18-551: Digital Signal Processing and
Communication Design

Group 6: Get In My Belly!

Final Report

Geoffrey-Dixon Ernst
Sanghamitra Gogoi

Wendy Shutt

Introduction

While we were reviewing the past projects, we came across two projects, one in Image
Segmentation and the second in Fourier Volume Rendering and it occurred to us the usefulness of a
system which could read in a stack of images, process the images with the capability of choosing one
organ and then being able to view a dissection of the organ at any chosen angle. This system has a great

future in the field of medicine in improving and helping make a better medical diagnosis.

Past Solutions

Our first step was to look at the algorithms and any hardware and software the prior groups used
for their projects.

The segmentation project was done by Group 5 of Spring 2004. Their project aimed to identify four
major organs in an abdominal CT image scan and color each one a different color. They targeted the
kidneys, liver, and spleen. In order to accomplish this task they used median filtering, the mean-shift

algorithm, thresholding, and blob labeling.

The Volume Rendering project was done by Group 3 of Spring 2001. To summarize, they first read in
images using a Fast Fourier Transform which performs a 3D forward FFT and returns a 3D object with
frequency domain data. They then perform a Fourier Projection Slice Theorem which returns a 2D object
also in frequency domain. The data is sent though the FFT function again to perform an Inverse 2D FFT.

This now results in a volume rendered image.

Our Solution

Descriptions of algorithms:

Watershed

In the watershed segmentation algorithm, grayscale values of each pixel can be viewed as
heights. This way, an image can be viewed as a topographical map. Now we will consider rain falling
onto the image. When it collects, it will collect in the basins, or the areas with the lowest heights.
Flooding will then occur in these areas. The overall goal is to “change the starting image into another
image whose catchment basins are the objects or regions we want to identify” (Gonzalez, 418).
Segments of the image are where distinct lakes form, thus areas/lines of high intensity become the
edges of the segments. One disadvantage to this algorithm is that noisy material can lead to over-
segmentation. Because of this, pre-processing or the merging of basins on certain criterion will be
necessary afterward. Other approaches can be explored as well, such as the use of gradients,
smoothing, and marker-controlled segmentation. Gradients prove useful because the gradient
magnitude image has “high pixel values along object edges, and low pixel values everywhere else”
(Gonzalez, 420). Smoothing the gradients can help as well, which can be accomplished by a series of
opening and closing operations. Finally, marker-controlled watershed segmentation can be used. A
marker, or a connected component belonging to an image, is desirable in each of the components of
interest in the photograph, as well as one in the background of the image. The markers can be used to
then modify the gradient image.

In our implementation of the watershed algorithm, we approximated the gradient using two
Sobel edge detectors, one in the x direction and one in the y direction. Then we moved onto an indexing

step in which each minimum was given a distinct value, allowing us to discern which blob a particular

-3-

pixel belonged to. In this step, you basically follow the path to the local minimum at each point. The
reason why we decided to use gradients was to ensure that areas that someone looking at the original
image would see as one distinct area was in fact detected by the watershed algorithm as one area. This
is shown quite well in the pictures below. In the basic watershed (figure 2), areas that one would see as
a single organ from figure 1 are split into 2, 5, or even 10 different regions by the watershed. By looking

at figure 4 one can see that most, if not all, of this over-segmentation is avoided.

Figure 3. Same Original Image Figure 4. Gradient-based Watershed

Mean-shift

The mean-shift algorithm basically aims to segment the image into regions by setting a region that has
similar color and intensity levels to the same level throughout. Any segment with a number of pixels that
share a number of similar features will be grouped together by the algorithm and form clusters. There
will be a densely populated center in the feature space. The feature space is basically comprised of the
original image data, represented as the (x, y) location of each pixel, plus its color in the L*u*v* space
(Pantofaru, 3). Once this feature space is obtained, the mean-shift filtering step can actually be applied.
This entails finding the “modes of the underlying pdf and associating with them any points in their basin
of attraction” (Pantofaru, 3). The next step is clustering. At this point, each data point in the feature
space has been replaced by its corresponding mode. One method of clustering is to group together any

modes which are less than one kernel radius apart, and merge their basins of attraction.

Volume Rendering & Interpolation:

The objective behind the volume rendering part of the project is to take the data set of the images
that have gone through segmentation and then ultimately generate a three-dimension model of the
chosen organ.

