

18-551 Fall 2009

Final Report

EYE KNOW YOU
Iris Recognition in Real-Time

Group 5
Andy Lin (aalin@andrew.cmu.edu)
Stacy Lin (stacyl@andrew.cmu.edu)

Vincent Yen (chengchy@andrew.cmu.edu)

Fall 2009, Group 5 – EYE Know You

 2

Table of Contents

1. Problem .……………………………………………………………………………………………………. 3
2. Solution .……………………………………………………………………………………………………. 3
3. Novelty .…………………………………………………………………………………………………….. 4
4. Database .………………………………………………………………………………………………….. 6
 4.1 Iris …….. 6
 4.2 Video ……… 8
5. Algorithm .…………………………………………………………………………………………………. 8
 5.1 Brief Systems Overview …………………………………………………………………………………….. 9
 5.2 Initial Detection Algorithm ………………………………………………………………………………… 9
 5.3 Final Face & Eye Detection Algorithm ………………………………………………………………. 10
 5.4 Iris Segmentation …………………………………………………………………………………………….. 15
 5.5 Iris Recognition ………………………………………………………………………………………………… 18
6. Test Results ..………………………..………………………………………………………………….. 20
 6.1 Face & Eye Detection ……………………………………………………………………………………….. 20
 6.2 Testing for Iris Recognition Hamming Distance ………………………………………………… 22
 6.3 Iris Recognition ………………………………………………………………………………………………… 25
7. Processing, Speeds, Data Rates ..………………………………………………………………. 27
 7.1 Face & Eye Detection ……………………………………………………………………………………….. 28
 7.2 Iris Segmentation …………………………………………………………………………………………….. 30
 7.3 Iris Recognition ………………………………………………………………………………………………… 31
8. Final Demo ..…………………………………………………………………………………………….. 31
9. Conclusion and Future Work ..………………………………………………………………….. 32
10. Schedule ..………………………………………………………………………………………………. 33
11. References .……………………………………………………………………………………………. 34

Fall 2009, Group 5 – EYE Know You

 3

1. Problem

In recent years, security and surveillance has become an increasing issue. Identifying

and tracking someone is exceptionally hard in large crowds such as in train stations, subway

stations, airports etc. At crucial times, the speed, ease, and accuracy are of utmost importance

in real time multiple person tracking and recognition.

The development of biometrics identification systems is a very popular research topic in

artificial intelligence. Among all the applications of biometrics identification, face recognition is

most often used for automatic visual surveillance systems. However, face recognition is not as

accurate as believed. A person’s face can appear to be quite different when time, lighting, angle,

or emotional state change. In addition, faces of related individuals, or even unrelated ones, can

appear to be quite similar. Changes in pose will cause large changes in the appearance of a face,

which further complicates the problem of robust face recognition.

On the other hand, the iris of an individual is very stable over time, with the exception

of rare disease or trauma. It does not change over time, as faces do, and is well protected from

damage and scarring, which is often a problem with fingerprint identification. The iris of each

eye is unique for every person. No two irises are alike in their mathematical detail. Even

between identical twins and triplets or between one’s own left and right eyes, the iris is

different. The random patterns of the iris are the equivalent of a complex “human barcode,”

created by a tangled meshwork of connective tissue and other visible features. [5] The research

and use of iris recognition as a form of identification has increased in popularity in recent years.

2. Solution

Our goal is to design an autonomous system to track and identify multiple people

through iris recognition in real time. What we are proposing is an iris recognition tracking

system that will be able to track multiple people, regardless of their poses to a certain point, in

a video. Our system will recognize and identify people and be able to tell if that person is

someone we know (in the database) or if they are new (not in the database).

In order to do iris recognition, face detection is a necessary first step to assist and

improve the overall performance of recognition. The first step in recognition would be to first

Fall 2009, Group 5 – EYE Know You

 4

locate the face in the video. Initially our plan was to implement Viola-Jones’ method in their

“Robust Real-Time Face Detection” paper, where they were able to process images extremely

rapidly while achieving high detection rates. Their method allows for better results in indoor

and outdoor scenarios because it is a feature-based face detection algorithm and independent

of the color of the subject and lighting conditions in which many other algorithms are not.

Once the face has been located, we will then locate the eyes and ideally zoom in on the

eyes with the camera to perform iris recognition. Iris recognition was chosen instead of

previous methods of facial recognition because iris recognition is more accurate. The process of

capturing an iris into a biometric template includes segmentation, normalization, unwrapping,

and then recognition, which we implement based off of Libor Masek et al algorithm.

3. Novelty

Overall, our process itself is quite novel as past groups who did iris recognition did it

directly from still images as it was implemented for verification and identification. We on the

other hand implement and simulate a process of identifying from a video, and returning the

results in real time. The idea of zooming in on the eyes after finding the face is a new idea. As

far as we know, no prior groups in 18-551 or anyone in the field has done anything with it. The

main goal of our project was to do iris recognition in real time and with most of the processing

on the DSK.

A few groups in the past years have attempted iris recognition. They all followed

methods designed around the work of John Daugman. Our segmentation algorithm on the

other hand, follows that of Masek’s which has never been implemented in this class before.

While the actual iris recognition algorithm is a standard method, no past group has done it

completely or successfully on the DSK board.

