorithm but an adaptive f i l ter technique that can be used to predict the 

f i l ter structure similar to LPC. Howe ver the W idrow-Hoff algorithm does not guarantee 

minimum phase systems and stabil i ty. Since LD creates a minimum phase system (all poles 

and zeros l ie within the unit  circle) so it  is always stable and even its inverse is always 

stable.  It  is important tha t the system is minimum phase since we use the inverse f i l ter to 

f ind the residual.  Although the Widrow-Hoff method is a more elegant and accurate method 

of predict ion, it is considerably slower than the Levinson -Durbin Algorithm. Table 6.2.1 

shows the comparison of clock cycles per f rame for a 180 sample f rame size with speech 

sampled at 16kHz. [ 6 ]  

 

Table 6.2.1: Comparison of the overall t ime taken by the Widrow-Hoff and Levinson 
Durbin Algorithm [ 6 ]  



F a l l  2 0 0 9 ,  G r o u p  6  –  T h e  M u s i c  R e a l l y  S p e a k s  T o  M e  
 

 

15 
 
 

7. Procedure and Algorithm 

Input: As we stated earlier,  we  needed to input two signals to the C67 DSK simultaneously. 

One was f rom the microphone and the other the musical instrument. For this we used the 

stereo l ine-in input of  the DSK. Since the l ine -in is a stereo input we fed both, the 

microphone and the inst rument, to each individual channel of the l ine-in of  the DSK. The 

microphone was fed into the right channel while the instrument into the lef t  channel. (The 

reason why we couldn’t  use both the l ine -in and the mic-in simultaneously to sample the two 

inputs is discussed in later Section 10) Since the microphone and instrument signals are 

implicit ly mono there was no loss of  information by feeding them mono into the DSK (i.e 1 

on each channel of  the stereo input).  Pre-amplif iers were required before feeding the 

signals into the l ine-in since the microphone and instrument (guitar in our demo) s ignals are 

of the order of a few mill i volts. They thus have to be amplif ied to ~1 volt  before inputt ing 

them to the l ine-in of  the DSK. 

The two signals were sampled at a rate of 16kHz .  Since all  speech information is present 

between about 500-3500 Hz, we could do with a sampling rate of  8 kHz to accurately 

capture all of the vocal f requencies  but since one of our inputs was a musical instrument we 

decided to select a higher sampling rate to accommodate higher f requencies which would be 

generated by the instrument.  

Once the inputs were sampled by the ADC (analog-to-digital converter) of  the DSK they 

were stored in a circular buffer. A c ircular buffer is a buffer which is only a f ixed length long 

(f ixed memory locations). Once the buffer is fully accumulated the pointer wil l  move back to 

the f irst location of  the buffer and wil l s tart replacing t he old data. Figure 7.1 shows the 

working of a circular buffer.  
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Figure 7.1: Functioning of a Circular Buffer  

Each piece of  data stored in the buffer is a 32 -bit  unsigned integer value with the lower 16 

bits holding the data of the right channel (micropho ne) and the upper 16 bits holding the 

data of  the left  channel (instrument).  W e split  these signal’s data into two separate f loat ing 

point buffers to process them individually. Since the Levinson -Durbin recursive algorithm 

works on f loat ing point we had to  type cast them to f loat ing point  values. 

Processing:  Al l the processing that was done in our project was done on the DSK. We did 

not need to use the computer for any part of  the processing since the memory and 

processing power of  the DSK was suff icient fo r our applicat ion. The clock cycles and t ime 

taken to run these functions are described in Section 9. 

The operations or processing was broken up into 6 steps.  

a) Windowing:  Just processing on a short f rame of  data assumes a rectangular window. 

This means that the entire input signal is mult iplied by a rectangular function which is 1 

for durat ion of  the f rame and 0 otherwise. Using a rectangular window on the input 

causes Gibbs phenomena to occur on the f rame. Gibb s phenomena are the ringing 

art ifacts that occur during processing as a result  of  the abrupt cutoffs at the beginning 

and end of  the f rame.  The method to avoid this is to window the signal choosing an 

appropriate window function. In our applicat ion we choose a Hamming window since its  

f requency response is more tapering in the higher f requencies and so it  f i l ters the higher 
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f requencies better. The length or size of the window function is def ined by the f rame 

size. A hamming window is def ined by the expression,  

 

where n is the length of  the window (f rame size in our case).  

