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The Problem 

The problem we are addressing in this project is that the conventional methods for locating a target in a 
cluttered environment have low accuracy rates. To be precise, matched field processing (MFP) which is 
Green’s function integrated, is too expensive to run and is extremely sensitive to accuracy of the 
environmental data [2]. The answer is then to use the TRAIC (Time Reversal Imaging by Adaptive 
Interference Cancelling) [2] algorithm that boosts accuracy of target returns and attenuates non-target 
returns.  

 
Novelty 

The novelty of this project is that this is the first time the time reversal algorithm has been used, 
attempted, or implemented with DSP hardware. There are no previous relevant 18-551 projects and it 
also contributes to popular new research area, continuing the work of Yuanwei Jin and Professor Jose 
Moura at Carnegie Mellon University. 

 
Solution 

The TRAIC algorithm proposed by Moura and Jin in their paper utilizes multipath scattering to increase 
the accuracy in target imaging. The steps as proposed by the algorithm include: clutter channel probing; 
time reversal waveform reshaping; time reversal target focusing; and the final step, image formation 
using beamforming and triangulation. 

 
What We Did 

We actually follow the algorithm below exactly except for two major caveats. The first is that the data 
has already been collected for us from a previous experimental setup. Thus the initial step of obtaining 
the environment response as well as the environment plus target response has already been done for us 
in our implementation. The second is that this information has already been Fourier Transformed, which 
allows us to implement the entire algorithm from a mathematic standpoint in the frequency domain, 
doing phase conjugation in place of actual signal re-transmittance. In our algorithm below we note the 
frequency domain mathematical equations used in our implementation.  
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[Fig. 2] Overhead view of the physical setup generating the data sets.  Ref. [3] 

 

 

 

[Fig. 1] A target present in an area rich with scatter components. Note that when our detection antenna sends a signal into the 

environment, it receives both the direct path reflection and the reflection off the scatters resulting in multipath. Ref. [2] 

Setup 

 

  

First, we need to define the size our data.  

We have two arrays of antennas, each array having ten antennas. We have each antenna transmit a 

series of bursts of narrow band pulses where each burst is a sequence of pulses stepped in frequency 

from pulse to pulse by a fixed step size. The bandwidth is from 4GHz to 6GHz, stepped by 80 MHz for a 

total of 26 pulses for each antenna. Thus we are coarsely sampling the wideband signal spectrum of our 

bandwidth at these frequencies.  

With reference to figure 4, we send the pulses from 
each antenna in array A to some region that we are 
interested in, and receive a reflected signal at array 
B. Thus for each pulse sent from each antenna in A, 
we have a received signal at each antenna in array 
B. Doing this for each of the ten antennas in array A, 
we have 26x10 pulses sent by array A in total, and 
26x10x10 received waves by array B in total, since 
each antenna in B receives something from each 
antenna in A.  
 
Since the received signals at array B represent the 
response we receive from the environment (with or 
without target), we have a matrix of dimensions 
10x10x26 complex numbers, since for each 
received signal we have amplitude and phase. 
Programmatically, since we represent a complex number with two doubles, this equates to a matrix of 
dimensions 10x10x26 where each entry is two doubles. 
 
We chose such a bandwidth based on the experimental conditions that produced our experimental data. 

The magnitude of the data set for the original experiment at 200 frequencies (10 MHz step size) would 

be relatively large (200x10x10) although of course more accurate because of increased frequency 
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[Fig. 3] The first step in the algorithm: getting the environment response.  Ref. [2] 

 

 

 

[Fig. 4] Step 2: Design waveform to cancel clutter components.  Ref. [2] 

 

 

 

resolution. Because the computational and memory costs will contribute to a substantial increase in 

processing time and complexity in implementation we use the aforementioned step size of 80MHz and 

thus for our test sets, we will simply use only a total of 26 frequencies. 

The Algorithm 

The complete algorithm we implement is called Time Reversal Adaptive Interference Cancellation with 

Time Reversal Beam Forming, TRAIC+TRBF. The breakdown of the algorithm is described by the 

following steps: 

1. Get the clutter. As mentioned beforehand 

we have two instances of data that we are 

concerned about. One is the frequency 

response of the environment alone, and 

one is the frequency response of the 

environment with the target in it. We 

define the environment as the established 

initial area we want to monitor. When 

there is a target in this high-scattering 

environment we want to be able to detect 

that target and image the area with 

relative accuracy. Based on the 

research we have done and the feasibility of our project we assume that the area is relatively static.  