Group 6 of Spring 2003, “The Eyes have it”, successfully implemented many of

Daugman’s published techniques, circular edge detection, Gabor filters for feature extraction

and hamming distance for classification. Their database consisted of 48 images, that included

48 classes with only one image in each, that they got from Professor Kumar. All images had the

subject’s eyes held wide open, as there were no obstructions from eyelids or eyelashes. They

Fall 2009, Group 5 – EYE Know You

 5

experienced significant trouble with the reflections from the flash inside the pupil. To account

for their problems with the flash reflections in the pupil, they made assumptions of the location

of the center of the iris and the size of every eye. They were able to get code working on the

EVM, however, their main shortcoming was their database. [6] We did not have major

problems with our database as we accounted for the reflection from the camera flash in our

algorithm.

Group 7 of Spring 2004, “Private Eyes: Biometric Identification by Iris Recognition”,

followed the same method but improved on the previous groups’ problems. They implemented

all equivalent steps of past groups without EVM trouble, with no assumptions made for the iris

location or edge location, the flash reflections in the iris image were not problematic, the

database was larger and more detailed (higher resolution), they had a more advanced classifier

and a logical testing process. The database they used was supplied by a CMU-ECE doctoral

student. The database consisted of 263 iris images, with 23 classes, each of which had between

6 and 13 images; 82% of the classes had between 11-13 images, inclusive. The images were

acquired using a high-resolution digital camera. Participants were told they could shift around a

bit and “be natural”, it was not required that the eyelids be open as much as possible, and

often the camera was re-focused between each picture. Within the 263 images there were

several blurry pictures, and a few “blinks”. They did not remove these images, but instead kept

them for testing. [5] Though their project was successful, they only calculated the Discrete

Fourier Transform and performed feature extraction on the DSK. We did almost all of our

processing and recognition on the DSK except for the segmentation pre-processing of the iris

images. In addition, our database differs from all past groups as it not only consists of frontal

iris images of our own group members, but angled images as well as we test the degree at

which the head can be turned in order for iris recognition to still work.

As for face and eye detection, many groups in 18-551 have previously done projects

involving face detection, verification, identification and recognition via various methods. Many

groups implemented the skin tone detection method. We decided to move forward using

similar methods as past groups as we felt this was not the main focus of our project. Thus, we

chose to adopt a similar skin tone detection algorithm to that of Group 1 of Spring 2008.

Fall 2009, Group 5 – EYE Know You

 6

However, because we needed to find the eyes as well as the face, we implemented Rein Lien

Hsu’s Eye Map algorithm after face detection, which has never been implemented on the DSK.

We felt that face detection was not our prominent focus of our project and testing, hence we

decided to not further explore other algorithms.

4. Database

4.1 Iris

The training database used consisted of 10 iris images of each group member (3) at

different angles, varying up to 10 degrees, for a total of 30 iris images, each of which are

640x480 pixels. These images were taken using a high resolution camera specifically designed

to take iris images. This training database is what the testing iris images will be compared to in

the final demo (Figure 1).

Andy

Stacy

Vincent

Figure 1. Iris Training Database Example

Fall 2009, Group 5 – EYE Know You

 7

The testing database (for the demo) consisted of another 12 iris images of each group

member under different lighting conditions than that of the training database, and also at

different angles, but varying up to 30 degrees. Also included were 4 unknown irises from the

Western Virginia University Iris Database to make a total of 40 images to compare with the

training database.

Andy

Stacy

Vincent

Figure 2. Iris Testing Database Example

In addition to our own training database, we also used one of each 320x280 pixel frontal

iris image of 50 people from the Western Virginia University Iris Database (Figure 3), for inter-

and intra- class threshold testing of our iris recognition algorithm discussed later.

Fall 2009, Group 5 – EYE Know You

 8

Figure 3. Western Virginia University Iris Database

4.2 Video

 We created our own video collection by recording 7 short 160x120 pixel videos of one to

two people moving around. This was produced using a Logitech QuickCam Connect which is

capable of video capture of up to 640x480 pixels and 30 frames per second. The videos will

consist of people moving around, coming in and out, both in the foreground and background.

Also, it will primarily consist of only the face of the person and not the entire person. Because

of the limited size in video, we can only fit one to at most two people.

5. Algorithm

5.1 Brief Systems Overview

Fall 2009, Group 5 – EYE Know You

 9

Above is an overview of our system. The main parts, the face and eye detection and iris

recognition (in green), are implemented on the DSK. The parts in yellow, the video and iris

segmentation pre-processing, are all done on the PC.

5.2 Initial Detection Algorithm

In the early stages of our research into this problem, we probed into many different

areas to find the optimal solution. Initially, we chose to use the Viola-Jones method to

implement our real-time face-detector since the Viola-Jones method allows for rapid

computation of feature values using integral image and Haar-like features. The face detection

procedure classifies images based on the value of simple Haar-like features. Although the

process that Viola-Jones established in their paper uses four kinds of Haar-like features, we

originally had planned on using only the first three kinds of Haar-like features to reduce the

total number of features to train.

Face & Eye Detection

Iris Recognition

Segmentation

Unwrapping &
Encoding

Normalization

Video Video Frames Video

TCP

T
C
P

T
C
P

Results

DSK

PC

Input Output

Output

After zooming in on eyes

T
C
P

Figure 4. Systems Layout

Fall 2009, Group 5 – EYE Know You

 10

By analyzing corresponding weights, we can select around 200 most important features

to be our final classifier that can classify any 24x24 image to be either a face or non-face. The

classifier can also be scaled to detect larger faces. We were originally using the training

database used in another CMU course, Machine Learning for Signal Processing, to train our

classifier. In order to detect faces tilted at an angle, we had to train our classifier not only on

frontal view face images, but also on the tilted face images.

