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Introduction 
  
We have designed and implemented a facial feature recognition program, specifically 
addressing the eyes and mouths, which has a low probability of error detection. The 
system will be implemented on a Texas Instruments C67 Digital Signal Processing 
(DSP) Board. This report will explain in detail how we have attempted to implement this 
system. 
  

 
Problem  

 
Group photographs have always been marred with blinking eyes or mistimed smiles 
because of the auto timer mode. The mode just counts down without regard to whether 
the people posing are ready or not. The result ends up being that the photographs are 
deemed unacceptable to publish or showcase to others.  With many pictures being 
taken with eyes closed and mouths that are in mid-smile, it is often frustrating and time 
consuming to take a satisfactory group photo. 

 
Also it is extremely difficult to objectively classify a photo as good or bad based on 
features such as open/closed eyes and smiling/not smiling.  For example it could be an 
issue of defining what a smile is.  Different people have different ways of smiling where 
some could not be considered as a smile by some.  Even something that may seem 
straightforward as determining if a subject‘s eyes are open or closed can get tricky 
depending on the resolution of the camera and how that individual tends to smile.  For 
example, Asians tend to have eyes that appear closed when they smile even though 
they are very much open.  Training an algorithm to classify mouths as smiling and not 
smiling or eyes as open or closed separately may be extremely difficult in itself.   

 
The algorithms and methods of analysis of our project can also further be applied in 
areas that go beyond simply discriminating between good and bad group photographs.  
Face detection and feature classification are used in human computer interaction 
studies where computers are used to detect human emotions.  Over the years fairly 
successful methods have been developed that can also be used for purposes of 
analyzing photos as well.   

 

 
Solution 

 
The application we are attempting to address is related to image processing in that we 
are trying to analyze features of the face such as eyes and mouths.  We define a 
photograph to be ―good‖ if and only if everyone's eyes within the picture are open and 
everyone is smiling, otherwise it is a ―bad‖ photograph.  We propose an implementation 
that will do a better job of detecting eyes and mouths and integrating it into 
photography. We intend to detect faces by using the Viola-Jones algorithm.  Unlike 
other previous projects, our project requires the detection of multiple faces in a photo.  
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Once the faces are detected they are cropped, scaled, and stored as grayscale face 
images to be processed for eye and mouth detection.   
 
Afterwards, we intend to utilize a combination of linear discriminant analysis (LDA) and 
principal component analysis (PCA) to discriminate the two classes for eyes 
(open/closed) and for mouths (smiling/not smiling).  The PCA is used to reduce the 
dimensionality of the stored grayscale image vectors that were obtained through the 
Viola-Jones face detection algorithm.  The PCA results give a vector projection that best 
relates the class.  So in our case, the PCA helps define the two different classes of 
faces in the picture: good or bad.  LDA is then used to classify the different faces by 
creating a line that best separates the two different classes.  Thus after training the 
PCA/LDA algorithm with the faces obtained from our database, we obtain data that 
classifies different faces depending on the position of the facial analysis in comparison 
to the line created from the LDA.   
 

 
Novelty 
 
Previous work in the 551 course has been done in regards to face detection and eye 
detections.  In particular our group‘s project idea can be most related to that of Spring 
2004 Group 10‘s ―Sleepy Head, EYE Can See You‖ idea.  The group used a database 
that they created with various images of eyes opened and closed taken at different 
angles to detect and analyze the eyes of a ―driver‖ to prevent accidents caused by 
sleeping on the wheel.  The images were cropped, scaled, and changed to grayscale 
after which they would use Sobel Edge detection in the preprocessing process.  Then a 
distortion invariant filter was used to detect the eyes on the DSK.  Finally the results 
would be fed back into the computer GUI where one could see the accuracy of 
detecting ―sleepy drivers.‖  In addition to the Spring 2004 Group 10‘s project, a couple 
other referenced projects were: 

 
• Spring 2004 Group 10: Sleepy Head, EYE Can See You! 

▫ Distortion invariant filter to detect eyes implemented on DSP 
• Spring 2004 Group 7: Iris Recognition for Biometric Analysis 

▫ Discrete Cosine Transform (DCT) for iris recognition implemented on EVM 
• Spring 2003 Group 2: Face Verification for ATM Access 

▫ FFT-based face verification with real-time implementation on DSP 
 

Our project uses the idea of determining whether a subject‘s eyes are open or closed, 
but goes about a different method of analysis.  First of all our project not only needs to 
do analysis on the eyes, but also has to be able to analyze the mouth of the detected 
face to provide meaningful results.  Also in comparison to only analyzing one face per 
image, our project is responsible for detecting multiple faces within a single photo and 
run tests on all faces to classify a photo as good or bad.   
 
The database being used is also different from the previous projects in that we created 
our own database called MANS (Minwoo Ajay Nihal Stelios).  The MANS database was 
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used to train and test our face detection and good/bad photograph classifier.  Overall 
the algorithms are different in doing analysis on the detected facial features.  In 
comparison to using edge detection and distortion invariant filters, our project uses a 
combination of principal component analysis (PCA) and linear discriminant analysis 
(LDA) to produce a trained algorithm to discriminate between classes of good and bad 
photos.  More detail on the algorithms and database are outlined in the rest of the paper. 
 

 
Database 
 
The OpenCV Viola-Jones algorithm is already tested and trained to detect faces from 
various images and thus does not need a separate training set for our purposes.  We 
simply implemented the OpenCV code to detect faces in photographs that we would 
then classify using our classifier algorithm. 
 
Training Set 
 
The database that we used for training our classifier algorithm is a combination of 
frontal portrait face images from multiple databases: Bio Imaging, MIT-CBCL Face 
Database, Japanese Female Facial Expression (JAFFE) Database, and AT&T ―The 
Database of Faces.‖  We named the new facial database the Minwoo Ajay Nihal Stelios 
(MANS) database.  The reason for creating a new database using a combination of 
images from multiple databases was to ensure a wide variety of faces with eyes that are 
open and closed, mouths that are smiling and not, and have also have a good mix of 
gender and ethnicity. 
 
The training set for the PCA/LDA algorithm consists of images from the MANS database, 
which contains a total of 60 facial images.  The training set images are grayscale 
images that are cropped and scaled to just contain frontal portrait shots.  The training 
set is chosen to be grayscale to reduce unnecessary memory and space used to store 
and analyze color images.  Instead of having three values per pixel on the RGB scale, 
we can reduce dimensions by running an rgbtogrey function in Matlab.  The images in 
the training set database consist of various ethnicities and images of eyes open/closed 
and mouths smiling/not smiling as described previously.   
 