 

Our first step is to get the frequency response of the clutter environment when the target is not 

present. Termed ‘clutter probing,’ we do this to implement the direct subtraction later on.  

 

As mentioned early, we send pulses at 20 frequencies from array A to array B. For each frequency 

we have on pulse sent from each antenna in array A, and some received response at each antenna 

in array B for each antenna in array A. 

This gives us a 10x10 matrix for each 

frequency. Over 20 frequencies, we 

use a 10x10x20 matrix to characterize 

our total response.   

 
2. Use clutter response to design a filter that 

cancels the energy from the clutter. Note that 

the figure below references a S(wq) which 

represents the noise component that is 

however not within the scope of our project. 

The formula for the optimal reshaping filter 
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[Fig. 5] Step 2: Equation for total energy of signal from clutter.  Ref. [2] 

 

 

 

[Fig. 6] Applying constrictions to solve for the optimal cancellation filter.  Ref. [2] 

 

 

 

[Fig. 7] Representations for the signal to be retransmitted from antenna array B.  Ref. [3] 

 

 

follows  (See paper 

reference [3] for 

complete 

mathematical 

proof) : 

Since we are 

working in the 

frequency domain, 

mostly all of our 

operations will 

consist of matrix 

multiplications. 

Furthermore, we can represent the physical re-transmittance of a signal by multiplying the response 

of the environment we are sending the signal to with the conjugate of the signal being sent. Note 

that in figure 6, the transmitted signal from B has been conjugated, noting that it has been time-

reversed and that the received signal from A is the received signal from B multiplied by our K-matrix, 

which represents the clutter response, or in other words mathematically represents the re-

transmittance of our time-reversed signal back to A. 

 

We design the optimal reshaping filter by taking the equation for the total energy of the signal from 

the clutter, and solving for the matrix that minimizes that total energy. To do this we apply three 

constraints to our energy equation, those being unit norm, symmetry, and constant volume as 

shown above in figure 5. The 

end result is that our optimal 

reshaping filter is the pseudo-

inverse (denoted by the cross in 

figure 7) of the product of the 

transpose of the clutter 

response with the conjugate of 

the clutter response. Again, the 

entire proof can be found in the 

paper noted by reference [3]. 

 

So in our first step we received the Kc matrix at antenna array B, the clutter frequency response as a 

result from probing the clutter. We time-reversed this signal, Kc
* in order to re-transmit it. Now that 

we have the reshaping filter, we multiply the filter by our time-reversed signal Kc
* to get the final 

reshaped signal that will be sent from antenna array B back to antenna array A (remember that 

these steps so far are done without the target present in the media so we can generally compute 

this far before the target actually comes into play):   
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[Fig. 8] Received re-transmitted signal 

without target in field.  Ref. [3] 

 

 

 
[Fig. 9] Received re-transmitted signal 

when target is in the field.  Ref. [3] 

 

 

 

[Fig. 11] Depiction of the response from probing when target is 

within environment.  Ref. [3] 

 

 

 

3. When we receive this new signal sent from antenna array B to antenna array A, there are two 

possibilities. One is that the target is present in the medium and the other is if the target is not 

present in the medium. Should the target not be present in the medium, then the response of the 

environment will remain Kc
 and the received signal at A should be the product of our sent signal 

from B, namely Xi with respect to figure 8, with the response Kc which will yield the identity matrix. 

Note that the optimal filter is actually just the inverse transpose 

of the clutter response hence our expected result with no target 

is presence during the re-transmittance.   

 

But if the target is present in the medium then we will get a response zp
’ not corresponding to the 

identity matrix but as follows:  

 

 

 

 

 

 

 

Note that in figure 9 we use the equation shown in figure 10 to separate the target and clutter 

component responses to the retransmitted signal Xi into responses zp
t and zp

c, respectively.  

 

Until now we have not defined when we 

obtain the response of the target plus the 

environment, namely Kc+t , but this can be 

easily attained by either consistent probing 

until a change appears in the response, or 

probing as soon as the received 

retransmitted signal no longer returns our 

expected identity matrix value.  

 

Also note that if the target is moving, we can assume that we can send and receive signals at a much 

faster rate than the target’s movement so even if the target is moving we can update the target plus 

environment response and thus the target response much faster than the rate the target moves at. 