 

Figure 7.2: The Hamming window and its frequency response  

b) Autocorrelation [ 5 ] : To calculate the LPC coeff icients using the Levinson -Durbin  

algorithm, P+1 autocorrelat ion values of the signal are required (where P is the order of  

the LPC), as shown previously in Section 6.  Autocorrelat ion can be calculated by 

shif t ing the copy of  the signal over itself  and summing up all the overlapping values of  

both functions over n (where n are samples). It  is computed using the following 

expression. 

 

c)  Levinson-Durbin Recursion [ 5 ] : The Levinson-Durbin recursive algorithm as was 

discussed in Section 6 is used to compute the P order LPC coeff icients using the 

autocorrelat ion values that were computed earlier.  This algorithm calculates P 

coeff icients f rom P+1 autocorrelat ion values ite rat ively. Along with the LPC coeff icients 
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the algorithm also computes the ref lect ion coeff icients which are not required to form 

the all-pole f i l ter but are needed to predict the next LPC coeff icients. It  also returns the 

deviat ion or error between the actual f requency response and the predicted response for  

each f rame. The error obtained for each frame is to be divided by 10000 2  since it  has to 

be normalized l ie between 0 -1. Since the ADC of  the DSK gives values between -10000-

10000 instead of 0 -1. 

d) Residual [ 4 ] : The original signal of  the instrument contains a f i l ter shape of the 

instrument (characterist ic of  the instruments body, pick -ups, electrical f i l ter due to l ine 

inductance and shunt capacitance).  The residual of  the signal is obtained by separating 

the original signal of  the instrument f rom its formant structure. This is done by f inding 

the formant shape using LPC analysis and then passing the original signal on the 

instrument through an inverse f i l ter generated by its own LPC coeff icients (i.e . an all-

zero or FIR f i l ter).This residue  is used as an excitat ion signal which is shaped by the 

speech formants. Using the original signal direct ly as the excitat ion would lead to a n 

output signal containing both  the f i l ter shape of the instrument and the  speech which  

would distort the output.  It  is important to take care of  the init ia l condit ions while  

applying a f i l ter to any signal.  Here since P LPC coeff icients are used the order of  the 

f i l ter is P. Thus the instrument signal variable has P init ia l val ues to compute the output 

of  the f irst sample. So the size of  the instrument variable we used was f rame size + P 

and at the end of  every f rame the f irst P samples of  the instrument were overwrit ten with 

the P last input values of that f rame which were the init ia l condit ions of the next f rame.  

So the f irst actually input sample was the P t h  sample of  the input variable since the 

previous P samples were just init ia l condit ions.  

e) Filter:  To obtain the desired output f inally the residual of  the instrument has to be 

passed through an all -pole (autoregressive) f i l ter developed using the LPC coeff icients 

of  the speech signal.  This applies the shape of  the speech formants to the residual.  The 

function implemented is a simple dif ference equation of  the form  

output[n] = input[n] + Σ α k  output[n-k]  

where the summation k ranges f rom 0 to P (order of LPC coeff icients computed) for the 

n t h  sample.  It  is important to take care of the init ia l condit ions while applying a f i l ter to 

any signal.  Here similar to the residual function, to take care of  the init ia l condit ions the 

output variable was f rame size + P samples long and at the end of  every f rame the f irst 
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P values of  the output variable were overwrit ten by the last P samples of  that f rame 

which became the init ia l condit ions for the next f rame.  So the f irst actually output 

sample was the P t h  sample of  the output variable  since the previous P samples were just 

init ia l condit ions.  

f) Output :  The f inal stage is the output. The output is then stored  in an output buffer which 

can be sent to the l ine -out. One output and one playback buffer was used to avoid 

overwrit ing of  old data if  the processing speed is faster than the output speed. This  

technique is called the ping -pong technique by which processing of  the next frame 

continues while the DSK outputs the values of  the previous f rame.  