The training set and testing set are separated within the PCA/LDA algorithm code.  By 
default a given database is separated 60/40 for training and testing.  So if there are 100 
images in a database, 60 images are used for training the algorithm to produce the 
vector projection used for classification and the remaining 40 images are used for 
testing the produced classifier.  This is to ensure enough images are being trained and 
tested to reflect accurate results to be used for analysis.   
 
Once the accuracies obtained from the classifier algorithm using PCA and LDA, a user 
is able to modify the ratio to train 100% of the images to test brand new images on the 
algorithm.  By using all the images in the MANS database for training, we are able to 
have even more data points projected on the eigenspace plane and increase the 
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accuracy of a relevant neighbor to be used to classify a given facial image.  
 
Testing Set 
 
The PCA/LDA algorithm testing set consists of the remaining 40% of the images in our 
MANS database as stated above.   
 
The actual testing set for our picture classifier algorithm, which consists of the Viola-
Jones face detection algorithm and PCA/LDA feature classifier algorithm, is tested using 
group photographs taken from the web.  Various color photographs of multiple 
individuals are taken from Google, Picasa, Facebook, and other resources to build our 
testing set to test other lighting and environmental conditions.  These images are all 
chosen at random ranging from family portraits to student organization group photos.  
The testing set consists of photos with subjects varying in ethnicity, gender, and age to 
ensure that tests encompass all possible cases.   

 
Algorithms 
  
The three main algorithms that will be used for our project are Viola-Jones, Principal 
component Analysis (PCA) and Linear Discriminant Analysis (LDA). 
 
1. Viola-Jones [3] 
 
Procedure to scan a sub-window capable of detecting faces across a given input image  

• Scale invariant detector: Turns the original image into an integral 

image, i.e. if image is MxN, then Pxy =   , where pmn is the 
value of the pixel (in grayscale) at column m, row n, and Pxy is the 
value of the pixel calculated for the integral image at column x, row y 
(all relative to upper left corner). If it is in color, then the value of the 
pixel will be determined by the norm of the vector formed. 

• Adaboost Algorithm: A machine learning boosting algorithm 
capable of constructing a strong classifier through a weighted 
combination of weak classifiers 

• Cascaded classifier (key to our project): Scan the detector many 
times through the same image—each time with a new size.  

• Key point: “Instead of finding faces the algorithm 
should discard non-faces.” [3]  
 

2. Principal Component Analysis (PCA) [4] 
 
We perform the training for the classification on the PC in MATLAB using the function 
train_pca.m, which trains the original ‗eigenface‘ method using Principle Component 
Analysis (PCA). PCA usually involves calculating the covariance matrix, which is 
extremely large if training on a lot of images, so we get around that by using Singular 
Value Decomposition (SVD) instead. 52 eigenfaces (eigenvectors) are used. 
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We then remove the mean of all the training images from each of the individual training 
images. We then perform SVD. This will come up with a square unitary matrix, U. 
Afterwards, we create a matrix by taking the top eigenvectors as eigenfaces (using the 
default setting of 100) on which we will apply the weights to the eigenvectors to ignore 
the first 10 eigenfaces. 

 
3. Linear Discriminant Analysis (LDA) [6] 
 
Linear Discriminant Analysis, otherwise known as the Fisherface algorithm does quite 
well as a classifier, although it is more computationally expensive. The trick to this 
method is to reduce the dimensionality of the images first using PCA and 
then perform classifications based upon the weights applied to the eigenvectors.  
 
The first step is to calculate the number of classes, which in our case is 2 – good or bad 
(picture). We then obtain a vector from the unitary matrix U that we had gotten from 
SVD by disregarding the top 10 eigenvectors. We once again do SVD to obtain a new 
separation vector. Next, we calculate the mean for each class. This will allow us to 
calculate the between-class scatter matrix, Sb and the within-class scatter matrix, Sw. 
These scatter matrixes will be multiplied with the principal component weights and its 
transpose to project both the Sb and Sw into subspace. Then, we will find the 
generalized eigenvalues and eigenvectors of these projections.  
 
4. Nearest Neighbor Classifier 
 
The classifier algorithm performed on the detected faces projected on the eigen 
subspace uses a nearest neighbor approach.  Each training set face is projected using 
the PCA and LDA algorithms as a point with x and y values.  This means that there are 
ideally four distinct clusters of points on a plane to compare to.  The face detected from 
Viola Jones is projected on using the same algorithms as the training set images.   
 
The distance between the testing image and all the training images are found using the 
Euclidean distance formula.  The Euclidean distance formula shown below computes 
the distance between two points by taking the square root of the sum of all the squared 
differences in x-values and y-values.  

(1)

 
Euclidean distance formulas [10] 

 
 
Once the Euclidean distances have been calculated between the testing value and the 
training values, the smallest value is searched.  The smallest value represents the 
shortest distance between two points, the testing image and the training image that 
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most resembles it.  This method of analyzing and classifying an object using Euclidean 
distance ―neighbors‖ is referred to as the k-nearest neighbor algorithm.  K refers to the 
number of neighbors to take into consideration when classifying an unknown.  This can 
be easily explained using the diagram below. 
 

 
Figure 1. K-nearest Neighbor Algorithm Diagram w/ k=3 and k=5 [9] 

 
The above diagram shows the green circle as the unknown image to be classified.  In 
our case this would be the testing image that is obtained by running the Viola-Jones 
algorithm on our photograph.  In the case where k=3, the object is classified using its 
three nearest neighbors.  It shows that the three nearest neighbors consist of two red 
triangles and one blue square.  Thus when k=3 for the above diagram, the object would 
be classified as a red triangle.  When k=5, however, the five nearest neighbors are three 
blue squares and two red triangles so the object is classified as a square.  So for this 
project, the blue squares can be seen as one class (eyes open and mouth smiling) and 
the red triangles can be seen as another class (eyes closed and mouth not smiling).  
The classifier algorithm would then look at the nearest neighbors like described above 
to classify the unknown face. 
 
In our case, we stuck with the traditional k=1, where we classify the testing face image 
using the single nearest neighbor training face image‘s class.  So if the unknown face‘s 
nearest neighbor on the plane is a data point that refers to a training image with class 1 
(eyes open and mouth smiling) then the unknown face is classified as class 1.   
 