The stack of segmented images that were created after the segmentation part will now go through
the Hartley transform which is basically the modified version of the Fast Fourier Transform and
considers real values exclusively, unlike the FFT which considers both real and imaginary values. This is
an improvement since images only consist of real data and therefore we save up on processing power
and memory space. The same butterfly structures used in DIT and DIF FFT algorithms can be applied to

DHT to make it fast. The FHT is O(N logN) similar to FFT however, the FFT code for the DSK is highly

-5-

tuned and in ASM while we had to write the FHT code and so out FHT implementation is computed

more slowly than FFT. However, real output means lower memory cost.

gl 27 2 '
H, = Z Tn [cos(l\}rnk) + sin (\Tnk)] k=0,....N-1

n=0

After this step, the images are then processed in the Slicer function, which implements the Fourier
Slice theorem, with the desired view angle. The theorem says that a two-dimensional Fourier Transform
of the 2D projection of a 3D object at an angle O is the same as a two-dimensional plane passing through
the origin of the three-dimensional Fourier Transform (3D FT) of that three- dimensional object at an
angle ©. The Fourier Projection Slice Theorem is performed by taking 3D Fast Fourier Transform (3D FFT)
on the data set and then the slice extraction is a simple matrix algebra cross product calculation where
the perpendicular unit vectors on desired plane is found and is used as a basis to determine the

remaining points on the slice.

ya
projection p(x)

Fourier
—_—

Transform

St S®
Cubic interpolation attempts to reconstruct a continuous function from a set of discrete samples by
fitting 3rd order polynomials (cubic functions) to the discrete samples. Cubic interpolation functions are
piecewise defined over a finite extent; the function we used three different cubic polynomials.

Interpolation evaluates the reconstructed continuous function at a new set of points, thus giving the

interpolated or re-sampled image. In effect, for each sample around each interpolated point, the
polynomials of the interpolation function are evaluated; because these functions are often piecewise
defined, a different cubic polynomial is used for each sample. We used an interpolation function was
the C2-continuous, meaning that if the interpolation function was plotted, the function, as well as its
first and second derivatives would be continuous. Interpolation functions of this variety were found to
have optimal Fourier properties (meaning their most closely resembled the rect function of the ideal
interpolator), and were also quick to compute.

Finally, an inverse 2D FFT is performed which will finally give the volume rendered image.

Desktop Side Tasks DSK Side

Prep
1) Read tmage Stage

R) RGB -> grayseale [rp psSK*

D>

2) Find Gradients
4) Segment Image
5) Find Organ

< ToPC &) Mask lmage

F) Trim lmages
) Create 3-D Dataset To DSK

D>
: 9) 2-D FHT Dataset
view
Stage
10) Get View angle
from qul To DSK S

11) Interpolate § Upsample
along plane normal to view
12) Depth-Cueing
ToPC [13) IFHT interpolated data

<

14) bispLag Rendered
lmage

The DSK software includes many capabilities and performs many functions, especially above and
beyond the previous DSK software used by the two previous groups we have built from. The DSK

includes: network code to communicate with the PC-side user interface; an implementation of a

gradient-based watershed algorithm; an implementation of the Fast Hartley Transform (FHT) in 1-, 2-
and 3-D; logic that identifies & masks an organ of interest from a abdominal slice (a medical image of an
abdomen); and code to compile a set of slices (images taken in the same orientation, but at different
places in the abdomen) into a single 3-D representation of an abdomen. While the two previous groups
combined implemented all the functions our project implemented to a greater or lesser degree that, the

only parts previously implemented on the DSK were a 1- and 2-D FHT and organ finding.

Figure 5 Figure 6 Figure 7

Sample Images after segmentation

Figure 8 Figure 9

Figure 10 Figure 11

Images after Volume Rendering

-10-

Memory Issues

In our project, all of the 3-D dataset must reside in SDRAM. As well, we temporarily store some
of the image buffers in SDRAM and use DMAs to shuttle blocks of data back and forth. All of our other
data can be stored on chip, with most memory accesses being sequential. As well, many operations are
performed on characters which amounts to 1.5 cycles/word or 0.375 cycles/ byte. For each of our input
images, 120,000 bytes need to be copied from SDRAM onto the chip twice. Because of this we spend
67,500 cycles * 2 = 145,000 cycles paging data. However, for much of this, DMAs can be done in the

background.

For our 3-D FHT the data resides off chip, with a non-sequential algorithm, meaning that it does
not operate on contiguous bits of memory. This means that we cannot DMA all the data. The 3-D FHT
performs 3N? N-FHTs and can page in the data, with DMAs, for 2N2. The size of a DMA is 128* N’=
16384, which amounts to about 9216 cycles per DMA. The total number of cycles for moving data on
and off chip, in the fast case, is 4,718,592. Then, a 1.5 cycle/word L2 to L1 cache transfer applies. As
well, we have 7.125 cycles/word for non-contiguous transfers, which are direct CPU to SDRAM. This
amounts to 14.25 cycles/word * 128 words = 1824 cycles/N-DHT. Then there are N? N-DHTs =
29,884,416 cycles for memory accesses. Finally, for our 2-D IFHT everything is on-chip and the array is

64KB, thus we need 24,567 cycles to accesses it, which is minimal.