  

[Fig. 10] Isolating target and clutter 

response by direct subtraction.  Ref. [3] 
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[Fig. 13] Second retransmitted signal for additional focusing.  Ref. [3] 

 

 

 

[Fig. 14] Final target-isolated signal received at antenna array A and at antenna array B, namely MA and MB, respectively.  Ref. [3] 

 

 

 

[Fig. 15] Second time reversal for additional refocusing.  Ref. [3] 

 

 

 

4. In the case where the target is presence and we receive the response shown by figure 9, we can 

then subtract out the clutter component (namely the identity matrix) and we are left with the target 

component. 

 

 

 

 

 

5. Now that we have used the reshaped time reversed signal to minimize the energy from the clutter 

response, we have successfully isolated a rough estimate of the target response. We thus retransmit 

the signal again using time reversal for refocusing. Now our signal should focus directly on the target 

and have little or no energy directed towards the scatters, however again we separate the 

environment response to our retransmitted signal so that we can subtract out additional clutter 

responses.  

 

In our received signal zp (before said time-

reversal and 2nd retransmittal), the transposed 

matrices have now taken on their hermitian values 

equivalent to phase conjugation. Note that we 

again multiply the sum of the target and clutter 

response to mathematically simulate the 

retransmittance. So as a result, back at antenna 

array B, we receive a final signal that has a clutter and 

target component.  

 

6. And now we just isolate the target component:  

     

Note that the steps described assume that step 

3 (our first clutter-cancelling TR signal) 

originates at antenna array B. We thus also 

specify the final result if we assume that step 3 

originates from antenna array A. Note that the 

two results are the same except the 

transpositions are flipped.  

[Fig. 12] Clutter component subtracted 

out from figure 9 to yield isolated target 

response.  Ref. [3] 
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[Fig. 16] Formula for relating each pixel and the corresponding energy.  

Ref. [3] 

 

 

 

[Fig. 17] Weight vectors used for calculating the 

beamformers.  Ref. [3] 

 

 

 

[Fig. 18] Complete equations for each beamformer.  Ref. [3] 

 

 

 

[Fig. 19] Final imaged area of interest based on energy of returns 

correlated with green’s function calculation.  Ref. [3] 

 

 

 

7. With the responses measured at each antenna array we then calculate the final image as a spatial 

distribution of the total energy at each pixel using the following formula:   

  

 

This represents the combination of two beam-formers YA 

and YB by triangulation. Note that YA and YB come straight 

from multiplying our response by weight vectors of unit 

norm calculated from the green’s function and clutter 

response. Note that for each antenna array we have a 

receive and transmit beam for each frequency. Forming 

the image represents the most computationally heavy part of our algorithm.  

Thus if we contain our samples to the same 

environment, we only need to calculate the 

weight vectors once, and our computation time 

will be significantly decreased.  

We can then plot an image of our region where 

each pixel has an associated energy. Given our 

algorithm, we should expect the peak energy to 

represent roughly the location of the target. Note 

that our results are far from perfect, as shown   

 

So what have we used time-reversal for in all of 

this? 
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[Fig. 20] Complete equations for each beamformer.  Ref. [3] 

 

 

 

Green’s function: 

Two-point Green’s function G(r1, r2, w) tells 

us (assuming free space conditions) the 

response at point r1 to an impulse from 

point r2 with frequency w.  So if we send a 

known signal from an antenna A1, we have a 

function that approximates what we should 

receive at x, namely G(x, A1, w). We can also 

calculate the Green’s function between a 

point in antenna B. If there is a point of 

reflection (scatter or target) at pixel x, 

Green’s function gives us a relation between 

what is sent by A and received by B.   

 

 

Where H0 is the zeroth-order Hankel function.   