Implementation 
 
Step 1: Initial Training Set Development 
 
The first step we will take is to form a training set from the MANS face database. This 
database consists of a collection of face images from the web. This training set will 
allow us to implement the Principal Component Analysis (PCA) and Linear Discriminant 
Analysis (LDA) algorithms. These algorithms will be needed to distinguish the two 
classes of eyes (open/closed) and mouths (smiling/not smiling).  
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The pictures we obtained had to be classified to three different classes, described in the 
table below. 
 

Eyes Open + Mouth Smiling (Good) 1 

Eyes Closed + Mouth Smiling (Bad) 2 

Eyes Open + Mouth Not Smiling (Bad) 3 

Eyes Closed + Mouth Not Smiling (Bad) 4 
Table 1. Database classifications (Good and Bad) 

 

         
Figure 2. Examples of Classified Faces (Left: 1, Middle-left: 2, Middle-right: 3, Right: 4) 

 
With images classified into separate classes using the method described above, the 
PCA/LDA algorithms are trained and tested to analyze whether the faces of the photo 
are ―good.‖  This process can be somewhat time consuming and subjective because 
each photo has to be looked at and the eyes and mouths have to be classified by 
people.  The issue of ambiguity when determining whether a subject is smiling or not 
and even if the eyes are open or not can be resolved by the fact that the PCA/LDA 
algorithm is trained using a large set of different facial images.  Using a large database 
allows for averaging of different faces and features and eliminates some of the issues 
that could arise from training using a smaller database.   
 
Step 2: PCA/LDA Algorithm Training and Testing 
 
The main idea of PCA is to reduce the dimensionality of a data set consisting of a large 
number of interrelated variables while keeping as much variation present in the data set 
as possible.[4] PCA will enable us to get by computing the dxd covariance matrix by 
taking advantage of the fact that the covariance matrix is symmetric, and therefore has 
orthogonal eigenvectors. By normalizing the eigenvectors to unit norm, we have an 
orthogonal basis to represent the data. Therefore each facial image will be constructed 
as a linear combination of basis vectors multiplied by pi scalars (weight coefficients). 
Since this is an orthogonal basis, we can easily find the coefficients p. These are just 
the projections of the signal onto each basis.  

 
p1 = xT v1 
p2 = xT v2 
pn = xT v n           (2) 
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Figure 3. Examples of Eigenfaces [6] 

 
To complete our training set, we will also be incorporating LDA to separate the classes 
(i.e. eyes open/closed and mouths smiling/not smiling).  Our goal is to create 
Fisherfaces from the images by maximizing our objective function J(w). Fisherfaces will 
allow us to have a better discriminant for classification and will require fewer images 
from each class than just using eigenfaces to distinguish open/closed eyes and 
smiling/not smiling mouths. 

 
Step 3: Face Detection using Viola-Jones Algorithm 

 
We will perform pattern recognition analysis by implementing the Viola Jones algorithm 
on the PC to detect faces. Once we have the faces, we will use the Eigenfaces we 
obtained from performing PCA, and project them onto the PCA/LDA classifier lines that 
were trained using the algorithm.  Then we can see where the data lies in comparison to 
the lines and determine which class the detected face is in. Depending on where the 
data lies, we will be able to classify if an eye is open or not and also if someone is 
smiling or not. The image we analyze is considered to be a ‗good‘ photo if and only if 
both the eyes are open and the mouth is smiling. The Viola-Jones algorithm is 
explained in more detail in the next few pages. 
 

The Viola Jones Algorithm 
 
 The Viola-Jones algorithm is an intricate algorithm that is primarily used in 
detecting faces. Since our project uses facial recognition as a first step, we will use the 
algorithm to detect all the faces in a group photo. The basic principle of the Viola-Jones 
algorithm is to scan a sub-window capable of detecting faces across a given input 
image, rescale the face detector, and run the detector many times through the image – 
each time with a different size. There are three contributions that Viola and Jones make 
in their paper. They introduce an image representation called the ―Integral Image,‖ 
which allows features used by the detector to be computed quickly, a learning algorithm 
based on Adaboost that selects a small number of critical visual features and yields 
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extremely efficient classifiers, and a method of cascading classifiers to allow 
background regions of the image to be quickly discarded; ―instead of finding faces the 
algorithm should discard non-faces.‖ [3]  

 
Calculating the Integral Image 
 
 The first step of the Viola-Jones Face Detection algorithm is to turn the input 
image into an integral image. By computing the integral image, it enables us to compute 
Haar-like features, regardless of scale or location, in constant time. A simple rectangular 
Haar-like feature can be defined as the difference of the sum of pixels of areas inside 
the specified rectangle, which can be at any position and scale within the original image. 
To calculate the integral image, we calculate the sum of all pixels above and to the left 
of the concerned pixel (including the pixel itself) and substitute each value as the new 
pixel. This is shown in Figure 4.  

 

Figure 4. The value of the integral image at point (x,y) is the sum of all the pixels above and to the left of 
the given pixel[7].  
 

The equation to calculate the integral image is: 

ii(x,y) = 
 yyxx

yxi
','

),','(           (1) 

where ii(x,y) represents the pixel value of the point (x,y) of the integral image and i(x,y) 
represents the pixel value of the point (x,y) in the original image [7].  
 
Implementation 1: do_int_image1 

 In practice, equation (1) is not very useful for code implementation. When 
running a C implementation (see loadImage.c, do_int_image1a and do_int_image1b) for 
calculating the integral image of a 512 x 512 photo on the lab computers, which are Dell 
Precision T3400 machines equipped with a 2.4 GHz Quad Core processor and 3.25 GB 
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of RAM, it would take a long 88 seconds to execute this part of the algorithm alone. 
Pipelining and loop unrolling 3 operations in a single loop would only make this a little 
bit faster (69.67 seconds), but the algorithm would still take a long time to execute. 
Granted that this is on the PC, the DSK would probably not perform any better, so the 
implementation of equation (1) is therefore too slow for use in situations where quick 
face detection (no more than a few seconds) is required. 
 