-11-

Desktop Side Tasks DSK Side

1) Read lmage
2) RGB -> Ggrayscale

To DSK™
For each [1 >
image in =) Fund Gradients
dataset JF i v
Prep 4) Segment lmage
Stage 5) Find Organ

&) Mask lmage
F) Trim lmages

) Create 2-D Dataset
9) 2-D FHT Dataset

10) Get view angle
from quu | To DSK |

>

view |11) nterpolate § upsample
Stage along plane normal to view
12) Depth-Cueing

To PC 13) IFHT interpolated data
<: = =)

14) Dis'pl.ag rRendered
lmage

The DSK software includes many capabilities and performs many functions, especially above and
beyond the previous DSK software used by the two previous groups we have built from. The DSK
includes: network code to communicate with the PC-side user interface; an implementation of a

gradient-based watershed algorithm; an implementation of the Fast Hartley Transform (FHT) in 1-, 2-

-12-

and 3-D; logic that identifies & masks an organ of interest from a abdominal slice (a medical image of an
abdomen); and code to compile a set of slices (images taken in the same orientation, but at different

places in the abdomen) into a single 3-D representation of an abdomen. While the two previous groups
combined implemented all the functions our project implemented to a greater or lesser degree that, the

only parts previously implemented on the DSK were a 1- and 2-D FHT and organ finding.

Data Rates

Network Data Rates (network code was not stable between Java and DSK):

PC - DSK:

2.5 MB/s Estimated

1.42 MB/s initially measured (256 KB in 18 ms)

Need to send 15.36 MB, would take 10.74 seconds

DSK = PC:

10.0 MB/s Estimated

Were not able to make a measurement.

Send back minimal amount of data (~16 KB), would take 1.7 ms using

estimated speed.

Calculation:

Gradient Calculation:

-13-

Estimate:

Actual:

Segmentation:

Estimate:

Actual:

Masking:

Estimate:

Actual:

4 multiplies per 119301 pixels (and 16 additions) 2 3
cycles/pixel = 357903 cycles / image = 1.6 ms / image = 203.6

ms total

390283 cycles / image = 1.7 ms / image = 222.0 ms total

(extrapolated from time for a single image)

56 additions + 20 conditionals = will be really slammed in
discontinuous memory accesses from conditionals >
computations will be negligible in face of these, but estimate 14
cycles / pixel = 1680000 cycles / image = 7.5 ms / image = 955.7

ms total. This estimate is extremely optimistic.

3875928 cycles / image = 17.2 ms / image = 2204 ms total (close

to memory estimate)

Like segmentation, many conditionals = negligible
computations = just those necessary to increment loop

variables

673027 cycles / image = 3.0 ms / image = 382.9 ms total (close

to memory estimate)

-14-

3-D FHT:

Estimate:

Actual:

Assume FHT takes about as long as FFT = 1904 cycles for 128-
FHT * 49152 128-FHTs = 93585408 cycles = 415.9 ms. This
assumption does not take into account that 16384 of these

FHTs cannot be moved on-chip.

874892473 cycles = 3888.4 ms. This is so off because of the
memory accesses and also because FHT is not as tuned as the

FFT and so takes (much) longer than 1904 cycles/computation

2-D FHT (technically inverse):

Estimate:

Actual:

Interpolation:

Estimate:

Actual:

As before, same estimates, but need 256 128-FHTs = 487424

cycles = 2.2 ms. Same caveats apply.

4018372 cycles = 17.8 ms. Same reasons for the discrepancy

apply.

36 multiplies / pixels = 18 cycles / pixels, 16384 pixels = 294912
cycles = 1.3 ms. Interpolation code is not completely memory-
contiguous, so this estimate, which does not include memory

rates, is slightly optimistic.

492838 cycles = 2.2 ms.

-15-

Memory:

Gradient:

Estimate:

Segmentation:

Estimate:

Masking:

Estimate:

3-D FHT:

Estimate:

2-D FHT:

Estimate:

All image data is on-chip, algorithm is memory-contiguous; ~1.5

cycles/pixel.

Instructions discontinuous thanks to conditionals. However,
there are very few instructions in loop. However, data accesses
are also somewhat discontinuous. Estimate roughly 4 cache

misses / pixel.

Data is continuous. Instructions discontinuous. Negligible

memory delay.

16384 continuous memory accesses, 16384 discontinuous L2
memory accesses, 16384 discontinuous off-chip memory

accesses. Once cached, algorithm is memory-local.

16384 continuous memory accesses, 16384 discontinuous L2

memory accesses.
-16-

Interpolation:

Estimate Same pattern of memory accesses (on average) as gradient,
however, some orientations are continuous, while others are

not. Estimate ~1.5 cycles/pixel.