After looking more closely at the complexity of the algorithm, we concluded that it

would not be our desired algorithm to implement, since Viola-Jones method requires

substantial amount of time for training the classifiers. The actual working system discussed in

Viola-Jones paper requires weeks of training time with 5K faces and 9.5K nonfaces for detecting

only frontal faces. Given a relatively tight time constraint for our project, we decided it would

be better to switch to a face detection algorithm based on skin tone detection like some

previous groups had done before. It wasn’t until after we changed algorithms and was well into

our project that we found out that there were already trained classifiers on OpenCV. Also,

Viola-Jones method can only locate the positions of human faces but not the eyes, the new

algorithm we use can detect eye locations directly and thus gives us information we are more

interested in.

5.3 Final Face & Eye Detection Algorithm

As a result, our new face detection algorithm was be based on Rein-Lien Hsu’s paper,

“Face Detection in Color Images”, which introduces the use of skin color detection and eye map

to detect both face and eyes in a image.

5.3.1 Video Pre-processing

The original recorded video, stored in AVI file format, is 160x120 pixels, 24-bit color and

runs at a speed of 30 frames per second. Preprocessing the video on the PC first is necessary

because processing such a large amount of data all at once would render the system incredibly

slow. Thus we need to cut down the amount of data sent to the DSK for processing. The video

Fall 2009, Group 5 – EYE Know You

 11

needs to be broken up into individual frames first so that the DSK board can effectively process

one frame of the video at a time and return its results.

The video preprocessing is done with MATLAB. First, we use mmreader() to construct a

multimedia reader object that can read in video data from a multimedia file. Then we read in all

the video frames and get the total number of frames. We then select every sixth frame of the

original video and rescale each chosen frame to a smaller resolution of 80x100 pixels in order to

reduce the data needed to be processed on the DSK. Through trial and error, we found the size

80x100 pixels works best because it is the lowest resolution our face detection algorithm can

tolerate to function correctly. This preprocessing procedure can reduce our processing time

significantly since less data needs to be transferred to the DSK for processing. We then create a

Matlab movie struct from the video frames. And using imshow() we can see any particular

frame of the video.

We assume our video frame to be in YCbCr format, and there could be at most two

people present in the video frame to ensure qualitative feedback from our system. Mentioned

previously, many groups in previous years have implemented face detection based on skin tone

detectors, but our algorithm takes one step further to detect eyes within the face region. The

reason for our EyeMap is to remove false alarm faces due to the robustness of skin tone

detection.

Based on the Hsu’s algorithm, our approach to face detection within each frame of

video consists of the following steps: creating a binary image via YCbCr thresholding, opening

and closing via erosion and dilation, constructing eye map via gray-scale erosion and dilation,

and masking the eye map with the skin blob image to identify eyes. [1]

5.3.2. YCbCR Thresholding

 First, we use YCbCr color space to threshold our video frame into a binary image. YCbCr

is a color space that is often used in video and digital photography systems. The difference

between YCbCr and RGB is that YCbCr represents color as brightness and two color difference

signals, while RGB represents color as red, green and blue. In YCbCr, the Y represents the

Fall 2009, Group 5 – EYE Know You

 12

brightness component (luma), Cb represents the blue chroma component (blue minus luma)

and Cr represents the red chroma component (red minus luma) of the image.

Because we felt that face detection was not the focus of our research, we simply

adopted Group 1 of Fall 2008’s method in which they created a binary image from a color

image by setting pixels in the range of 100<Cb<133 and 140<Cr<165 to be 1 and other pixels to

be 0. [4] In fact, many research studies found that the chrominance components of the skin

tone color are independent of the luminance component [7, 8].

5.3.3. Image Opening and Closing

After the frames are pre-processed, the data is sent to the DSK for processing. Once we

have the binary image, we then perform image opening and image closing on our binary image

to create blobs of skin regions. Dilation adds pixels to the boundaries of objects in an image

while erosion removes pixels on object boundaries. The number of pixels added or removed

from the objects in an image depends on the size and shape of the structuring element used to

process the image. This basically means that in image opening and closing, we remove noise

and artifacts and fill holes that are smaller than a square of 3x3 pixels if a structuring element of

size 3x3 pixels is chosen. Through trial and error, we choose our structuring element to be a

square of 3x3 pixels in image opening. In image closing, we first dilate it by size 3x3 and then

erode it by size 9x9. The reason we would like to do more erosion than dilation in image closing

will be explained in the later section. The result of these operations should give us a set of skin

blobs as face candidates. We call this processed binary image the face mask.

5.3.4 Holes Filling

 The set of skin blobs we obtain after image opening and image closing usually have

holes around the eyes and mouths because eyes and mouths do not contain skin color. These

holes can be automatically filled by performing image closing if they are small enough. However,

large holes can still remain after image closing and make our face mask unable to detect eyes

during the final stage of masking. Therefore, we propose a method to fill these holes in a

recursive manner. First, we will create a complement image of the original binary image. Since

Fall 2009, Group 5 – EYE Know You

 13

the original binary image has holes around eyes, these holes become blobs in the complement

image. We can then label these blobs and calculate the areas inside them using flood fill

algorithm. Finally, we can fill out the holes in original binary image if any of them has an area

less than the threshold value we set. In our implementation, we choose to fill holes that are less

than 50 pixels in the sense that faces that appear in our video shall not be larger than a certain

size given the screen range of our camera. Therefore, we assume that eyes that are present on

our video shall not be larger than 50 pixels. As the result, we implement three major functions,

bwlabel(), regionprops() and imfill(). Function bwlabel() labels individual blobs in a binary image,

and function regionprops() measures the area of each blobs using the labeling outputted by

function bwlabel(). Finally, function imfill() will fill the holes based on the labeling and area

returned by the previous toe functions. After this stage, we shall have all skin blobs in the

binary image filled, and have completed our face mask.