Recursive Viola-Jones 

 Because equation (1) is slow in computing the integral image, Viola and Jones 
suggested a recursive form to obtain the integral image, as follows [7]: 
 
s(x, y) = s(x, y-1) + i(x, y)         (2) 

ii(x, y) = s(x – 1, y) + s(x, y)        (3) 

The use of both equations together would not be recommended on the DSK for 
grayscale images >= 683 x 683. If we assume that each point on the integral image has 
a value of 128 (the average value of each pixel of most images), then the lower right 
corner would have a value of 6832 * 128 = 59,710,592. At 683 x 683, each pixel in 

integral image ii and recursive step s must be of type int. Since type int is 4 bytes, 

then we have a total of 683 x 683 * (4 bytes) = 1,865,956 for each of ii and s. In total, we 
require 3,731,912 bytes of memory to allocate ii and s combined. Adding the original 
image, which is 5122 * (sizeof(unsigned char) = 1 byte) = 466,489 bytes to this, we 
obtain 4,198,401 bytes. Since the DSK only allows for 4 MB of external memory, which 
corresponds to 4,194,304 bytes, we exceed the DSK‘s limits for external memory. When 
considering this in real-time, the size of the image is usually very large based on the 
resolution of pictures taken by a digital camera, which can be as huge as 12.1 
megapixels (MP) in a camera such as the Canon Powershot1, or as low as 3 MP for the 
iPhone, for example2. To ensure accuracy in Viola-Jones, the images must be captured 
with as much resolution as possible to maintain quality.  
 
Implementation 2: do_int_image2 

 Since the implementation described by Viola-Jones will take up more than 4 MB 
at 683 x 683, the recursion formula can be tweaked so that it will work for images up to 
915 x 915. The derivation for the tweak is demonstrated in Figure 5. Note that Figure 5 
is NOT necessarily drawn to scale. 
 

                                                        
1 Amazon.com. “Canon Powershot SD780IS 12.1 MP Digital Camera.” http://www.amazon.com/Canon-
PowerShot-SD780IS12-1-Stabilized-
Black/dp/B001SER47Y/ref=sr_1_1?ie=UTF8&s=electronics&qid=1260163062&sr=8-1  
2 Apple.com. “iPhone – Technical Specifications.” http://www.apple.com/iphone/specs.html   



12 
 

 

Figure 5. For the implementation, we can calculate ii(x,y) in terms of ii(x-1,y), ii(x-1, y-1), and ii(x-1, y) as 
follows. If we take the sum of i(x,y) + ii(x-1,y) + ii(x, y-1), we end up double counting ii(x-1, y-1). Therefore, 
ii(x, y) can be expressed simply as i(x,y) + ii(x, y-1) + ii(x-1, y) – ii(x-1, y-1). The region in red is double 
counted and the part in blue is added only once [7].   

 
The formula that we use is 

ii(x, y) = i(x, y) + ii(x, y-1) + ii(x-1, y) – ii(x-1, y-1),      (4) 

instead of the one described by Viola-Jones, under the assumption that ii(-1,-1), ii(-1,0), 
and ii(0,-1) = 0. By doing this, we save memory because storing s(x, y) would require an 
additional 5122 * (4 bytes) = 1,882,384 bytes. Thus, compared to the 4,198,401 bytes 
required by using the formula described by Viola and Jones, we only require 2,311,920 
bytes, a savings of 45%. The method, do_int_image_2, executes in only 0.1363051 
seconds, or 136.3 ms. With this in mind, the original image cannot be larger than 915 x 
915 since 9152 * (4 bytes for each pixel in int_image) + 9152 * (1 byte for unsigned char) 
= 4,186,125 bytes, which is just less than the maximum of 4,194,304 bytes. 915 x 915 
corresponds to an image size of only .83 MP, which is less than the number of MP used 
for digital photography. 
 
Implementation 3: do_int_image3 

Taking it a step further, we wanted to improve the memory usage for the integral 
image step so that it would work for images at the normal camera resolution. One such 
idea was to make a lossy compression algorithm where instead of storing the integral 
image ii, each value of ii(x,y) is divided by the number of pixels that needed to be added 
to obtain the integral image to form the average integral image, aii. If the coordinate of 
each pixel of the integral image is (x,y), then each pixel would be divided by (x + 1)*(y + 
1), with (0,0) corresponding to the upper left pixel of the integral image. If we let X be 

the width of the image and Y be the height of the image, I be the set of i(x,y)  image i, 

II be the set of ii(x,y)  integral image ii, and AII be the set of aii(x,y)  average integral 

image aii, then for i(x,y)  I, ii(x,y)  II, aii(x,y)  AII, and set Z being the set of 
positive integers,  

 

(x,y) 

(x,y-1) (x-1,y-1) 

(x-1,y) 
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i(x,y)  [0, 255]  Z,      

ii(x,y)  [0, 255*X*Y]  Z, and   

aii(x,y)  [0, 255]  R     

can be implied. We know that I  [0, 255]  Z because we know that in grayscale, the 
values of pixels in images must take on 256 integer values, ranging from 0 to 255. In 
extreme cases, the image I can have all 0s (black) or all 255s (white) for pixels to yield a 

minimum of 0 for and a maximum of 255 *X*Y for ii(x,y)  II. More often than not, the 
value of each pixel in set II will fall between the minimum and maximum values. The 

final statement, aii(x,y)  [0, 255]  R is true because pixel values in an image will vary 
and thus the average of the pixel values over (x+1)*(y+1) need not be an integer, and 
can take on real values. 
 

 With this in mind, we know that currently i(x,y) takes on type unsigned char, 

ii(x, y) takes on type int, and aii(x, y) takes on type float. Because this would not 

save us any memory (total size is X*Y*(1+4+4) = 9*X*Y bytes), we have to perform 
lossy compression. Instead of creating the set II, we could simply calculate the value of 
each ii(x,y) and divide it by (x+1)(y+1) to avoid using ii(x,y), which would leave us with 
only values for i(x,y) and ai(x,y). To get back ii(x,y), it would only require us to find the 
product of (x+1)(y+1)*aii(x,y) to obtain ii(x,y). This would leave us with 5*X*Y bytes, 
which is the same number of bytes as that required to perform do_int_image2, which 
still does not save us any memory. 
 
 Because aii(x, y) falls within the range [0, 255], we perform the compression here 
by truncating each aii(x, y) so that all values are integers. Thus, aii(x, y) can now take 

on unsigned char and we now only use up X*Y*(1+1) = 2*X*Y bytes, which saves us 

60% over the memory usage of do_comp_2, and 88% over the formula suggested by 
Viola and Jones. While this may be better in terms of memory usage in implementation, 
it is very inaccurate as a compression algorithm. This is because once an average has 
a decimal part, truncation always rounds it down. Thus, error from this will propagate in 

the recursive step. To try to avoid this, we introduced a new variable, r(x,y)  R, which 
stores the integer value formed by the first two decimal places of ii(x, y) / ( (x+1) * 

(y+1) ). By doing this, r(x,y) takes on unsigned char also, so we only use up 3*X*Y 

bytes, which saves us 40% over the memory usage of do_comp_2, and 67% over the 

implementation suggested by Viola and Jones. Thus, we establish that i(x,y)  [0, 255] 

 Z, aii(x,y)  [0, 255]  Z, and r(x,y)  [0, 99]  Z. 
 
