

FINAL REPORT
Wii Want to Write

A Real-Time Accelerometer based Writing
& Gesture Recognition Technology

18-551
Group 5 of Fall 2008

Jeffrey Lai (jlai1@andrew.cmu.edu)
Tian Seng Leong (tleong@andrew.cmu.edu)

Jeffrey Panza (jpanza@andrew.cmu.edu)

 2

Table of Contents

1. Introduction – The Project ..3

2. The Problem ..3

3. Motivation...3

4. Our Initial Solution ..3

5. Clustering Algorithm ...4

6. Final Algorithm (Max-Min Bound) ..5

7. Test Results ...7

8. Training Set Specifications ..11

9. Analysis of The Core of Our Code (the DTW)..12

10. Profiling Results...12

11. Task Division between PC & DSK...13

12. What Code We Reused ...13

13. DSK Packet Structure...14

14. DSK Flowgraph ..15

15. Data Flow Graph..16

16. DSK Detail and Discussion ...17

17. Graphic User Interface ..18

18. Full Semester Schedule ...23

19. Task Division..24

20. Hardware Purchases ...24

21. Future Improvements and General Recommendations ...24

22. References & Comments...30

 3

1. Introduction – The Project

The goal of our project was to classify gestures using only x-, y-, and z-axis accelerometers
as input. We used a min-max algorithm created from scratch that used dynamic time warping
(DTW) to calculate the distance a test input would be from those boundaries.

2. The Problem

The adoption of small mobile devices is becoming more widespread today. One of the major
problems with these devices is obtaining inputs. Traditional methods of obtaining inputs such as
keyboard have limitations in terms of speed, accuracy (touch screen keyboard), size of keys
(too small to press), etc. Besides the keyboard, a pen stylus can be also used to obtain inputs.
However, the stylus has its own sets of issues. They range from the inaccuracy of handwriting
recognition through image processing (lack of time information), and the stylus is easily lost.
Making small intricate hand movements using either the keyboard or stylus may aggravate
certain conditions such as Carpal tunnel and arthritis. Today, there are still no popular devices
that track human gesture movement for daily communication purposes.

The goal of our project is to make use of a well developed hardware device, the

accelerometer, to recognize hand gesture and alphanumeric characters. Currently,
accelerometers are present in a multitude of electronic devices such as the Wii controller. The
Wii controller is going to be the input device of our system.

3. Motivation

The main motivation when we came up with the idea for Wii gesture recognition was that it
was a unique challenge that had not been surmounted previously in an 18-551 project. Instead,
we looked to conference papers and IEEE explorer to find resources related to our area of
interest. Surprisingly, we had trouble finding much information related to the Wiimote or
accelerometer based character recognition. The few papers we did find seemed inadequate,
only looking at small subsets of the general problem. Some looked at small sets of dynamic
gestures (ones where the user moves his or her arm arm) to recognize, for example
differentiating between a circle, square, rotating the wiimote along the length of it, the letter Z,
and a tennis serve [3]. These had the obvious fault of expansion. Of course, five gestures will
be easily recognized. But there was no way to know if the algorithms suggested would support
a larger data set. Others looked at only static gestures, and differentiated between them,
determining the orientation of the Wiimote by looking at which direction was the direction of
gravity. This isn’t very useful except for video games where the user will be sitting motionless.
Gestures are generally dynamic and in large quantities. We were motivated to try and develop
a more robust, general gesture recognition system that could be user-independent and support
larger gesture sets: in our case, the English alphabet, Arabic numerals, and a set of general
gestures.

4. Our Initial Solution

We chose to use dynamic time warping, or DTW, as the algorithm for our project, although
as the project continued the use of DTW was refined. Dynamic Time Warping is a Dynamic
Programming technique to find the distance between two given images [5] (in our case
accelerometer signals). We accumulate the distance between the current sample of the test set
and the current sample of the training set, and add it to the minimum value of the adjacent spots
in the matrix (left, down, and down-left). Thus in the top right corner we will have the shortest

 4

distance from the current training and test image calculated. That is the value we use to
determine which character is matched. Whichever training set the test set is closest to is
determined to be the recognized character. The code we found goes further calculating the
normalized distance between the characters. It accumulates squared distances and at the end
divides by the length of the line (the number of steps from start to finish).