5.3.5 Eye Map

At this point, we should have sets of blobs. We now need to interpret which blob

represents a face and which blob is a false detection. By using Hsu’s Eye Map to localize eyes

within the image, we can easily determine whether the blob is a face if eyes are located in it.

Although two eye maps, one based on chroma components and another based on luma

components, are used in the original paper to create a combined eye map [1], we only use the

second eye map, called “Eye Map L” in the original paper, as our source to locate eyes inside an

image. Eye Map L is designed to emphasize brighter and darker pixels in the luma components.

It is constructed by

EyeMapL = g_ero(Y(x,y)) / {g_dil(Y(x,y))+1},

where functions g_ero() and g_dil() are gray-scale erosion and gray-scale dilation. The gray

scale dilation is performed by using the following equation:

,

where Db is the domain of b, a hemispheric structuring element that can be generated using

Matlab function strel(‘ball’,R,H,N). We can obtain the value of the structuring element in

Fall 2009, Group 5 – EYE Know You

 14

Matlab and use it in our C-code. Gray-scale erosion is basically the same process as gray-scale

dilation, but it finds the minimum instead of the maximum. We normalize the calculated eye

map to the range from 0 to 255. Looking at the eye map in Figure 2, we can see that values

around eye regions are highly enhanced, but the values around face boundaries also get

enhanced.

5.3.6 Masking

 Having both the eye map and skin blob image calculated, we can exclude uninterested

parts of our eye map by masking our eye map image with our skin blob image. The eye map we

created not only enhanced the regions around the eyes but also the regions around the face

boundaries. We prefer that our face mask only mask out regions around the face boundaries to

avoid falsely detecting face boundaries as eyes. Thus, back in the stage of image closing, we

perform more erosion than dilation. With our eye map properly masked, we can perform

thresholding on it to obtain the resultant binary image containing blobs that represent only

enhanced part of our eye map, and with further erosion and dilation, we can achieve an image

with only the blobs that represent eyes. If there are faces present in our video frame, the final

masked eye map should contain small blobs representing the location of human eyes, or else it

won’t contain any blobs. We choose a threshold value of 90 to apply to our masked eye map

through trial and error. The result is the blob and location of the eyes. Figure 5 shows images of

the completed steps as described above.

Fall 2009, Group 5 – EYE Know You

 15

Figure 5. Face & Eye Detection Process

5.4 Iris Segmentation

After locating the faces and eyes of our target, ideally we would then zoom in to the

region of the eye to get a picture that has a more detailed image of the iris pattern and proceed

to the stage of iris segmentation. Due to the time constraint, we will skip the step of zooming in

and pass in the eye images of each of the three group members during the demonstration.

Since iris segmentation will be performed on the PC side, we can use Matlab to process the

image. We have no intention to optimize this segmentation process as it is slow and we are

under time constraint.

*

Original Frame Skin Region Holes Filled

Face Mask

Eye Map

Masked Eye Map Thresholded and Eroded

Fall 2009, Group 5 – EYE Know You

 16

5.4.1 Confirm existence of the pupil

The iris segmentation method we used was based on Libor Masek’s theory of iris

recognition. We slightly modified his open source Matlab code to perform the following steps.

First, we would like to confirm the existence of the pupil. To do this, we first need to fill up the

color in the specular reflection area by convolving the image with a Gaussian blur filter and

then dilating it. Afterward, we will provide a threshold value that represents the color of the

pupil and loops through the entire image matrix to label each pixel that has a value less than

the threshold (usually less than 60 from the range of 0 to 255) with 1. Eventually, the previous

step will result in a binary map, and we can use this binary map to determine the area of the

separate image by using bwlabel() followed by regionprops(). At last, we would like to make

sure that the largest object in this picture is greater than a certain size, and if it is, we can

confirm that the pupil exists in the picture.

5.4.2 Determining edge and boundary

The second step is determining the edge of the pupil and the iris boundary, that is

finding the values of the coordinates. To achieve this, we need to look at the coordinates of

each labeled pixel in the binary map created in the previous step and duplicate another one to

dilate. After the dilation of the duplicate binary map, we can use the function edge() to

determine the edge of the objects in the picture (Figure 6). In this case, it will be the edge of

pupil and iris. We would like to start from the outer boundary since the pupil and iris somewhat

forms concentric circles.

Figure 6. Determining Edge and Boundary

Fall 2009, Group 5 – EYE Know You

 17

5.4.3 Segmentation

For each of the points that form the edge of the outer boundary of the concentric circles,

we would like to know its coordinate, together with the radius from the center of the

concentric circle to that specific point. When this process is finished, we can start drawing

multiple lines from the center of the pupil to the limbus region and repeat this for the inner

boundary by looking at the points that form the inner circle. When obtaining the information,

we can convolve the image with a median filter to decrease the intensity of the curvey. The last

step is to find the point that has the greatest change after decreasing the curvey intensity and

apply Gaussian to model the probability of the found points. Finally we have two sets of

coordinates with two radii: one for the inner boundary and one for the outer boundary.