We assume that Green’s function also satisfies the reciprocity relation:  

Far-field approximation:  

Since we are computing Green’s function offline on the PC, we can use the initial and more accurate 

equation to calculate green’s function for the entire imaged area. 
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Algorithm Visual Overview 

 
 
 
 
 
 
  

Green’s 

Function 

Time Reversal Algorithm [TRAIC] 

TRBF 

𝐾𝐶(𝑤𝑞) Data set of clutter 

𝐾𝐶+𝑇(𝑤𝑞) 

𝑀𝐴 = 𝐾𝑇
𝑇 𝑤𝑞 [𝐾𝑇

∗ 𝑤𝑞 𝐾𝐶
−∗ 𝑤𝑞 ] 

𝑀𝐵 = 𝐾𝑇 𝑤𝑞 [𝐾𝑇
𝐻 𝑤𝑞 𝐾𝐶

−𝐻(𝑤𝑞)] 

 

Target Channel Monitoring TR target 

focusing 

𝑌𝐵 = 𝑤𝑟𝐵
𝐻  𝑥;𝑤𝑞 𝑀

𝐵 𝑤𝑞 𝑤𝑡𝐵(𝑥;𝑤𝑞) 

𝑌𝐴 = 𝑤𝑟𝐴
𝐻  𝑥;𝑤𝑞 𝑀

𝐴 𝑤𝑞 𝑤𝑡𝐴(𝑥;𝑤𝑞) 

𝐼 𝑥 =  𝑌𝐴 𝑥;𝑤𝑞 𝑌^𝐵(𝑥;𝑤𝑞) 
2
 

 

𝑤𝑟𝐵 𝑥;𝑤𝑞 =
𝑔𝐵 𝑥;𝑤𝑞 

 𝑔𝐵 𝑥;𝑤𝑞  
 

𝑤𝑡𝐵 𝑥;𝑤𝑞 =
𝐾𝑐

−1(𝑤𝑞)𝑔𝐵 𝑥;𝑤𝑞 

 𝐾𝑐
−1(𝑤𝑞)𝑔𝐵 𝑥;𝑤𝑞  

 

𝑤𝑟𝐴 𝑥;𝑤𝑞 =
𝑔𝐴 𝑥;𝑤𝑞 

 𝑔𝐴 𝑥;𝑤𝑞  
 

𝑤𝑡𝐴 𝑥;𝑤𝑞 =
𝐾𝑐

−𝑇(𝑤𝑞)𝑔𝐴 𝑥;𝑤𝑞 

 𝐾𝑐
−𝑇(𝑤𝑞)𝑔𝐴 𝑥;𝑤𝑞  

 

 

Image formation 

Data set of clutter + target 

All equations as described in [3] 
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Results 

The plots below represent the final output of our algorithm. What we have is 3 pairs of images, one pair 

of images for each of our data sets (data from 3 different experimental setups). Each image represents a 

plot of the desired area to be imaged, where ‘range’ denotes the x-axis and ‘cross range’ denotes the y-

axis.  For each pixel the corresponding color to that pixel represents the magnitude of the energy 

response from that physical point (x, y) in the imaged area.  

Looking at the dB color scale, blue represents low energy in the response, and red, strong energy in the 

response. What we mean by “energy” of the response is the reflectivity at that point, so the higher the 

energy at a point, the stronger the reflectivity and ideally, the more likely that there is some object at 

that point (since we do clutter suppression we would ideally hope that only the target location has 

strong reflectivity).  

For each plot note that there is an ‘x’ and ‘o’ marked. The ‘x’ represents the target’s actual location, 

where ‘o’ represents the maximum energy peak of the plot, the point where the reflected energy is the 

highest. The black and bold numbers marked on the plot represent the approximate location of the 

scatters. In the experimental setup, these scatters were simulated by long copper pipes.  

Each data set is comprised of two images, one showing the results from conventional detection and 

imaging, and one showing the results from our time-reversal based algorithm. The plot labeled 

“direction subtraction” represents a plot generated by calculating the difference between the clutter 

response and the clutter plus target response and doing beam forming without any additional steps. 

This is the conventional and simplest of detection and imaging schemes, where as our algorithm finds 

the difference, and then execute the algorithm as we described above, before doing beam forming to 

create the image. The plot labeled “TRAIC-TR” represents the plot generated from our algorithm. 

Data Set 1  

Looking at the first data set, it has the least number of scatters out of all the setups, so we would 

probably expect the least performance gain from TR in this case out of all the cases since TR 

improvements increase with an increased number of scatters, that is multipath becomes an advantage. 

As one can see from the plots, the actual accuracy in detection is very close, but TR does a noticeably 

better job in general at suppressing the energy reflected from the scatters, as most of the stronger 

returns in the TR plot are localized around the target location. In the direct subtraction plot, the area of 

strong returns stretches along the bottom of the image and covers a larger area than in the TR plot. The 

strong returns not reflected by the target position are mostly due to secondary scattering, in which we 

have no method to predict. 