 Even with this implementation, there was still a lot of error propagation when 
using it on a 512 x 512 image. Against the correct ii(x, y) obtained from do_int_image2, 
the upper right corner and lower left corner integral image pixel values are both 
inaccurate by only .6%. Even with that being said, the value of the integral image of the 
pixel at (128,128) was inaccurate by 12.78%, the value of the pixel at (256,256) was 
inaccurate by 36%, and the value of the integral image of the pixel at (512, 512) was 
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inaccurate by 71%, which is not acceptable as a final result. To try to deal with 
truncation, a few conditions were added to enable rounding up when ii(x,y), but this 
showed only minimal improvement (no more than 5%). To improve this in the future, an 
implementation with truncation up to four decimal places could be instituted to save 
20% over the memory usage of do_int_image2.  
 

Because any image could be put into the Viola-Jones face detector, and we 
cannot put in an image larger than what the DSK can handle, we did not want to 
concern ourselves with this restriction and thus, we implemented the Viola-Jones 
algorithm in MATLAB instead where there is more flexibility as to what one can do with 
the images.  
 
Implementation 4: do_int_image4 

 An attempt to optimize do_int_image2 was done with loop unrolling. The time it 
took to do this was 0.13556076 seconds or 135.56 ms, which is not a noticeable 
difference over the time taken in do_int_image2. The reason that it was not a noticeable 
difference was because even when the loop unrolling took place, there would not be a 
sufficient supply of registers that could be reused in order for loop unrolling to happen, 
since the formula for calculating the integral image itself has five terms, corresponding 
to five different registers.     
 

Using the Integral Image                  

    In order to calculate specific rectangle features that would be used later in 
Adaboost, where weak classifiers would be combined to form a stronger classifier, the 
integral image is used to make calculations easier. The features that are primarily used 
are rectangle features, which are shown in Figure 6 [7]: 

 

Figure 6. Example rectangle features shown relative to the given detection window. Each feature 
is calculated by taking the sum of the grey pixels and subtracting it by the sum of the white pixels. 
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In order to calculate these features, the results from the integral image must be used so 
that the calculations of the sums of pixels of the white and grey rectangles can be done 
in constant time. Illustrated in Figure 7 is how the rectangle sums can be derived in 
constant time. 
 
The formula for calculating the sum of the pixels (SoP) in rectangle D is 
 
SoP in D = ii(4) + ii(1) – ii(2) – ii(3),       (5) 
 
and the proof for this is shown in Figure 7. Given the base resolution of the detector is 
24 x 24, Viola and Jones found 160,000 rectangle features. In the OpenCV 
implementation of Viola-Jones provided by Intel, only about 2,000 filters are actually 
used with different types and sizes and the subwindow, which is of a size of 24 x 24, is 
moved over the image in steps with 50% overlap. When the subwindow is resized, for 
each pass, it increases by a factor of 10% in each pass  [8]. 

 
Figure 7. Using only four array references, the sum of the pixels in rectangle D can be computed 
as ii(4) + ii(1) – ii(2) – ii(3), provided that ii(1) = A, ii(2) = A + B, ii(3) = A + C, and ii(4) = A + B + C 
+ D. When adding them altogether as ii(1) + ii(2) + ii(3) + ii(4), blue indicates a rectangle that is 
triple counted, orange indicates a rectangle that is double counted, and yellow indicates a 
rectangle that is only single counted [7]. 

 
Thus, the amount of possible features vastly outnumbers the 576 pixels contained in the 
detector at base resolution and they can be found with a high degree of computational 
efficiency, which is suitable for our purposes. 
 

Adaboost 

 Although we did not do training for Viola-Jones and a training database exists for 
frontal faces through OpenCV, Adaboost is explained for completeness. Adaboost is a 
machine learning algorithm posed by Freund and Schapire in their 1996 paper, in which 
it is capable of constructing a strong classifier through a weighed combination of weak 
classifiers [7].  
 
A weak classifier is defined as: 

A B 

C D 

1 2 

3 4 
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h(x, f, p ) =  1 if pf(x) > p         (6) 
0 otherwise 

 

where x is a 24*24 pixel sub-window, f is the applied feature, p is the polarity and  is 
the threshold that decides whether x should be classified as a positive (a face) or a 
negative (a non-face). Since only a small amount of the possible 160,000 feature values 
are expected to be potential weak classifiers the AdaBoost algorithm is modified to 
select only the best features [3]. The main advantage of AdaBoost over other feature 
selection mechanisms is that a classifier can be learned in only O(MNK) time, where M 
is the number of weak classifiers, K is the total number of features, and N is the number 
of examples analyzed [7]. 
 
 
 

Cascading Filter 

 The basic principle of the Viola-Jones face detection algorithm is to scan the 24 x 
24 detector many times through the same image – each time with a new size. Even if an 
image should contain one or more faces it is obvious that an excessively large amount 
of the evaluated sub-windows would still be non-faces [3].  
 

We therefore reason in that ―Instead of finding faces, the algorithm should 
discard non-faces.‖ [3] With the cascaded classifier, we determine at each stage 
whether a given sub-window is definitely not a face or possibly a face, denoted as a 
maybe. Once a sub-window is classified as a non-face it is discarded and a face 
classified as maybe moves on to the next stage. As a given sub-window passes through 
more stages of the cascade, the chance that the sub-window contains a face increases. 
To construct the cascade, AdaBoost is used to train the classifiers. Starting with a two-
feature strong classifier, the face filter is obtained by adjusting the strong classifier 
threshold from AdaBoost to minimize false negatives. By lowering the threshold, 
detection rates and false positive rates increase, which explains the situations where 
false positives exist [7]. Each stage of the cascade is essentially another strong 
classifier obtained from AdaBoost with a different threshold at each step to maximize 
the accuracy of the algorithm. Figure 8 shows the cascading filter in action: 
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Figure 8. This diagram shows how the classifier cascade is meant to work. The first stage eliminates 50% 
of the non-faces and subsequent classifiers use more scaled directional filters and omits more non-faces. 
 