5.4.4 Normalization

When the coordinates of the boundary are found, we can proceed to normalizing the

iris region to create a standard template. Normalization is used to compensate the pose of the

eyes. This step is part of iris segmentation, so it will still be run on the PC. During normalization,

we first calculate the displacement of the pupil center from iris center (we have acquired the

boundaries of both, so this step can be easily done). Then, we calculate the radius around the

iris as a function of the phase from the center. Note that we would like to exclude the outside

rings of the iris as part of the data as it will potentially generate noise. The next step is to find

the Cartesian location of each data point around the circular iris region, and extract the

intensity of the data point into a normalized polar form using interpolation, or upsampling.

Finally, we would again exclude the out-ring points (further reduce the noise) in order to write

out the circular pattern, and get the coordinates for circles around both the iris and pupil.

Fall 2009, Group 5 – EYE Know You

 18

a. Frontal b. Angled

Figure 7. Iris Segmentation and Normalization

5.4.5 Unwrapping

Once normalization is completed, we then unwrap the curved region between the inner

bound and outer bound to get a rectangular shape as seen in Figure 8.

Figure 8. Unwrapped

After unwrapping the iris data, it is then convolved with the Gabor filter to encode the

template as seen in Figure 9. The size of the template is 20x480 pixels after segmentation,

normalization, and encoding. This will be the template we will use for the actual iris recognition.

Figure 9. Iris Template

5.5 Iris Recognition

The preprocessing of the iris image mentioned above will be performed on the PC. After

the template is successfully created, we pass this template to the DSK immediately. The DSK

Fall 2009, Group 5 – EYE Know You

 19

side contains the function that does the template matching. In order to do this, the iris

database must be transferred to the DSK as well. We currently incorporate 30 irises that are a

combination of both those released by West Virginia University for research purposes and

those taken by ourselves (our own eyes). The basic matching process is to loop through the

database and find the hamming distance between the template that is newly created and the

ones stored in the database. We would also need a threshold to determine whether this

hamming distance represents a match between two templates. As a result, we would like to

look at the pairs that have hamming distances less than the threshold, and return the one that

has the smallest value of hamming distance.

Figure 10. Intra-Class and Inter-Class Hamming Distance Distributions with Overlap

The hamming distance calculates the ratios of different bits and the total bits between

two images that have the same size. To count the different number of bits, we utilize the “shift

and compare” method. The shifting process performs the switching of the right and left

Fall 2009, Group 5 – EYE Know You

 20

columns of the picture frame. For the first switch, we reverse the two left most columns with

the two right most columns, and then we gradually increase the number of column switched to

4, 6, and 8, etc… After each shift, we compare each element of the two frames and divide the

total number of different bits with the total number of bits in one frame to get the temporary

hamming distance in the current shift, and if the hamming distance found in the next shift is

smaller the current one, we replace the current hamming distance with that smaller number.

Overall, according to Libor Masek’s experiment result, we’d like to perform 16 column-shifting

to obtain the best comparison result.

The hamming distances of comparisons between two images belonging to the same

eyes and different eyes form two normal distributions as shown above. The hamming distance

between two images containing the same eyes will have mostly lower hamming distance than

those that contain different eyes. The success of iris recognition depends on the interpretation

of the boundary between the hamming distance of frames containing the same eyes and those

containing different eyes. We’d like to choose the point that includes the most area of the

same iris and the least area of the different irises. In the graph shown above, this boundary has

been estimated to be 0.377 (Figure 10). This threshold of 0.377 was determined from trial and

error. For a threshold greater than 0.4, everything will be recognized, for anything less than

0.35 there will be too many unrecognized. The possible errors for recognition are the

overlapping regions of the two classes in the diagram. The shaded region is the combination of

the correctly recognized and every other region. For the threshold we chose, we wanted to

make sure that there was enough correctly recognized data and not too many incorrect ones.

There is a tradeoff between having enough recognized but not too many incorrectly recognized

images. Through trial and error, we found the best balance of correct and incorrect was with

the hamming distance of 0.377.

6. Test Results

6.1 Face and Eye Detection

Despite our expectation of our system only detecting eyes in the video, the face

detection algorithm we implemented has limited performance. First, because it is based on

Fall 2009, Group 5 – EYE Know You

 21

color thresholding, it is highly dependent on the lighting conditions of the image. The algorithm

we use would require appropriate illumination to be robust, or otherwise the face mask that

gets created in the first three stages of our system will not be complete. Particularly, we have

noticed that it works best for indoors environments and often fails in outdoor scenarios. We

found that fluorescent white lighting gives us problems as the skin loses its pinkness and

becomes whiter.

 The seven video clips we used to test our system were all recorded under appropriate

lighting, but our system still suffered from high false positives as the below table display the

accuracy rate of our system. Analysis of eye detection result is done on every frame of the

testing video to derive the detection rate and number of failed detections are shown in Table 1.

Table 1. Face & Eye Detection Accuracy Rate

As we can see, the detection rate of eyes for two people is a lot lower than that for just

one person. Particularly, when there are two people present in the video, our system tends to

detect eyes on one face but fails to detect eyes on another face. This behavior can be explained

by our choice to apply fixed threshold value instead of applying dynamic thresholding on each

skin blob individually. Although the eye map we create enhances eyes on both faces, eyes on

different faces usually have different values. This difference in value can be even widened as we

normalize our eye map to range from 0 to 255, and thus if we apply fixed point thresholding on

Video Number of

people in video

All eyes detected Detected at least

one person

Failed

Detection

34 1 87% 0%

37 1 15% 62%

44 1 47% 15%

45 1 52% 47%

36 2 35% 40% 14%

39 2 10% 43% 18%

43 2 27% 34% 4%

Fall 2009, Group 5 – EYE Know You

 22

the masked eye map, eyes with the lower score are often thresholed out. We once thought of

applying dynamic thresholding but eventually gave up because dynamic thresholding requires

labeling the face mask to calculate the mean value within each skin blobs. These individual blob

analysis are costly in the sense that the overall processing time is proportional to the number of

skin blobs in the video frame. Given that we implement our bwlabel() function in recursive

manner, the processing time of our system will increase even significantly if we apply dynamic

thsholding to our algorithm. Since we are designing a real-time system, dynamic thresholding

simply kills the processing speed of our system. Possible improvement can be done if we can

rewrite our bwlable() function in the iterative format.