At first our goal was to use DTW over the whole training image to find the distance between

a training image and a test image, but that had a multitude of issues including time consumption.
DTW is an O(n^2) function and the length of a training set (for one axis) is around 45 to 100
samples. So it will take a long time to fill up a DTW matrix with that many samples per side.

We found faster DTW code that gave us under one second per character to be classified

which we felt was good enough for real-time. A method to speed up this task is to constrain our
search space [6]. The C code we found does this using Sakoe-Chiba band. We will not do
calculations outside of that radius (the radius is ours to choose). The code we found goes
further calculating the normalized distance between the characters. It accumulates squared
distances and at the end divides by the length of the line (the number of steps from start to
finish). The code was faster since it constrained the DTW matrix into a parallelogram, using the
Sakoe-Chiba method. We implemented this on the DSK and ran some more tests. It showed
that the algorithm was fine with the training set being the current users, but when someone else
tried to use the system, their numbers would be much lower. After hearing about lots of
possible faults in this design, like brute force, nearest neighbor decisions on classification, and
the large storage waste in the brute force method, we decided to develop a better algorithm.
The suggestions we tried to improve on were user-independence and clustering to conserve on
memory space.

5. Clustering Algorithm

The new algorithm we began to implement was based off basic clustering where we would
average the DTW of all the training sets for a character onto one of the training sets. This would
then be the “center of gravity” of that cluster, so instead of running DTW five times for every test
image and averaging the distances, we’d do the DTW once on the average of the five inputs.
Below is an example of this original clustering algorithm. It is the cluster for A (x-axis only).

 -
Figure 1 Figure 2
Training Sets 0 to 4 (Training Set 0 is red) Output after all have DTW done with Training Set 0

 5

Figure 3
Average of the five DTW outputs

 This algorithm actually produced worse results than our original algorithm which makes
sense since we are combining lots of information into one representative curve. Basically the
goal of clustering is to reduce the amount of memory storage for our training set, which is a
useful optimization, especially when the user’s data set is large, but this is not the case with our
project. The problem is the cost of accuracy which is important to character recognition.

 We still wanted to achieve user-independence and clustering. Instead of using the DTW
implementations we are used to, we decided to go in a different direction.

6. Final Algorithm (Max-Min Bound)

The algorithm uses the same simple method of using DTW to calculate the distance
from the cluster or a single training set, but instead we calculate the distance from the maximum
and minimum boundary of the training set.

First we take in the five training sets of one character from the user. The training sets

will then be resampled to 50 samples. Then, they will get normalized from -1 to 1 for every axis
and training set, individually. Finally, this data will be used to define a global max curve over all
five training sets. The same will be done for a global minimum curve.

Once we accept training sets for all gestures, we will then accept a test input. This input

will also be resampled to 50 samples and normalized to -1 to 1. This input will then be sent to
the DSK for processing.

The input will then be compared to each max and min curve for each character. When

the input curve goes over the maximum bounding curve, we will run DTW over all points until
the input goes back within bounds. And, when the input curve goes below the minimum
bounding curve, we will run DTW over all points until it goes back within bounds. We sum all of
these DTW results for one character.

The DTW we use is the original, slow DTW, NOT the fast DTW using constraints. It

seems the fast DTW used squared distances that got divided by the length of the shortest
distance path length, and this seemed to cause problems with the algorithm dropping the
algorithms accuracy by 40% at least, so we moved back to the original DTW algorithm that used
Euclidean Distance and had no constraints. It was okay to do this since even though DTW is
O(n^2) in complexity to compute, we are doing many small DTWs now, so many short DTWs

 6

will not add up to the runtime of one DTW that runs over the entire signal, which we used to use.
This could also be a problem of the constrained DTW. It may have gone out of bounds to easily
since the matrix was so small, although we put FLT_MAX as the radius of the constraint (aka
run with no constraints) and we still got very inaccurate results, we are fairly confident it has to
do with the fact that the distance was not Euclidean.