8. Specifications 

a) Sampling Rate:  As discussed earlier the sampling rate we choose was 16kHz. Though 

8kHz would have been suff icient to model the speech signal without any l oss of  

information. However since the other input was a musical instrument we decided t o use 

a higher sampling rate.  

b) Frame Size:  Variable  

The f rame size was variable to set to any value that gives the best output. However 

select ion of  an optimal f rame size is important. The f rame size should be as small as 

possible to avoid large delay between the input and the output since each f rame is  

outputted only after one complete f rame is processed. Opposed to this a smaller f rame 

size also reduces the information  content that describes the LPC coeff icients for that 

f rame. So smaller the window, less accurate or less resolved are the LPC coeff icients.  

Thus a window size between 250 -600 samples proves to be the good f it  considering 

these l imitat ions since a human ea r cannot dist inct ively identify a delay of  25 -32ms. 

c) Frame Rate:  For a sampl ing rate of  16kHz and a f rame size of  512 samples the f rame 

rate = sampling rate/f rame size = 31.25hz . In other words in every 1/31.25 = 32ms a  

new f rame is loaded. 

d) Output Data Rate: The DSK outputs 16bits (1 sample) every 0.000625sec. So in 1 sec it  

outputs 256kb/s  or 32kB/s. 

e) Code Size:  ONCHIP_PROG = 51,360 bytes  

          ONCHIP_DATA = 52,579 bytes 

                            SDRAM = 65,536 bytes 
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9. Function Profile Times, Speeds, Latency and Optimization 

The following prof i le t imes in Table 9.1 are for a f rame size of  512 and 32 predictor 

coeff icients. 

         Function Name            Clock Cycles                 Time 

Hamming W indow 114,823 0.505 ms 

Autocorrelat ion 69,004 0.3 ms 

Levinson-Durbin 17,981 0.0791 ms 

Residual  244,843 1.07 ms 

Filter  267,745 1.17 ms 

Table 9.1: Measured clock cycles and t ime taken for each function  

Table 9.1 shows that the total processing t ime for all the functions per f rame was 2.6696ms. 

Including the for loops in the main to copy data into the input variables and the output back 

into the playback buffer the total processing t ime per f rame was about 5ms. The t ime taken 

to load one f rame of  512 samples at a sampling rate of  16kHz is 32ms. This shows that the 

processing is real fast and thus could be implemented in real t ime.  

To improve the performance, we manually unrolled the innermost loops of  the nested 

for-loops in the f i l ter and residual functions. That is, replace the small inner loop with the 

necessary number of mult iplicat ions and addit ions, direct ly referencing the array locations 

to be used. In the original nested for -loop, the innermost loop is performed 32 t imes. Since 

the number of  iterat ions of the loop is quite large, we unrolled part of  the loop so it  is only 

performed 8 t imes. This aids the compiler in optimization.  

         Function Name            Clock Cycles                 Time 

Residual  135,713 0.597 ms 

Filter  123,099 0.5416 ms 

Table 9.2: Measured clock cycles and t ime taken for each function  

Table 9.2 shows that after unroll ing the loops for the two functions, residual and f i l ter,  

they both were around 100,000 cycles faster than the original functions. It  is thus evident 

that by manually unroll ing the loops, the speed of  both  functions increased signif icantly.  To 
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improve the speed of  crit i cal operations, we enabled code compiler to perform 

optimizations. It  helped to generate parallel code where possible. To enable optimization, 

we set the Opt Level to “File( -o3)”, Program Level Opt. to “No Ext Func/Var Refs ( -pm –

op2)” and Interl ist ing to “Opt/C and ASM ( -s)”.  In the Feedback menu, we check the option 

box for Generate Optimizer Comments ( -os). This wil l  al low the sof tware to pipeline 

schedules instruct ions f rom a loop so that mult iple iterat ions of  the loop can execute in 

parallel.  From the assembly f i le the optimizer produces, we were able to obtain how many 

iterat ions of  the last loop not manually unrolled are run in parallel.  