Additions to Viola-Jones 

With these three steps alone, our implementation of the Viola-Jones algorithm in 
MATLAB detects all the faces correctly, but produces several false positives (type I 
errors), i.e. other regions of the image that are clearly not faces are classified as faces. 
The problem with having false positives at this step is that when it comes time to 
determine whether each region of interest (ROI), which could be a face or one of the 
other false positives from Viola-Jones, falls into the four classes we defined earlier in 
this report, it is possible that a ―non-face‖ will be projected onto the separation vector 
from LDA, which will result in an output of ―bad photo‖ from our complete photo 
detection system. This may be fine if the photo is bad since there is a person who isn‘t 
smiling, but it isn‘t if the photo is actually good, thus we have a false negative result 
from our system. To minimize the likelihood of false positives from Viola-Jones, we 
incorporated a fourth step and used the following inequalities on RGB for skin color 
discrimination on the center point of the face [5]. 

 
 (|R − G| > 15) && (R > G) && (R > B)       (7) 
 
By incorporating the skin color discrimination line to the MATLAB code, there were 8 
false positives from Viola-Jones that it was able to eliminate (see ―Analysis‖ section). 
Originally Viola-Jones detected 65 faces, 55 of which were correctly identified, which 
corresponds to a detection accuracy of 84.62%. When applying the skin color 
discrimination line to the MATLAB code, Viola-Jones detected 57 faces, 55 of which 
were correctly identified, which corresponds to a detection accuracy of 96.49%--an 
11.87% improvement. There can still be some false positives and negatives, which can 
be explained by the fact that Viola-Jones starts at the base scale of 24 x 24 and so 
some false positives are registered into Viola-Jones when only a single ―maybe‖ is 
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detected and thought of as a face and there are no other faces around it. Another side 
effect from Viola-Jones is the failure to detect a face due to excessive tilt or phase shift. 

Viola-Jones can only detect faces that are tilted up to about 15 degrees in plane and 

about  45 degrees out of phase toward a profile view [7]. The detector becomes 
unreliable with more rotation than this. 
 
Step 4: Face Data Projection using PCA and LDA on DSK  
 
Once we have detected, cropped and resized the individual faces in the image using 
Viola-Jones, we classify each of the faces as ―good‖ or ―bad‖ by simply projecting the 
faces onto the PCA/LDA classifier and finding the k-nearest neighbor using Euclidean 
distances.  The projection process involves first subtracting the average face from the 
face to be classified.  We then multiply the matrix p0 by the normalized face (face with 
average subtracted) to obtain the testWeights.  Once this is done, we multiply the 
testWeights by v_manx, v_many and v_manz to obtain the x, y and z co-ordinates 
respectively [1].  This is the projection process.  The coordinates obtained are then used 
to find the nearest neighbor and thereby classify the current face. 
 
Step 5: Nearest Neighbor Classifier on DSK  
 
The facial image detected using the Viola-Jones algorithm would be projected onto the 
eigenspace using the LDA algorithm.  Then a distance array with a size of the total 
number of training set images is filled with Euclidean distances measured between each 
training image value and the testing image value.  Starting with the distance of the first 
training image being the best or shortest distance, each Euclidean distance in the array 
is compared with the current best.  If the distance being compared is shorter than the 
current best, it is replaced with the current value and comparisons continue till the end 
of the array.  Finally the best value will define the shortest Euclidean distance between 
two points and thus reflect that the chosen training facial image is the nearest neighbor.  
The value of the nearest neighbor is then used to obtain the class that the testing image 
takes on.   
 
Step 6: Result (Good or Bad) shown in GUI 
 
Finally the results of the analysis, good or bad, are transferred back from the DSK to PC 
using TCP.  If any face detected using the Viola-Jones algorithm on the DSK was 
classified as a ―bad‖ face, then the GUI would show the inputted image with a sad face 
to show that the photo is a ―bad‖ photo.  If all faces are classified as ―good‖ faces with 
open eyes and a smiling mouth, the GUI produces a smiley face with the image. 
 

  
Figure 9. GUI Result for Good and Bad Photo (Left = Good, Right = Bad) 
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The above steps that we see in the process of analyzing our photographs are visually 
detailed by the flow chart shown on the next page in Figure 10.  The flowchart of the 
interaction and task distribution between the PC and the DSK are shown on the page 
afterwards in Figure 11. 
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Figure 10. Flowchart of Implementation Process 

Use a training set and 
implement PCA and LDA in 

separating (smile, no smile), and 
(eyes open, eyes closed). 

Identifying eyes and 
mouths using 

eigenfaces/fisherfaces 
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Figure 11. PC and DSK Flowchart 

 
 

Data, Code, and Pixel Sizes 
 
Data Size 
 
The data sizes for our files were all fairly small, which made it easier to put everything 
on the DSK.  The text files that are outputted by the LDA classifier training and placed 
into the DSK include: resizedFace.txt, v.txt, p0.txt, trainWeights.txt, trainIds.txt, and 
fbgAvgFace.txt.   The sizes of each of the text files containing data needed for PCA 
dimension reduction, LDA projection, and nearest neighbor classification are listed in 
the table below.  Of these the largest file contains the p0 values because it reflects the 
principal components of all the training set images that are to be projected on to the 
eigenspace using the LDA algorithm on the DSK. 
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Data File Size 

resizedFace.txt 5kB 

v.txt 1kB 

p0.txt 112kB 

trainWeights.txt 4kB 

trainIds.txt 1kB 

fbgAvgFace.txt 2kB 

Table 2. Table of Data Sizes of DSK Input Text Files 
 
Code Size 
 
The sizes of our PC and DSK side code are fairly small.  Our PC side code for Picture 
Perfect (ppPC.c) is 4kB while the DSK side code (ppDSK.c) is 6kB.  The PC side code 
reads in the text files containing the input values needed for the PCA/LDA algorithm and 
classifier on the DSK and transfers the information to the DSK.  It also accepts the 
transferred output from the DSK and outputs the Boolean to a text value to be displayed 
to the user through the GUI.  The DSK side code performs PCA, LDA, and the nearest 
neighbor classifier algorithm using the various data transferred from the PC.  Then it 
uses the classified faces to determine whether the photograph is good or bad and 
transfers the output back to the PC. 
 
Pixel Size 
 
The pixel sizes of the photograph to be analyzed using our Picture Perfect program can 
be any image size as long as has a total pixel size of less than 1000.  For the image to 
be displayed properly on the GUI, however, the image needs to have a size of 640X480 
pixels.  Also the normalized face images are cropped and resized to 97X110 pixels to 
be displayed on the GUI.   