We sum all of these DTW results for one character. Then, we weight these results to

attenuate the y-axis. In our system, the y-axis is the direction outward from the user, the least
important direction for natural writing. We don’t completely get rid of the y-axis simply because
we noted a drop in accuracy when doing this. We believe that the y-axis is important because
the user will not always hold the Wiimote with the x- and z-axis in those directions, there could
be lots of wrist motion and as a result, all directions are important, but in-XZ-plane data is most
important for recognition of a two-dimensional image. In the end, we chose 40% for x- and z-
axis weighting and 20% for the y-axis weighting. Finally, we take the top three shortest
distances calculated and return those characters to the user.

The idea we use to think about how this works is to compare it to the original clustering

algorithm, since it is just a variation on a clustering algorithm. To recap, the original algorithm
takes a scattering of points of a known cluster and then averages them to find a center of gravity
(note the black dots in Figure 5). When given a test input, the user would then find which
cluster center it is nearest.

Our new algorithm will instead make a boundary around our cluster and then decide

which boundary it is closest to (note the colored, dotted lines in Figure 5). This is more lenient
to training sets that aren’t as tight or well-clustered. Basically, this assumes that if the user is
good at making his or her training set, he or she will continue to be good at writing that
character and will require tests very close to the actual character to be accepted, which a
character that the user seems to have trouble writing, it will assume that the user is writing it
more often than another character.

The benefits of this algorithm are that it not only reduces the number of training sets to

two instead of five or any number of training sets, so memory storage on the DSK is reduced,
but that it also has the benefit of user-independence according to our test results. It might be a
result of the leniency that the algorithm gives to harder to write characters and gestures.

Figure 4 – These graphs show the bounding algorithm at work in Matlab. The blue graphs are
the max and min curves for the training set of the letter “A”. The red line for each graph is the
test input for A, C, and R respectively. To get an idea of the distances calculated in these
graphs, the result for A is 0.5934, C is 9.9235, and R is 4.7123.

 7

Figure 5

http://www.nature.com/nbt/journal/v23/n12/fig_tab/nbt1205-1499_F1.html

7. Test Results

Recognition Result for Each Character Based on 5 User Inputs
Training Set : Medium Speed Jeffrey Lai Set 1
User Input : Medium Speed Jeffrey Lai Set 2
Algorithm : Max-Min Bound Algorithm
Recognition Rate : 94.62%

Figure 6 - Although the user input is Q, it is being recognized as G in this graph. We think the
reason for this is that the stroke pattern of alphabet Q is similar to G. Another reason that we
can think of is that Jeffrey Lai made some mistake when training his medium speed Q alphabet.

Training Set : Medium Speed Jeffrey Lai Set 1
User Input : Fast Speed Jeffrey Lai Set 2
Algorithm : Max-Min Bound Algorithm
Recognition Rate : 87.69%

 8

Figure 7 - The actual recognized result for character K is R, which is really similar to K in terms
of stroke order. In addition, when the user writes K in a fast manner, the probability of it
resembling R is high. The same reasoning goes with N which is recognized as W in this test. In
addition, the character W is recognized as N which proves that N & W are often confused with
each other. Alphabet Y is also confused with alphabet T for stroke order reasons.

Training Set : Medium Speed Jeffrey Lai Set 1
User Input : Slow Speed Jeffrey Lai Set 2
Algorithm : Max-Min Bound Algorithm
Recognition Rate : 90.77%

Figure 8 - The most pronounced error here is for alphabet F to be recognized as K. We
speculate that F and K look similar after resampling and normalization. Since the user input is a
slow version, the acceleration data when F is written is not so pronounced and thus makes it
look like a normally written K.

Training Set : Medium Speed Jeffrey Lai Set 1
User Input : Medium Speed Jeffrey Lai Set 2
Algorithm : Fast DTW with a Clustered Training Set
Recognition Rate : 78.42%

 9

Figure 9 - The most obvious error here is for alphabet P to be recognized as D, alphabet R to be
recognized as K, and alphabet W to be recognized as N. This error is more pronounced when
the training set is clustered as 4 out of the 5 training set will resemble the 1st training set.