 

 

 



13 
 

Data Set 1 

Figure 1 

 

Data Set 1 

Figure 2 
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Data Set 2  

In this setting we increase the number of scatters and change the scatter and target positions. Notice 

that direct subtraction, despite being not significantly far off from detecting the target, returns 

significant energy from almost all points of the image. TR imaging manages to get a more accurate 

location on the target (smaller distance between ‘x’ and ‘o’) as well as significantly suppressing most of 

the environment response.   

As mentioned before, there is the factor of secondary scattering coupled with the fact that our target 

response, modeled from the directly subtracting the clutter response from the target plus clutter 

response, is of course imperfect.  So we see a couple of slightly strong returns in unexpected areas of 

the TR plot, but overall it does an improved job of suppressing the energy returned from the 

environment and successfully localizing the target to a small enough region.  

Data Set 2  

Figure 3 
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Data Set 2 

Figure 4 

 

Data Set 3 

Data set 3 uses the exact same setup as data set 2 except more scatters have been added. Thus we 

would expect direct subtraction to perform the worst here and our TR algorithm to show the best 

improvements under these conditions.  

Our result shows that direct subtraction fails quite miserably in this case, displaying intense energy 

returns all over the top region of the imaged area. As a result, the energy peak is almost off the map, 

having a distance from the actual target pint almost equal to the entire range of the imaged area. 

Examining more closely, the stronger returns don’t even localize around the target but rather along the 

scatters behind the target.  

Looking at the TR result, the mass energy returns direct subtraction had have mostly been mitigated. 

There is still a region of substantial energy not localized around the target, but the strongest returns 

form a nice circular region about the target location, and the target location is fairly close to the energy 

peak. So in this case we note that the TR algorithm has given us a fairly large improvement over 

conventional imaging methods, thus the more scatters, the better our gains. 
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Data Set 3  

Figure 5 

 

Data Set 3 

Figure 6 
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What are the DSK and PC doing? 

The PC loads the clutter data and clutter plus target data via MATLAB. Any necessary operations on the 

clutter data only (inverse, conjugate, hermitian) are calculated in MATLAB, and then the clutter plus 

target data, clutter data, and modified clutter data is all written to an output file. In particular we 

calculate 𝐾𝐶
−∗ 𝑤𝑞  and 𝐾𝐶

−𝐻 𝑤𝑞  , and send over these two along with 𝐾𝐶(𝑤𝑞) and 𝐾𝑇(𝑤𝑞)). This 

seems reasonable since the clutter data is known far before the clutter plus target data is obtained so 

we can use the PC to quickly calculate the inverses we need.  

The PC also uses MATLAB to calculate Green’s function. Since Green’s function depends only on the 

imaged area, this represents a beforehand calculation as well, so we do it quickly on the PC. The main 

idea is for the DSK to achieve near real-time performance, thus we limit its actions to strictly the 

operations containing clutter plus target data.   

The PC side code reads all the data in from the MATLAB output file and transfers it to the DSK for 

processing. In our code, a total of four request transfers are used to transfer the data over to the DSK. 

The DSK takes the clutter only data, clutter plus target data, and the modified clutter only data to 
generate the final response after mathematically implementing our time reversal algorithm. The 
entirety of the DSK operations can be expressed by the following equations. 
 

𝑀𝐵 = 𝐾𝑇 𝑤𝑞 [𝐾𝑇
𝐻 𝑤𝑞 𝐾𝐶

−𝐻(𝑤𝑞)] 

𝑀𝐴 = 𝐾𝑡
𝑇 𝑤𝑞 [𝐾𝑇

∗ 𝑤𝑞 𝐾𝐶
−∗(𝑤𝑞)] 

Where 𝑀𝐵  represents the clutter focused target response matrix measure with respect to array B (for 

array A being the transmitter and array B being the receiver) and 𝑀𝐴 corresponds to the clutter target 

response matrix measured at array A (array B being the transmitter and array A being the receiver).  

We then use only two request transfers to move the data back to the PC since we only have two results 

to transfer. The PC side code writes the data to an output file to be opened and read in by MATLAB for 

plotting. To do the plotting, beamforming is required, which uses weighted vectors computed from 

Green’s Function. Ideally this should be done on the DSK as well so all the PC has to do is take the result 

from the DSK and plot it, but we did not have sufficient time to implement beamforming on the DSK.  