 
Optimizations 
 
Parallelization 
 
By allowing for pipelining, the program is able to run much more efficiently on the DSK.  
This makes use of multitasking as multiple computations occur in parallel instead of 
waiting for one to complete before starting the next one.  In the function projectFace(), 
where a series of matrix multiplication computations are called to project the facial data 
onto the eigenspace, parallelization takes place.  Three iterations of matrix multiplication 
of the values v_manx and v_many are performed in parallel.  In addition the sqroot 
computation also runs three in parallel.  Another function where parallelization takes 
place is classifyNearest().  Finding the shortest distance by comparing the current best 
distance with the rest of the Euclidean distances in the array runs four iterations in 
parallel. Parallelization of Viola-Jones functions is explained for each do_int_image in 
the above section, ―The Viola-Jones Algorithm.‖ 
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Running Times 
 
Viola-Jones functions 
 

Function  Time 

do_int_image1a 88000 ms = 88 s  

do_int_image1b 69670 ms = 69.67 s 

do_int_image2 136.3 ms 
 

do_int_image4 135.56 ms 

 
Classification functions 
 

Function  O2 (cycles)  O3 (cycles)  

projectFace()  
PCA, LDA projection 

225,055 = .99ms  225,677 = .99ms  

classifyNearest()  
nearest neighbor 
classification 

6,087,120 = 26.78ms  5,932,553 = 26.10ms  

euclidean()  
calculate euclidean 
distance 

6,045,621 = 26.60ms  6,023,589 = 26.50ms  

do_comp()  
analyze photo for 
good/bad faces 

6,290,537 = 27.68ms  6,160,155 = 27.10ms  

Tables 3-4. Running times. 
 
Final Lab Demo 

 
The lab demo will be done using a GUI where we will analyze multiple group 
photographs.  We will be using TCP to perform both PC  DSK and DSK  PC 
transfers.  The image files will be fed into the DSK where the Viola-Jones algorithm will 
detect the faces and process them to be projected onto the PCA/LDA vector projection 
to classify each face detected in the image.  The results of the analysis done on each of 
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the face are then compared.  If any face was detected as a ―bad‖ face whether the eyes 
were closed or the mouth was not smiling, the DSK would return the Boolean value for a 
bad photo to the PC.  On the other hand, if every face in the image was found to be a 
nice smiling face, the PC receives the Boolean value for a good photo.  This information 
is then displayed to the user using the GUI with a smiley face for good photos and a sad 
face for bad photos.  The sequence of demo outputs are shown in the following pages.  

 
LDA Classification Analysis: 
 

Image 
#Faces 
Detected 

Correctly 
Classified 

Incorrectly 
Classified 

Classification 
Accuracy % Comments 

Single     

These single portrait 
images for the most part 
did not have any issues 
with being classified 
correctly 

asiangirl.jpg 1 1 0 100.00%  

lena.jpg 1 1 0 100.00%  

eyesclosedgirl.jpg 1 1 0 100.00%  

Group Pics      

prom.jpg 2 2 0 100.00% 

Viola Jones did not 
recognize two of the faces 
in picture 

Group 5a.jpg 13 6 7 85.71%  

Group 6a.jpg 6 4 2 66.67%  

Group 8a.jpg 14 8 6 57.14% 
One false positive picked 
up by VJ. 

Group Nihal.jpg 6 3 3 50.00% 
Tilted/Side profile faces 
ignored by VJ detection 

fiveguys.jpg 6 2 4 33.33% 
One false positive picked 
up by VJ. 

fivemoreguys.jpg 5 0 5 0.00%  

    68.81%  
 
Table 5. LDA Classification Analysis. 

 
Our results were based on face images with the size of 18 x 15 pixels with varying 
number of faces in each group image. More test results follow on the next page. 
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Problems/Errors:  
 
Figure 12: Group 8a.jpg 
 

 
 
 
 
Figure 13: Group 8a faces cropped/resized 

 

 
 
 

Face 
Classified 
Class Actual Class 

1 3 3 

2 3 1 

3 3 3 

4 3 3 

5 3 2 

6 3 1 

7 1 1 

8 3 1 

9 3 3 

10 3 3 

11 3 1 

12 3 3 

13 3 3 

14 3 4 

Note: The faces in the GUI correspond to the 
spreadsheet in sequential order left to right, 
and then top to bottom. (i.e. 1st row – 1 to 5; 
2nd row – 6 to 10; 3rd row – 11 to 14) 
 

Table 6: Group 8a Faces 
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Figure 14: fivemoreguys.jpg 

 
 
 
 

 
 

The classifying algorithm places each face in this group photo in class 2, but this 
should not be the case. All of the faces except Face 4 should have been in class 1 
because their eyes are actually open, but since they are not clearly wide open, but 
rather squinting; it is understandable to see why they‘d be placed in class 1. Face 4 was 
classified as 2, but should have been placed in class 4, because although the person‘s 
teeth are clearly showing, it does not seem as though the person is actually smiling. 
Both of these problems are similar to the ones in the previous image, and would be 
resolved if more training images were added to each of the various classes depicting 
different ranges of smiles and eyelid openings/closings. 
 
Shown on the next page is the GUI implementation of our photo classification system.

Face 
Classified 
Class 

Actual 
Class 

1 2 1 

2 2 1 

3 2 1 

4 2 4 

5 2 1 

Table 7: fivemoreguys Faces. 
Figure 15: fivemoreguys cropped/resized faces 

Note: The faces in the GUI correspond 
to the spreadsheet in sequential order 
left to right, and then top to bottom 
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Figure 16. Welcome Page 

 

 
Figure 17. Input Photo 
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Figure 18. Viola-Jones Detected Face(s) 

 

 
Figure 19. Cropped and Resized Detected Face(s) 
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Figure 20. Face Classified Using Nearest Neighbor Algorithm 

 

 
Figure 21. Final Output (Smiley Face = Good, Frowning Face = Bad) 
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Analysis of Results 
 
Running our Picture Perfect program on multiple testing images and analyzing the 
results allowed us to see where we could make improvements to enhance the accuracy 
of our classifier algorithm.   
 