Training Set : Medium Speed Jeffrey Lai Set 1
User Input : Medium Speed Jeffrey Lai Set 2
Algorithm : Fast DTW without a Clustered Training Set
Recognition Rate : 73.85%

Figure 10 - In this case, alphabet P was recognized as D, R as K, W as N, Y as R and X as D.
All of the combinations are quite familiar to us by now except for X as D. We believe that our
user input for character X was corrupted in a manner unfamiliar to us.

Training Set : Medium Speed Jeffrey Lai Set 1
User Input : Fast Speed Jeffrey Lai Set 2
Algorithm : Fast DTW without a Clustered Training Set
Recognition Rate : 28.46%

Figure 11 - The recognition rate for this test is so low due the fact that when a user writes really
fast, much of the acceleration data is inconsistent and warping them to the training set will try to
make the input resembles the erroneous training set.

Training Set : Medium Speed Jeffrey Lai Set 1
User Input : Medium Speed David Leong Set 1
Algorithm : Max-Min Bound Algorithm
Recognition Rate : 75.38%

 10

Figure 12 - We believe that the cross user test result yield was good except for P which was
recognized as D and Q recognized as G. These two problems have been present due to the
similarities of P with D and Q with G. Additionally, the additional variation supplied by having
Jeffrey Lai train the training set and Tian Seng Leong testing the training set makes the data
vulnerable to wrists (angular) motion which we believe account for some inputs being
recognized correctly and some not.

Training Set : Medium Speed Jeffrey Lai Set 1
User Input : Medium Speed David Leong Set 1
Algorithm : Fast DTW with a Clustered Training Set
Recognition Rate : 56.15 %

Figure 13

Training Set : Medium Speed Jeffrey Lai Set 1
User Input : Medium Speed David Leong Set 1
Algorithm : Fast DTW without a Clustered Training Set
Recognition Rate : 63.85 %

Figure 14 - The recognition rate for this test is much better than for the same user (Jeffrey Lai
when he inputs a fast set). As mentioned before, when a user writes fast, there is a lot of

 11

variation in the acceleration data and Fast DTW will try to warp the fast input to the medium
speed training set, resulting in loss of data. As usual, there are a lot of differences in recognition
results between two users due to wrists motion and writing style in addition to characters being
almost similar such as R and K, W and N, U and V and Z and I

8. Training Set Specifications

The training sets for testing the algorithms in Matlab before implementing and testing on
the DSK were collected from members of the group.

The training sets are acceleration outputs sampled at 30 Hz from the Wiimote. The
driver cannot control the sampling rate. It seems to be sent over Bluetooth already sampled.

We are requiring five training set inputs to get a good idea of how the user writes. We
thought any smaller and the user might not have a representative character set, and if it was
any larger the user might get bored and make bigger mistakes that may skew the min-max
algorithm.

 The training set will go through resampling and normalization before being put on the
DSK. We decided to resample all user input to 50 samples to simplify C coding and to optimize
slightly. We decided on this value specifically because of the following data collected:

Jeffrey Lai
Average length in samples for quickly drawn gestures - 48.4154
Average length in samples for average speed gestures - 99.7615
Average length in samples for slowly drawn gestures - 112.0692
Average length in samples for a varied speed set of gestures - 75.6923

David Leong
Average length in samples for quickly drawn gestures - 43.4000
Average length in samples for average speed gestures - 73.1154
Average length in samples for slowly drawn gestures - 83.5692
Average length in samples for a varied speed set of gestures - 59.600

Jeffrey Panza
Average length in samples for quickly drawn gestures - 36.2231
Average length in samples for average speed gestures - 54.4846
Average length in samples for slowly drawn gestures - 69.1154
Average length in samples for a varied speed set of gestures - 43.2462

We plan to only focus on capital letters, numbers and gestures separately
and ignore the lower case character recognition, since we want
to concentrate on recognition accuracy and not quantity.

The upper and lower bound are the only data that is going to be stored on the DSK.