Demo

The Java-DSK network code was not stable. Initially, it worked to a point, but as we continued
to debug it, performance got worse and worse. This rendered the DSK useless, as we could not get data
to it. Therefore, we demonstrated the entire project on the PC, but still using two pieces, a Java GUl and
a C program that emulated the DSK. The C program running on the computer was the version of our
software before we ported it to the DSK. Data transfer between the two was performed via files rather
than potentially running into errors with the network again. The demo worked insofar that it generated
a volume rendering of the 3-D dataset. The outline of our target organ, the liver, was visible from all
viewpoints. However, the image was not as smooth and continuous as we were expecting; it closely
resembled the output of the previous volume rendering group despite the use of a more complicated
interpolation algorithm. We now postulate that the reason for the graininess of the output is the low
resolution in the z-direction (i.e. the distance between slices); interpolating along the z-axis may yield

better results.

Recommended Future Directions
We would recommend interpolating in the z-direction to maybe achieve a smooth, attractive picture

and also possibly the implementation of depth-cueing after finding a suitable filter.

-17-

Semester Schedule

October
Week Sun Mon Tues Wed Thurs Fri Sat
1
2 19 20 21 22 23 24 25
Segmentation Segmentation
— Matlab code
- Matlab code
and research
(Wendy) and research
(Wendy)
3 26 27 28 29 30 31 1
Segmentation Volume Volume
— Ccode rendering rendering (C
(Group) (Matlab) and code) and
memory depth cueing
estimations research
(Group) (Group)
November
Week | Sun Mon Tues Wed Thurs Fri Sat
4 2 3 4 5 6 7 8
Volume Depth Depth
rendering clean- cuing and cuing and
up and depth unit unit
cuing (Geoff and testing testing
Sangha) (Group) (Group)
5 9 10 11 12 13 14 15
CHECK POINT Integration Integration
—AllC and Port

-18-

Code code to
working DSK
(Group) (Group)
6 16 17 18 19 20 21 22
Port to DSK Testing Testing
(Geoff) (Group) (Group)
GUI (Sangha) GUI GUI
(Sangha (Sangha
and Geoff) and Geoff)
7 23 24 25 26 27 28 29
Network Testing
(Group)
8 30 1 2 3 4 5 6
Network Testing PROJECT
(Geoff) DEMO
(Group)
December
Week | Sun Mon Tues Wed Thurs Fri Sat
9 7 8 9 10 11 12 13
PROJECT
WRITE-UP DUE

-19-

Databases
We obtained three datasets from UPMC, two of which were used for testing and one was used

for our demo.
References
Code References
* CWatershed:
http://infocom.cheonan.ac.kr/~nykwak/kuim/index.htm
e CFHT
http://www.geocities.com/ResearchTriangle/8869/fft_source.tar.gz
* JAVA mean shift
http://rsbweb.nih.gov/ij/plugins/mean-shift.html

* Worote code for interpolation, finding target organ, and masking image

Algorithm References

[1] Totsuka, T. and Levoy, M. 1993. Frequency domain volume rendering. In Proceedings of the 20th
Annual Conference on Computer Graphics and interactive Techniques (Anaheim, CA, August 02 -
06, 0093). SIGGRAPH '93. ACM, New York, NY, 271-278.
DOl=http://doi.acm.org/10.1145/166117.166152

[2] Bracewell, R. N. 1986 The Hartley Transform . Oxford University Press, Inc.

[3] Levoy, M. 1992. Volume rendering using the Fourier projection slice theorem. In Proceedings of the
Conference on Graphics interface '92 (Vancouver, British Columbia, Canada). K. S. Booth and A.

Fournier, Eds. Morgan Kaufmann Publishers, San Francisco, CA, 61-69.

-20-

(http://portal.acm.org/citation.cfm?id=155302&d|=GUIDE&coll=GUIDE&CFID=5058263&CFTOKE
N=20296582)
Explanation of how to use Volume Rendering with the Slicer function

[4] Malzbender, T. 1993. Fourier volume rendering. ACM Trans. Graph. 12, 3 (Jul. 1993), 233-250. DOI=
http://doi.acm.org/10.1145/169711.169705
Includes explanation of Fourier Volume Rendering

[5] Pantofaru, Caroline and Hebert, Martial. A Comparison of Image Segmentation Algorithms
http://www.ri.cmu.edu/pub_files/pub4/pantofaru_caroline_2005_1/pantofaru_caroline_2005_
1.pdf
Includes description of 3 segmentation algorithms : a graph-based approach, mean-shift, and a
hybrid of the two.

[6] Gonzalez, Woods, and Eddins. Digital Image Processing Using Matlab, 2003.

Includes description of Watershed segmentation algorithm and basic Matlab code

-21-