Viola-Jones Detection 
 

Viola-Jones does a very good job in identifying the faces in each image, 
especially the photos with only one person in them; however, Viola-Jones either does 
not catch all of the faces, particularly in prom.jpg, or triggers false positive faces, as in 
fiveguys.jpg. The reason that Viola-Jones sometimes does not detect all the faces is 
because it can fail to detect a face due to excessive tilt or phase shift. Viola-Jones can 

only detect faces that are tilted up to about 15 degrees in plane and about  45 
degrees out of phase toward a profile view [7]. The detector becomes unreliable with 
more rotation than this. Viola-Jones detects all of the faces in Group Nihal.jpg, even 
when one of the faces falls into this category. False positives from Viola-Jones can 
occur either because of low thresholds set in the cascading classifiers as explained 
earlier, or because the initial size for detecting faces is 24 x 24, which also happens to 
be the minimum subwindow for which Viola-Jones starts detecting faces. In this case, 
some false positives are registered into Viola-Jones when only a single ―maybe‖ is 
detected and thought of as a face and there are no other faces around it. 
 
Classifying Algorithm 
 

The classifying algorithm does a solid job of clearly recognizing those faces that 
are in class 1 within this group photo. However, it has a bit of an issue of over 
classifying images into class 3. For the most part, this is due to the fact that our training 
set only contains 15 images of each class, and thus it is difficult to take into account the 
varying degrees of eyelid openings and the varying degrees of a smile. For instance, 
Faces 2, 6, 8, and 11 should have been classified under class 1, but instead were done 
so under class 3 because our training set tends to lean heavily towards smiles being of 
those with teeth showing. Also, Face 5 was classified as 3, but considering the person‘s 
eyes are more closed than open, it should have been classified as class 2. This issue 
can be explained by the fact that our training set does not contain enough discriminating 
training images of the various degrees of eyelid closure. Lastly, Face 4 was 
misclassified because it technically is not a face, but was able to bypass the Viola-
Jones and Skin Tone Detection in MATLAB. 
 
Illumination Variations 
 
Illumination variations refer to the effects that different lighting may have on a given face 
image.  Depending on how a face is lighted, it can look very different even to the point 
where two images of the same person appear to be separate identities.  To handle 
illumination variations, the first 10 eigenfaces were discarded.  The reason for this is 
because the first few eigenfaces tend to carry a lot of illumination variations that make it 
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difficult to distinguish key features.  
 
Removing the mean face calculated from the training set images normalizes the 
detected face to be tested and classified.  Subtracting the mean face from the testing 
image removes illumination variations and other characteristics that do not help in 
classification. [10] This process thus leaves the most distinguishing features of the face 
to make comparisons to test images more effective in successfully determining the 
correct class of the face. 
 
We previously discarded the top 10 eigenfaces to deal with illumination variations, but 
we realized that the training set images we were using in our MANS database didn‘t 
carry much illumination variation.  Thus by discarding the top eigenfaces that contain 
the most energy, we were jeopardizing the effectiveness and correctness of our 
algorithm.  So we tried keeping the first 10 eigenfaces and found that instead of 
decreasing the accuracy of our PCA/LDA classifier algorithm, the accuracy stayed the 
same.  In effect, in our case discarding the top eigenfaces neither helped nor harmed 
the final results of our algorithm. 

 
Future Considerations 
 
Analyzing the results that we obtained from our Picture Perfect project showed that 
there is still much improvement to be made to have a truly perfect photograph classifier 
based on facial feature analysis.   
 
One thing that should be considered to increase the effectiveness and accuracy of this 
project would be to create a database with a very even distribution of ethnicities, gender, 
and classes for training the algorithm.  The method we use with a nearest neighbor 
approach to classifying the detected faces puts the most importance on the distribution 
of the training set facial images that are projected on the eigenspace to be compared 
with the face to be classified.  Each race has distinct facial features that define that 
particular ethnicity.  These features include the eyes and the mouth.  So if there aren‘t 
enough images of a particular ethnicity in the training set, the classification accuracy for 
that particular face may not be as high.  For our project, we lacked training images for 
faces of African ethnicity and thus found difficulty in classifying them when detected 
using Viola-Jones and projected using PCA and LDA.  Other races such as Asian, 
Hispanic, and Indian should also be considered when making sure the database used to 
train the classifier algorithm has equal distributions and fair representations for all 
different types of people.  Gender and age are also things to consider when making the 
database as well represented of all possible test images.  The database used to train 
the algorithm could be seen as the single most important aspect of classification and 
thus can use improvement for future projects considering the concept of classifying 
faces using the nearest neighbor approach. 
 
Another thing to consider in the future in regards to this project is to increase k when 
using the nearest neighbor approach to classify faces.  For our project we simply used 
k=1 to maintain the simplicity and efficiency of the algorithm.  The problem with 



32 
 

classifying a facial image exclusively using its single nearest neighbor on the 
eigenspace projection may not be an accurate representation of whether the face has 
open eyes and a smiling mouth.  Increasing k would be more accurate because it would 
take into account more neighbors of a testing facial image.  For example, if the Viola-
Jones algorithm detected a bearded face.  Using a single nearest neighbor approach 
may simply look for a face in the training set that most resemble the given image, which 
would have a high probability of being a bearded face.  The two faces may have totally 
different characteristics in terms of the eyes being open or closed or the mouth smiling 
or not.  Thus by taking another step and looking at additional neighbors could increase 
the effectiveness of the classifier algorithm and increase the accuracy. 
 

 
Schedule 
 
This project will take two months to complete because we need to be able to implement 
our code in Matlab and in C on the DSK, as well as to create a GUI.  

 

Date Task Member 

September 21 Algorithm Decisions for Project Everyone 

September 28 Research on PCA 
Research on LDA 
Research on Viola-Jones 
Research on Nearest Neighbor Classifier 

Nihal 
Ajay 
Stelios 
Minwoo 

October 5 Database Comparisons Minwoo 

October 12 OpenCV Viola-Jones Algorithm  Stelios 

October 19 MANS Database Creation 
Euclidean Distance Code in C 

Ajay 
Minwoo 

October 26 Viola-Jones Algorithm Matlab Testing 
Nearest Neighbor Classifier Code in C 

Stelios 
Minwoo 

November 2 PCA Algorithm in C 
LDA Algorithm in C 
Database Testing of Classifier Algorithm 

Nihal 
Ajay 
Minwoo 

November 9 Project Oral Update Everyone 

November 16 DSK Transfers Everyone 

November 23 GUI Design 
Optimization on DSK 

Ajay 
Nihal 

November 30 Final Presentation + Demo Everyone 

December 7 Final Written Report Everyone 

Table 8. Approximate Schedule with Responsibilities 
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