(1 max bound + 1 min bound) * 3 axis * sizeof(float) * 50 = 1200 bytes per
character/number/gesture

Since there are 26 alphabets + 10 numbers + 16 gestures, we need to have 62400 bytes. The
16MB off-chip memory capacity dwarfs the 62400 bytes required. And this carries the benefit

 12

that it will never increase if we were to increase the training set size. The only way it would
increase is if we were to add more characters to our training set entirely, but there is no way to
avoid that.

9. Analysis of The Core of Our Code (the DTW)

The DTW function is the core of the program since it gets called hundreds of times to
help classify one character. So it would be good to explain the details of this core algorithm.

The function first has to initialize a matrix of the Euclidean distance between any two

samples (A, B): “A” being a point along the training set and “B” being a point along the test set
given. Since we are filling a 2-dimensional matrix, this portion of the code will take O(n^2) time.
To calculate Euclidean distance for each cell in the array we need:

• 2 multiplications
• 3 additions/subtractions

The next function in the DTW is to initialize the first column of our final matrix. We

basically are adding the current distance in the Euclidean distance matrix with the value below it
in the new matrix. This function is obviously O(n). This has this many operations per loop:

• 3 multiplications
• 2 additions/subtractions

The next function in the DTW is to initialize the first row of our final matrix. We basically

are adding the current distance in the Euclidean distance matrix with the value to the left of it in
the new matrix. This function is obviously O(n). This has this many operations per loop:

• 2 additions/subtractions

The final function of the DTW is to finish filling the matrix by taking the minimum value of

what is below, left, and down-left diagonally from the current value in the new matrix and adding
it to the current position in the Euclidean distance matrix. Since this is filling a 2-dimensional
matrix, it will take O(n^2) time to complete. The specific operations are too many to list here but
there are many conditionals to calculate the minimum value and there are many pointer
arithmetic operations and normal arithmetic operations per loop.

We tried to optimize this core function of our code. We checked to see how good our

loop was with no optimization, optimization two, and optimization three. All returned 1x parallel
in each subloop of the DTW. We then tried to improve this by loop unrolling. We did loop
unrolling by two and still no better than 1x parallel in each subloop. This makes sense though.
DTW cannot really be optimized since every calculation in the matrix is dependent on three
previous values of the matrix. As a result, we stopped trying to optimize our core part of the
DSK code.

10. Profiling Results

As aforementioned, the DTW function is of much importance. Therefore, it is imperative that
we obtain the results from profiling the DTW function. Based on the profile function method, we
managed to obtain the following results after running the Core DTW function (dtwMeh()) 100
times:
Include Average = 633118 cycles

 13

We think the following computations contribute most to the cycle count
Loop 1: O(n^2) � 50^2 = 2500 cycles
Loop 2: O(n) � 50*2 = 100 cycles(We multiply 2 due to 3 mult ops)
Loop 3: O(n) � 50 = 50 cycles
Loop 4: O(n^2) � 2500.5 = 12500 cycles(We multiply 5 due to 5 mult and 14 add ops)
Memory transfer from External to Internal Memory - 7.125 cycles per word
Loop 1: There are 2 external to internal memory transfers and 1 internal to external: 2500 *3
Loop 2: There are 2 external to internal memory transfers and 1 internal to external: 50 *3
Loop 3: There are 2 external to internal memory transfers and 1 internal to external: 50 *3
Loop 4: There are 4 external to internal memory transfers and 1 internal to external: 2500 *5
 : There are 8 external to internal memory transfers in the min() function : 2500 *8

Total cycles predicted 287137.5 * 2 = 574275 cycles

Another function that we think is important is the dtwTest() function. The dtwTest()
function is the outer shell of the Core DTW function. It goes through all the characters to be
recognized and then decides the top three choices based on the distances returned by the Core
DTW function. In addition to calling Core DTW, the dtwTest() function calls dtwNew() which is
responsible for maximum and minimum bound checking. The following results were obtained
when dtwTest() was profiled.
Include Average = 36932275 cycles

11. Task Division between PC & DSK

Task Machine Reason

Obtaining User Input PC GUI implementation in Java that resides on PC
Storing Training Set DSK Training set is small compared to the memory

available on the DSK. Data available on the DSK
is more easily accessible in terms of speed.