Another problem our algorithm suffered from is that the eye map not only enhances

eye regions, but also partially enhances the regions around nostrils, mouths, and eyebrows. We

noticed one group members’ nostrils were mistaken for eyes. Usually the eye regions have

much higher values than values in those regions, but occasionally those regions have equal or

higher values when light is shed on faces differently. As a result, our system also detects those

facial features as eyes. This kind of problem can be solved if, again, individual blob analysis can

be done to verify the positions of all potential eye blobs in each single skin blob, but we are

forced to gave up on this approach when the processing speed of our system comes as our first

priority.

The video 37 in our testing data base serves as our major failure case of our algorithm.

In the video, Vincent had his hand in a fist and his fist is closer to the camera than his face. Most

of the time, the boundaries between his fingers was detected as eyes while the eyes on his face

are lost. Such failure explains that objects closer to the camera are usually assigned higher

values in the eye map. Again, if dynamic thrsholding can be done on each skin blob individually,

we expect the output result can be much improved.

Despite the above problems, our algorithm works pretty well for pose invariance. Even if

only one eye is present in a video frame, our system can still detect the eye to determine the

presence of a face.

6.2 Testing for Iris Recognition Hamming Distance

Fall 2009, Group 5 – EYE Know You

 23

The following is an example of the real hamming distances between the images

containing the same iris and different irises. We simulate the database we will use in the final

demo with 30 iris frames from the West Virginia University database. The database contains

images of 7 different irises. The first six irises have four frames each, and the last two images

serve as the irises that cannot be found. Figure 11a is an image of the testing iris template

(third iris of the database) to be matched.

Figure 11a. “Unknown” Iris to be Matched

The hamming distance between the tester image and the database can be seen in Figure 11b.

With the first template:

HD

0.43479

0.41687

0.43927

0.44187

With the second template:

HD

0.4352

0.43395

0.44010

0.44812

Fall 2009, Group 5 – EYE Know You

 24

With the third template:

HD

0.26208

0.22885

0.21239

0.23395

With the fourth template:

HD

0.47312

0.47729

0.48354

0.44802

With the fifth template:

HD

 0.45020

0.45291

0.45750

0.43343

With the sixth template:

HD

0.48583

0.47968

0.47395

0.48135

With the seventh template:

Fall 2009, Group 5 – EYE Know You

 25

With the eighth template:

Figure 11b. Matching in Iris Database

The third template class, of the 8, is the correct iris. As can be seen in Figure 11a and

Figure 11b, it is obvious that if the templates contain the same iris, despite the angle and a little

rotation, the hamming distance will still be below 0.377, whereas the hamming distance of the

frames having different irises contain values greater than 0.377.

The calculation time of all these hamming distances ranges from 4.7s to 5.2s. This time

includes the file transferring from PC to DSK and the recognition result transferring back from

DSK to PC. This number was obtained using timers.h.

6.3 Iris Recognition

After trying 50 images, we found one set of irises that failed (Figure 12). An image is

considered to be a failure when the testing image cannot be appointed to its right owner (has

hamming distance above 0.377). We are uncertain of the reason for this, but it may be that the

database made a mistake. From the two images that did not test correctly, we found that the

intra-class hamming distance was around 0.45, which is not normal. Theoretically, an intra class

frontal image comparison should result in a hamming distance of less than 0.4. However,

HD

0.48062

0.46468

0.48635

0.47385

HD

0.48322

0.47822

Fall 2009, Group 5 – EYE Know You

 26

among the failed intra class image set, the hamming distance has been calculated to be above

0.45. As a result, we naturally suspect that West Virginia University actually made a mistake

when putting up all the images together into the same set. Other than the one image, all inter-

and intra- class testing was correct.

Figure 12. Incorrectly Recognized

 After testing our training database, we found 8 out of the 30 images failed. Examples of

these images can be found in Figure 13. For Andy and Vincent’s eyes, it is evident that the

reason those images were unrecognized was because the inner iris pattern was compromised

due to the angle of the head. That is, the degree in which the head was turned caused the iris

pattern to be incomplete and thus unsuccessfully matched with the training database. As for

Stacy’s eyes, because the angle turned of the head does not seem as severe as those for Andy

and Vincent’s, it is speculated that the poor quality of the image (iris pattern unclear) was the

reason for unsuccessful matching. Overall, our iris recognition algorithm is fairly accurate.

Fall 2009, Group 5 – EYE Know You

 27

Andy

Stacy

Vincent

Figure 13. Failed Images in Testing Database Example

7. Processing, speeds, data rates

Below is the data flow from PC to DSK. Once again, the yellow is what is being done on

the PC and being sent to the DSK. The green is what is being implemented on the DSK and then

being sent back to the PC.