Function # of iterations run in paralle l  

autocorrelat ion() 4 iterat ions 

hamming() not qualif ied since there is a call  

levinson() 4 iterat ions for the f irst loop; 2 iterat ions for the second loop  

residual()  1 iterat ion for the f irst loop; 7 iterat ions for the second loop  

f i l ter() 1 iterat ion for the f irst loop; 7 iterat ions for the second loop  

main()  3 iterat ions for the f irst loop; 4 iterat ions for the second loop; 7 
iterat ions for the third loop 

Table 9.3: Compiler optimization (Level 3)  

It  can be seen f rom Table 9.3 that the in residual and f i l ter function, there are 7 iterat ions 

found in parallel for the second loop. This number is quite strange since there are only 5 

parallel i terat ions found in the assembly f i le, and as the assemble code indicated that the 

compiler is only using 2 regis ters during these iterat ions. This could be a result  of  the  

compiler f reely reordering the  associative f loat ing-point operations and mistaking the 

number of  iterat ions. (TI Optimizing Compiler User’s  Guide, section 3.9) It  could also be a 

result  of  the assembly statements that attempt to interface with the C/C++ environment or 

access C/C++ variables have unexpected results.  (TI Optimizing Compiler User’s Guide, 

section 3.10) 

In the main function, there are also 7 iterat ions found in parallel for the last lo op. Although 

the number is a l i t t le bit  high, it  is at least conceivable , since the loop is used for export ing 

data to playback buffer.  
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10. Errors, Problems & their Solutions 

Processing t ime and playback buffer f ix : 

We init ia l ly wrote our code to process the each f rame entirely between the last sample of 

the previous f rame and the f irst sample of  the incoming f rame, because we assumed 

(naively) that the length of  1 sample (1/16000 of  a second = 14,062.5 cycles) would be 

plenty of  t ime to do this processing. We  later found, af ter prof i l ing our code, that processing 

a f rame actually takes around 500,000 cycles or so, depending on the values used for 

“FRAMESIZE” (number of  samples per f rame) and “P_MAX” (order of  the LPC f i l ter).  

So instead of  performing all of ou r processing between f rames, we switched to processing 

each f rame while playing back the previous f rame.  Thus, we gave ourselves the length of 

one f rame to complete the processing, rather than just the length of  one sample. We 

achieved this by using Group  3’s double -buffer playback method. 

There are two playback buffers, playback1 and playback2. Playback1 is f i l led while 

playback2 is played back by the xmitISR() function.  Then, when xmitISR() reaches the end 

of  the f rame, the pointers to the buffers are s wapped, and playback2 gets f i l led up while 

playback1 is being played back. This method ensures that playback is always smooth, as 

long as processing is done faster than the f rame takes to f inish playing back. Again, we 

took this ingenious solut ion f rom Gro up 3, who generously offered it  to us when we were 

trying to f igure out a way to process a f rame during the previous f rame’s playback instead of 

between f rames. 

This method introduces a latency equal to the length of  1 f rame, which i s 32ms for a 512-

sample f rame. This negligible latency is necessary so that our processing code can f inish 

completely before its output is played back.  

Error gain: 

The Levinson-Durbin algorithm works by f inding a f i l ter that introduces the smallest mean 

squared error between the  predicted values and the actual values. This small error  

introduces a gain into the f i l ter when it  is represented using the LPC coeff icients. If  this 

gain is not taken into account, the output of the vocoder is highly distorted. 
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We f ixed this by storing the f i l ter gain in a variable (af ter it  is returned f rom the levinson() 

function) and mult iplied this variable with the output for every f rame. This reduced the 

distort ion in the output.  

Receiving and processing two audio signals simultaneously :  

At f irst we thought that the DSK, having two audio inputs (MIC -IN and LINE-IN), was 

capable of  processing these two inputs simultaneously.  Realizing that there was nothing in 

the CODEC documentation about this, we had to come up with a dif ferent solut ion.  