See the timing section for more details on projected performance using C as compared to our current 

MATLAB beamforming code. 
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Task Division between PC & DSK  

 

What Code We Used 

The most critical code we used was the TI C67 DSP library we found after much searching on the TI 
website (to which the download link is now broken). The library does not support complex transpose but 
does support complex matrix multiplication, which greatly improved the performance of our algorithm 
compared to regular C code since the assembly code was already hand tuned. All other code was self-
written, most of it concerning transfers either between MATLAB and the PC or between the PC and DSK. 
Time constraints did not allow us to find proper complex matrix transpose code so we were forced to 
implement a straight-forward intuitive method that performs much worse than even the complex matrix 
multiplication as noted in the timing section.  

Since we did not implement beamforming on the dsk there weren’t extremely heavy performance 
constraints. The limiting factor from our code’s performance is probably the complex matrix transpose 
since our implementation is very basic. Most of our transfer and read/write code was optimized for 
maximum performance since the memory requirement wasn’t significantly high. Though we could have 
easily processed more frequencies on the DSK with time to spare, our choice of the load to put on the 
DSK was directly limited by the MATLAB code which already took several seconds to run for ultra-low 
resolutions and frequency numbers.  
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In the timing section below we evaluate the possible performance for c-based beamforming and 

estimate the efficiency the algorithm could gain from implementing the MATLAB beamforming (most 

computationally heavy and longest computation time as of now) in C and on the DSK. 

Timing Analysis and Performance  

General benchmark….  
 
Complex matrix multiplication in MATLAB: 0.0005987 seconds, 598.7 µs 
(multiplied two complex matrices of size 10x10) 
 
Matrix multiplication in C:  0.000031 seconds, 31.0 µs 
(multiplied two complex matrices of size 10x10, 1000 times and divided by 1000) 
 
DSK multiplication in C:  
8*r1*c1*c2’+ 18*(r1*c2)+40 
8*10*10*10+ 18*(10*10)+40= 9840 cycles * 4.4ns = 43.2960 µs 
 
In MATLAB … 
 
Read in data, declare and initialize parameters for imaging = 0.039006 sec 
[Calculate inv herm and inv conj and write four matrices to file = 0.020960 sec] 
Compute inv herm and inv conj = 0.0119325 sec 
Write to file (unwrap, interleave, etc)  = 0.0090275 sec 
PC side C code…. 
 
Read in four matrices on PC side C code =  0.001328 sec  (read them in 1000 times, divided by 1000) 
 
DSK side C code… 
 
DSK to request data transfer from PC four times (the 4 matrices) = 12982947 cycles * 4.4ns sec/cycle =  
0.0571249 seconds 
4 DMA transfers at top of loop  = 769 cycles * 4.4ns = 3.3836 µs 
(target plus clutter response - clutter response) for one pair of matrices = 31 cycles * 4.4ns = 0.1364 µs 
Compute conjugate of target response = 42 cycles * 4.4ns = 1.848e-7 s = 0.1848 µs 
Compute transpose of target response (one matrix) = 13 cycles * 4.4ns = 57.2000 ns 
Compute transpose of target response conj (one matrix) = 13 cycles * 4.4ns = 57.2000 ns 
2 DMA transfers at bottom of loop = 880628 cycles * 4.4ns =  0.003874763 seconds 
 
PC side C code… 
 
Write 2 result matrices from PC side C code to be read into MATLAB = 0.0006639000 seconds 
 
In MATLAB…. 
 
Read 2 results matrices back into MATLAB, reshape matrices, reconstruct complex numbers   =  
0.012500 seconds 
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Beamforming time = 7.1409070 seconds 
Plotting time = 0.7109390 seconds 
 
Beamforming: 
 
Time to multiply three matrices 1x  tmpB = 0.00550317915 sec 
This time * 26 * 50 * 50 =  357.706644750 sec  (for three loops)  (this doesn’t seem right) 
 
Time to multiply three matrices 1x  tmpA = 4.3176150e-5 sec = 43.17615 µs 
This time * 26 * 50 * 50 = 2.8064497500 sec (for three loops) 
 
Time measured for MATLAB to do M mult in loop = 7.508441924 seconds 
 
Size(vB’) = 1 10 
Size(fix2)= 10 10 
size(vKb/sqrt(vKb'*vKb)) = 10 1 
 
0.003200 to perform 1000 of the three matrix mults 
3.2 µs /matrix mult 
0.003200 * 26 * 50 * 50 * 10^-3 = 0.20800 sec 
 
Speed of complex matrix multiplication was investigated to learn about the computational costs of time 
reversal and beamforming. Benchmark times for multiplication of two 10x10 complex matrices were 
measured to be 598.7 µs, 31 µs, and 43.296 µs for MATLAB, PC-side C code, and DSK-side C code, 
respectively (see table below). 
 