Fall 2009, Group 5 – EYE Know You

 28

Figure 14. Data Flow

7.1 Face & Eye Detection

The video pre-processing and YCbCr data acquisition were all done in Matlab. The rest

of the C code for the face and eye detection processing we wrote on our own based on Rein

Lien Hsu’s algorithm and was implemented on the DSK.

While our face detection code (in C) utilizes recursion to implement the bwlabel()

function, which is a function used in Matlab to label all the separate blobs, we found that we

had difficulty profiling the entire function. This is a new problem that never appeared in the

past groups, and Code Composer does not warn the issue of using recursion on DSK as well.

Generally, it is not a good idea to use recursion on embedded board since it is possible that all

the stacks will be occupied by that particular function. Although the recursion does not cause

Iris Template

YCbCr Data

PC

Iris Database

Recognition Results

Eye Mask

Iris Image Pre-processing

Video Pre-processing

Image Opening & Closing
Holes Filling

Eye Map
Masking

Hamming Distance Calculation

DSK

Iris Recognition

Face & Eye Detection

TCP

TCP

TCP

TCP

TCP

Fall 2009, Group 5 – EYE Know You

 29

direct problem in our final demo but only profiling the number of cycles, it is still worth address

this problem to future group. Due to the reason stated above, we can only include the profiling

cycles of the iris recognition part.

Because we implement our bwlabel() function in the recursive format, we encounter an

unexpected problem while trying to profile our overall system function. Although our system

runs normally without profiling, it enters a long hang when we try to do profiling the bwlabel()

function. Therefore, we only did profiling on the functions that is irrelevant to the stage of

filling the holes. The following is the table of profiled function in clock cycles (Table 2).

Table 2. Profiled Speed for Face & Eye Detection

 Both imerode() and imdilate() are functions that perform morphological operations on

the binary image. The algorithm of imerode() requires scanning the binary image with the

chosen structuring element throughout each pixel locations. If all cells enclosed inside the

structuring element are 1, then the center pixel location of the structuring element is set to 0

on the input binary image. Function imdilate() is just the opposite operation, where the pixel at

the center location of the structuring element is checked, and if the center pixel is 1, all pixels

enclosed by the structuring element are set to1. In our system, we use EDMA to page in the

binary image we would like to process from external memory to internal memory. Since the

overhead for an EDMA request is only 30 cycles, we can ignore it in our estimation. Now, using

the estimation time we obtained from lab 3, we know that an average read operation and an

average write operation in internal memory takes about 0.69 cycles and 0.63 cycles respectively.

We also know that the DSK is cable of doing two data fetches, additions, and multiplications in

Function
(assumed structuring element of size 3x3 pixels)

Profiled Speed
(cycles)

imerode() 505159
imdilate() 598585
g_ero() 35737426
g_dil() 35451217
normalize() 1762302
createEyeMap() 127481178

Fall 2009, Group 5 – EYE Know You

 30

parallel; therefore, we can simply estimate the function by measuring the time spent on

reading and writing data. If we assume to use a structuring element of size 3x3 pixels, the

imerode() functions requires reading data 9 times and writing data once. Given that our frame

is 80x100 pixels, the total time spent on reading data is 9*0.69*8000 = 49680 cycles, and the

total time spent on writing data is 1*0.69*8000 = 5040 cycles. Thus the overall estimated speed

of imerode() is 49680+5040 = 54720 cycles.

 The function imdilate() is just the opposite operation which requires reading data once

and writing data 9 times. Thus the two functions shall have similar processing speed. Notice

that we use logical OR in imdilate() and use logical AND in imerode() to write data. We also do

loop unrolling to allow parallel processing of data. The two tricks above combined make our

processing speed improves from 1504462 cycles to 505159 cycles. Functions g_ero() and g_dil()

output data as float type in order to compute eye map L in later stage. Since we only perform

g_ero() and g_dil() once for each video frame, we use our internal memory for storing unsigned

char only and decide that g_ero() and g_dil() can be done in external memory. The algorithm

involves finding the maximum (or minimum) neighbor inside the structuring element and thus

requires usage of if statements, which slows down the processing speed significantly as we can

see from the huge clock cycles in the table above. The trade off we made here was to sacrifice

the speed of g_dil() and g_ero() to improve the speed of imerode() and imdilate(), which we call

them for a total of five times with various structuring element sizes. The total profiled time for

our overall system function, createEyeMap(), is 127481178 cycles(0.53 sec) not including the

cycles required for our bwlabel() function. Given the transfer rate we measure at about 0.85

seconds between PC and DSK, we can roughly estimate that the processing time for us to do

the whole stage of filling holes in the face mask takes about 0.32 seconds.

7.2 Iris Segmentation

Because we used Libor Masek’s open source Matlab code for pre-processing the iris

image on the PC with minor changes to suit our project, we did not intend to optimize the

section. For the iris picture size of 320x280, the time required to generate a template is less

than two seconds.

Fall 2009, Group 5 – EYE Know You

 31

7.3 Iris Recognition

All of the C code used for recognition, we completely wrote on our own. All of the

calculations are done using the on chip memory (L1 cache), thus no EDMA was required for

optimization.

 The summary of the profiling speed for Iris Recognition can be seen in Table 3. The first

total is the total number of cycles required to compare two images. The second total is the

number of cycles required to transfer the data from the PC to the DSK for the comparison. For

each comparison, we transfer 30 database images, one test image, and compute the hamming

distance 30 times. As a result, the total number of transfer is 2550*30 + 60*31, for a final total

of 78360 cycles.