The f irst idea we had was to take a sample in f rom the MIC -IN l ine, then quickly switch the 

ADC to process the LINE-IN input, and take a sample f rom LINE -IN, and continue switching 

back and forth between MIC-IN and LINE-IN at 16 kHz.  This would have produced 

satisfactory results because it  would have enabled us to take in both inputs more or less 

simultaneously.  However, it  seems that the ADC does not fully switch f rom one input to 

another fast enough (1/32000 of  a second) for this method to work, and the result was that 

both signals were bleeding into the other signal’s input buffer.  

We then realized that we could simply use the LINE -IN input for both signals.  LINE-IN,  

being a stereo input, can receive two mono signals simultaneously, and this was perfect for 

our project since a microphone and an instrument both produce mono signals.  The problem 

with this solut ion was that both the instrument signal and the microphone signal were what 

is referred to as “mic - level” signals (a few mill ivolts),  while the LINE -IN jack is designed for 

“l ine - level”  signals (around 1 volt).   Thus, our input signals needed to be amplif ied by a 

couple of orders of  magnitude before they would be of  any use.  

At f irst we tried to solve this problem using microphone amplif iers f rom Radio Shac k, but 

these proved to be too noisy and not loud enough.  So instead we simply used our desktop 

workstat ion as a microphone pre -amp (many computers with sound cards have a sett ing to 

output direct ly f rom the microphone) to boost the signal to l ine level,  a nd this produced 

wonderful results.  For the guitar, we at f irst used a second computer as the amplif ier,  then 

switched to a real guitar amplif ier (since that’s what they are for) which was already in the 

possession of  one of  our members at the t ime.  
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Testing with the correct waveforms: 

Formant f i l ters (the type of  f i l ter that we are using) work by shaping the power spectrum of  

the upper f requency bands of  an input.  Therefore it  was impossible to use a sine wave as 

the test signal for the instrument input,  since a sine wave, having no f requency components 

other than its fundamental,  is not affected by the applicat ion of  such a f i l ter.   For this  

reason, it  is also impractical to use a square wave or a triangle wave for test ing, since 

these also have much lower energy in the upper f requency bands than in the fundamental.   

Once we began using a pulse wave (a signal with lots of  high -f requency energy) as the test 

excitat ion signal,  our  test results made much more sense.  (The source-f i l ter model for a 

human voice uses a pulse wave as the excitat ion, so this was the obvious choice).  

11. Code Information 

Vocoder using LPC: 

Code type:  Matlab code 

Source: Given to us by Prof. Richard Stern (CMU)  

Description:  This Mat lab code takes a speech waveform f rom a f i le and shows how LPC 

analysis is used to separate the formant structure of  speech and re -synthesize it  using a 

pulse waveform generated by the code itself .  It  uses overlapping to obtain better speech 

resolut ion (clarity) and has a f requency variable which can be changed (100hz, 200hz etc)  

to set the f requency of the pulse wave which is used as the excitat ion signal.  It  can be 

observed that by changing the f requency of  the pulse wave the pitch of  the speech at the 

output changes accordingly, regardless of  the original speech signal.  The characterist ic 

voice of  the person speaking is lost and the output sounds robotic (the ch aracterist ic of  a 

pulse waveform). This code was not writ ten to work in real -t ime but it  processed a stored 

sound f i le in the wave format.  

 

Instrument LPC:  

Code type:  Matlab code 

Source: We wrote the code ourselves. 
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Description:  Using Prof . Stern ’s Matlab code as a reference, we made our own Matlab code 

modeling our vocoder. Two f i les, a speech f i le and an instrument f i le , are loaded into 

Matlab. The code performs LPC analysis simila r to Prof . Stern ’s code on the speech signal 

but that is extended to perform LPC analysis on the instrument signal too. The residual is 

then computed by passing the instrument signal through an inverse f i l ter generated by its 

own LPC coeff icients. This residual is used as an excitat ion signal to re -synthesize speech. 

In this code the f rame size and the number of  LPC coeff icients are variable. These can be 

changed accordingly to observe how the output varies with dif ferent f rame sizes and number 

of  LPC coeff icients. This can be use to f ind the optimum specif icat ions to produce a 

desirable output.   This code is also not real -t ime.  