Multiplication of Two Complex Matrices of Size 10x10 
MATLAB 598.7 µs 
PC-Side C Code 31 µs 
DSK-Side C Code 43.296 µs 

 
The profile times below were measured for all sections of the MATLAB code, PC-side C code, and DSK-
side C code. 
 
MATLAB        
Read in data, declare and initialize imaging parameters   0.039006 s 
Compute inverse hermatian, inverse conjugate    0.0119325 s 
Write to file (unwrap, interleave, format)      0.0090275 s 
PC side C Code        
Read in four matrices on PC side C code    0.001328 s 
DSK side C Code        
DSK to request data transfer from PC four times 12982947 cycles 0.0571249 s 
Four DMA transfers for pre-calculation paging  769 cycles 3.3836 µs 
Direct Subtraction Step   31 cycles 0.1364 µs 
Compute conjugate of target response  42 cycles 0.1848 µs 
Compute transpose of target response (one matrix) 13 cycles 57.2 ns 
Compute transpose of target response conjugate 13 cycles 57.2 ns 
 (one matrix)        
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Two DMA transfers for post-calculation paging 880628 cycles 0.003874763 s 
PC side C Code        
Write 2 result matrices from PC side C code to be   0.0006639 s 
 read in MATLAB        
MATLAB        
Read two results matrices back into MATLAB,   0.0125 s 
reshape matrices, reconstruct complex numbers     
Beamforming time      7.140907 s 
Plotting time      0.710939 s 

 
Beamforming is believed to be the most computational intensive part of the project. It features complex 
matrix multiplication inside three nested loops. In MATLAB, this matrix multiplication step was profiled 
to take 43.17615 µs. Repeated through 26*50*50 = 65000 iterations, we multiply to get an estimated 
total computation time of 43.17615 µs * 65000 = 2.80644975 seconds. Profiling the three nested loops 
in MATLAB as a whole, we get 7.508441924 s. The difference 7.508441924 s - 2.80644975 s = 
4.701992174 s is indicative of the extra time MATLAB takes to perform matrix multiplication inside of 
loops. Comparatively, the same multiplication step in C was profiled to take 3.2 µs. At 65000 iterations, 
this step takes an estimated 3.2 µs * 65000 = 0.20800 s. The difference in estimates between the 
MATLAB and C implementations of this matrix multiplication step is 2.80644975 s -  0.20800 s = 
2.5984497 s. The C code implementation took roughly (0.20800 / 2.80644975) * 100 =  7.41% of the 
runtime of the MATLAB implementation. 
 

Full Semester Schedule & Task Division 

Date Goal Who 

Oct 12th  Understand the TRAIC 
Algorithm  

All 

Oct 19th  Decide what should be 
done on PC and DSK 

ALL 

Oct 26th  Meeting with Yuanwei 
to decide PC and DSK 
parts, 
Start coding 

Alan, Dave 

Nov 2nd  Begin DSK & PC side 
coding 

ALL 

Nov 9th  Finish Coding for DSK  Alan 
Nov 16th Begin profiling, finish PC 

and DSK side code 
ALL 

Nov 30th  Finish profiling and 
preparing for final 
presentation 

ALL 
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Future Improvements and General Recommendations 

This project had a lot of educational overhead, and because the research has not fully developed, the 

results are not definite or completely convincing. That said, the project still has great relevancy since the 

DSK is perfectly suited for matrix operations. Since the matrices contained complex data, finding 

libraries and online code was nearly impossible. It’s not as elegant or surefire as other classical projects 

but it was good to step outside the realm of normal DSP applications. Furthermore, we were not able to 

implement the entire algorithm, although there was a high possibility that the entire algorithm could 

very well run in real-time on the DSK.  
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