Table 3. Profiled Speed for Iris Recognition

Function Profiled Speed (cycles)

shiftbits() 2232

gethammingdistance() 318

Total to compare two images 2550

requestData() 12

recvDataTransfer() 48

Total to transfer from PC to DSK 60

Total to transfer 30 images 78360

8. Final Demo

For our final demo, we created two new videos of our group members on the spot and

performed our face and eye detection on it. Then we chose images in the iris testing database

and compared it to the iris training database for iris recognition.

Fall 2009, Group 5 – EYE Know You

 32

9. Conclusion and Future Work

The main issue we found with our face and eye detection algorithm was its accuracy and

ability to detect two pairs of eyes. In the future, perhaps other means such as using dynamic

thresholding instead of fixed thresholding can be used. Fixed thresholding works best for one

person. If there are two people, the value around one person’s eye is different than that around

another’s eye. So in fixed thresholding, we may lose the other person. However, if we use

dynamic thresholding and analyze each blob separately, then scan and calculate the mean and

apply different thresholding values, the results should be improved. Due to time limit and trade

off between the speed of results (trying to do real-time), this was not further explored in this

project.

The main limitation with iris recognition in our project and in the field is the ability to

capture good quality iris images. Though we had good iris image data, the camera we used

which was specifically designed to capture iris images for iris recognition only allowed us to

turn our heads and keep the eyes in front (to ensure good quality iris images). We realized that

this is not ideal for real-life situations. Further testing should be in the angle in which the head

and eyes together can be turned for iris recognition to still be successful. It would be ideal if a

better camera in resolution and ability (if there is one) that could take a video and zoom in, to

try and connect the entire process of our project as opposed to the split between face and eye

detection and iris recognition. In addition, in our recognition, we transfer each set of iris images

for comparison to and from the PC and DSK separately, calculate the hamming distance, then

send the data back to the PC for one comparison in the database and start the process all over

again for the next image in the database to be compared to. The entire process could possibly

be reduced and optimized if in the future we transfer the images in parallel while processing

(finding the hamming distance) in parallel. Due to the time constraint, this was not further

explored.

In addition, we found that our database was limiting. The training and testing database

were perhaps a bit too similar. Though lighting conditions and angles were different, it was not

very evident. Further expansion in the iris and video database, such as trying more people,

Fall 2009, Group 5 – EYE Know You

 33

different backgrounds, proportions of people to video etc, and its conditions could greatly

increase the real-life application of our project.

Overall, our project was relatively successful, even though we had to make a trade-off

between accuracy and speed, as we did accomplish face and eye detection and iris recognition

in real-time.

10. Schedule

For our final schedule, we found that we closely followed it for the iris segmentation

and recognition part. The face and eye detection part of our project was the more problematic

of the two as we struggled to find an algorithm that we could implement successfully and

would suit our project for the time and accuracy we wanted.

Table 3. List of Tasks & Schedule

Week Task Who

10/12 Viola-Jones implementation with Adaboost. Vincent, Stacy
10/19 Iris segmentation Matlab construction Andy

 Continued Viola-Jones and Adaboost Matlab code. Vincent, Stacy

10/26 Combined face and eye detection using skin-tone detector. Vincent

 Continued iris segmentation Matlab construction Andy

11/2 Continued face and eye detection skin-tone and eyemap
code.

Vincent

 Iris segmentation Matlab testing. Stacy

 Iris recognition C code implementation including PC and DSK
transferring

Andy

11/9 Translation of face and eye detection Matlab code to C code Vincent, Andy

 Iris database construction Stacy

11/16 Implement transferring of face and eye detection to DSK Andy, Vincent

 Optimization Everyone

11/23 Finalize all details for demo. Write final report, oral
presentation.

Stacy, Everyone

 Continue Optimization Vincent, Andy

11/30 Oral Presentation, Final Demo, Final Report Everyone

Fall 2009, Group 5 – EYE Know You

 34

11. References

[1] Hsu, Rein-Lien and Abdel-Mottaleb, Mohamed and Jain, Anil K. “Face Detection in Color
Images”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5,
pp. 696-706, May 2002.

 -Face and Eye detection algorithm

[2] Masek, Libor. “Recognition of Human Iris Patterns for Biometric Identification”. Thesis for

the Bachelor of Engineering of The School of Computer Science and Software
Engineering, The University of Western Australia. 2003.

 -Iris Segmentation and Recognition algorithm

[3] Libor Masek, Peter Kovesi. “MATLAB Source Code for a Biometric Identification System

Based on Iris Patterns”. The School of Computer Science and Software Engineering at
The University of Western Australia. 2003.

 - Open source Matlab code for iris segmentation

[4] Aneeb Quereshi, Gregory Tress, David Xiang. “C.A.V.E.S – Content Aware Video Expansion

and Scaling”. 18-551 Fall 2008 Group1.

 -Used their YCbCr threshold value

[5] Randy Atai, Matthew Brockmeyer, Darren Shultz and Frank Tompkins. “Private Eyes:

Biometric Identification by Iris Recognition”. 18-551 Spring 2004 Group 7.

 -Reference of past 551 project

[6] Steve Lee, Jeff Mrenak and Lynna Quandt. “The Eyes Have It”. 18-551 Spring 2003 Group 6.

 -Reference of past 551 project

[7] J.Yang, W.Lu, and A. Waibel,“Skin Color modeling and Adaptation ”, ACCV, pp.687-694, 1998.

[8] M.Hu, S.Worrall, A.H.Sadka, A.M.kondoz, "Face Feature Detection And Model Design For 2-D

Scalable Model-Based Video Coding", VIE, Guildford- London, UK July 2003.