Hamming Window: 

Code type:  C code 

Source: We wrote this code ourselves 

Description:  This function applies the Hamming window def ined by the following equation,  

 

Autocorrelation: 

Code type:  C code 

Source: Online [ 5 ]  

Description:  This function computes the P+1 autocorrelat ion values of  a signal of  length 

f rame size where P is the order of predictor coeff icients that are used to describe the 

formant structure. 

Levinson-Durbin: 

Code type: C code 

Source: Online [ 5 ]  

Description :  The Levinson-Durbin function computes the LPC coeff icients f rom  the 

autocorrelat ion values that were calculated earlier using the Levinson -Durbin recursive 

algorithm that was discussed earlier.  Along with the predictor coeff icients it also gives the 

ref lect ion coeff icients and the error or each f rame. In our applicat i on since we do not use 
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the ref lect ion coeff icients we discard them. However they are calculates since they are used 

to predict the next coeff icients.  

Residual:  

Code type: C code 

Source: We wrote this code ourselves 

Description:  This function calculates the residual of  the instrument by passing the original 

signal through an inverse f i l ter (FIR f i l ter) generated using the LPC coeff icients of  the 

original instrument signal itself .   

Filter: 

Code type: C code 

Source: We wrote this code ourselves 

Description: This function applies the AR (all -pole) f i l ter to  the excitat ion signal (residue  of  

instrument) to obtain the output.  

12. Demonstration 

In the demonstrat ion , the instrument we selected was an electric guitar which was plugged 

into a guitar amplif ier whose output was fed into the DSK. We demonstrated the functioning 

of the vocoder by singing into the microphone and simultaneously playing the guitar. The 

output was fed into a speaker system that played it out loud. At f irst we demonstra ted the 

clarity of  the speech and its recognit ion in the output. We then varied the number of  

predictor coeff icients (P) and showed that when P is too small the speech formants are not 

well def ined and so the output speech is less recognizable. On increasi ng the predictor 

coeff icients (P) the speech in the output got clearer. However, when P was increased too 

much with a small f rame size the t ime taken for processing increased for greater P and so 

the output had some distort ion, which sounded like whispers.  Next we varied the frame size 

to show how having a larger f rame size caused more delay since the latency was 1 f rame 

since at one t ime an entire f rame is processed and then outputted altogether. By reducing 

the f rame size too much, the information to form  the f i l ter was too l it t le and so the 

resolut ion of  the predictor coeff icients reduced.  
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13. Final Work Schedule 

Since we did not f ind any papers online that exactly described our applicat ion we had to 

f irst study papers which described the use of  LPC for othe r applicat ions such as voice 

compression and transmission in telecommunication. We then studied the MATLAB code 

that we got f rom Prof . Stern. This gave us a basis for understanding the algorithm , as well  

as a convenient way to test dif ferent sett ings . We then re-wrote that code in MATLAB to suit  

our project ’s purposes ,  then re-wrote that code in C and made it  run in real -t ime on the 

DSK. 

Table 13.1: Final Work Schedule 

Week  Task  Person  

October 5 Studied Prof . Stern ’s MATLAB code Prit ish, Laura 

 Wrote MATLAB code for our applicat ion  Prit ish, Chris  

October 12 Wrote C code to implement the Hamming 
window, residue and f i l ter functions 

Prit ish 

 Implemented C code that we found online for 
autocorrelat ion and Levinson -Durbin recursion  

Prit ish 

October 19 Test inputt ing 2 signals to the DSK 
simultaneously 

Chris, Laura 

 Run parallel inputs together in real -t ime without 
any processing  

Laura 

October 26 Implemented C code for the functions on the 
DSK and compared them to the results obtained 
by MATLAB 

Laura, Prit ish 

November 9 Adjusted C code for the DSK to process the 
signals and run them in real-t ime  

Chris  

November 16 Debugged the code to run in real -t ime without 
delay with correct processing  

Chris, Prit ish  

 Tested using excitat ion signal as produced f rom 
a function generator 

Everyone 

November 23 Improved code by adding error correct ion and 
reduced output distort ion and improved speech 
clarity  

Everyone 

 Prof i led functions, optimized code and manually 
unrolled loops to improve processing speed 

Everyone 
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