Computing Fast
Dynamic Time Warping

DSK Main algorithm should utilize the DSK for
computation

Displaying Recognition
Results

PC The Java GUI which resides on the PC will need
to display the recognition results to the user.

12. What Code We Reused

The only code that we were able to reuse was the DTW code in Matlab which many other
previous groups have used, the fast DTW code in C with capabilities for converting to Matlab
(a .mex file) using Sakoe-Chiba band as a constraint, and finally we inherited the Wiimote Java
driver to collect acceleration data via Bluetooth which is Mac compatible only from a friend of
the group, Peter Pong. In addition, we used the LEDataStream class [13] to convert a byte
stream from big-endian to little-endian and vice versa.

Otherwise, all code was theorized and implemented by our group. This includes the Java
GUI, all other C code for each implementation (min-max bound and original DTW), all Java code
unrelated to the Wii driver (which includes data transfer to the DSK and preprocessing of data
before sending off to the DSK).

 14

13. DSK Packet Structure

Header Structure

Before sending the user input to the DSK for either storage or recognition, a header structure of
five integers (20 bytes) is sent to provide some information. The header structure is illustrated
and described further below.

flag mode char_identifier sample_no dataArrLength *

sizeof(float)

Field Description

flag If flag == 1 -> Training set
If flag == 2 -> User input for recognition

mode If mode == 1 -> English Alphabet Recognition
If mode == 2 -> Arabic Numeral Recognition
If mode == 3 -> General Gesture Recognition

char_identifier The character that is going to be sent next. This identifier is
based on the ASCII encoding. For example, we will set
char_identifier to 65 for ‘A’

sample_no Training set number – This field ranges from 0 to 1
0 == Max boundary curve
1 == Min boundary curve

dataArrLength * sizeof(float) Size of user input (in bytes) that is going to be sent to the DSK.

Result from DSK

The DSK will return the result to the PC in the form shown below. This data structure will be an
array of three bytes. The top three matches is returned to the PC so that the PC could give
better suggestions to the user.

char1 char2 char3

Field Description
char1 Best character match obtained from recognition process
char2 2nd best character match obtained from recognition process
char3 3rd best character match obtained from recognition process

 15

14. DSK Flowgraph

Obtain User Resampled and

Rescaled Input from PC

Separate Input into its X, Y, Z

components

Compare each axis of the user

input with the maximum and

minimum bound

Input > Maximum bound Input < Minimum bound

Perform DTW on sections

where Input > Maximum bound

OR Input < Minimum bound

Obtain distance from DTW

computation for each axis

Compute Total Distance as a

weighted sum of each axis

Return the 3 best possible match

based on the lowest total

distance heuristic to the PC

Repeat algorithm for each character’s

maximum and minimum bound

Figure 15

 16

15. Data Flow Graph

Figure 16

 17

16. DSK Detail and Discussion

Data Transfer Rates

For every user input, the PC will send a 20-byte fixed size header to the DSK for
processing. This header will describe the property of the data array that will be sent to the PC
after the header has been sent.

The transfer rate between the PC and DSK according to specification is 2.5 MB/s.
However, due to the nature of our project requiring a small packet header, we were not able to
achieve this optimal transfer rate. We manage to obtain an estimation of the PC to DSK
transfer rate by doing the following:

Transferring a 20-byte fixed size header 100 times (Time elapsed: 0.015s)

(100*20) * 1 MB/ 1048576 bytes * 1/0.015s = 0.127156575 MB/s

Transferring a 20-byte fixed size header 1000 times (Time elapsed: 0.172s)

(1000 *20) * 1 MB/ 1048576 bytes * 1/0.172s = 0.1108924 MB/s

Transferring a 20-byte fixed size header 100000 times (Time elapsed 17.04s)

(100000 *20) * 1 MB/ 1048576 bytes * 1/17.04s = 0.111934 MB/s

On the other hand, the specified transfer rate between the DSK and PC is 10MB/s. As
expected, we were unable to replicate this transfer rate. Our estimation of the DSK and PC
transfer rate based on sending a 3-byte fixed array is as follows:

Transferring a 3-byte fixed size array 100 000 times (Time elapsed: 5.125s)

(100 000 * 3) * 1 MB/ 1048576 bytes * 1/5.125s = 0.055824 MB/s

Transferring a 3-byte fixed size array 1 000 000 times (Time elapsed: 48.826s)

(1 000 000 * 3) * 1 MB/ 1048576 bytes * 1/48.826s = 0.0585963 MB/s

Transferring a 3-byte fixed size array 100000 times (Time elapsed: 486.138s)

(10 000 000 * 3) * 1 MB/ 1048576 bytes * 1/486.138s = 0.0588521 MB/s

Since we are sending a 3-byte array from the DSK to PC, we believe that the DSK did
not utilize the buffer for sending data from the DSK to PC. The buffer played an important role in
achieving high transfer rates in Lab 2. In addition, we see a slower rate compared to the PC –
DSK transfer because of the overhead computation required for each transfer. Sending small
amounts of data is not cost effective as a lot of overhead cost had to be incurred before data
can be sent. (Setting up connection, making sure that each party receives the correct amount of
data, etc). Therefore, if more data is sent at once instead of small bits of data, a higher data

 18

throughput can be achieved. This is the reason our project packed the acceleration data of three
axes (X, Y & Z) into an array to be sent to the DSK in one load.

Storage considerations on the DSK

Based on the DSK Specifications, we have 256kB of On-Chip Memory and 16MB of Off-Chip
Memory.

Average size of a user input data : 1153 bytes
Number of Characters : 26
Number of Training Sets : 5
Total Storage Needed : 149890 bytes 150kB

17. Graphic User Interface

The GUI consists of two phases: Training Mode and User Input Mode. The GUI written in
JAVA was used to facilitate the above two steps. The following table shows the basic controls
for the Wiimote:

Purposes Buttons

Drawing Characters Button B (and hold)

Switch From Training Mode ���� User Input Mode Button 2

Switch From User Input Mode ���� Training Mode Button 1

Switch Between Alphabet Input/ Numerical Input/Gesture
Input

Button A

Navigation Directional pad

Load all Training Sets in the “Training” Folder +

Figure 17 - http://wiki.linuxmce.org/images/a/ab/Wiimote.jpg

 19

Training Mode

Figure 18

In this mode, users will be prompted to draw five samples for each of the 26 English
characters (A-Z), 10 Arabic numerals (0-9) and 16 gestures. The GUI will move on to the next
characters automatically when the users finish recording each character. The red dot inside the
bold character will slide continuously to indicate the stroke orders that the user is supposed to
follow.

The rectangular scope below will display the user input acceleration data in x, y, z
directions simultaneously as the user starts drawing. Red represents the x-direction, blue
represents the y-direction, and green represents the z-direction.

 20

User Input Mode

Figure 19

In this mode, users will be prompted to enter gestures that they wish to be recognized.
Users can select which dataset (Alphabets, Numbers, Gestures) by pressing Button A. Once the
user has drawn the character on the GUI, the three corresponding closest matches will be
printed on the GUI, with the closest match in the middle (largest), second closest on the left, and
third closest on the right.

Once the closest match has been made, the three scopes on the right will display both
the maximum bound and minimum bound in the training set for the recognized character. When
the user presses left/ right, the top three closest matched characters will rotate, and the max-
min bounds on the three scopes will change accordingly.

 21

Figure 20

Figure 21

Figure 22

 22

Mini Text Editor

Our GUI also provides a mini text editor for texts, numbers, symbols displaying on the
upper right space. This allows users to be able to continuously keep writing characters. To
backspace, simply press the “Up” button. Second and third closest characters can also be
chosen by pressing the left and right button.

Figure 23

 23

Figure 24

18. Full Semester Schedule

Dates Goals Who

10/08/08- 10/17/08 Determined initial DTW algorithm for
classification

All

10/11/08 Found driver in JAVA to synchronize
wiimote with DSK

David

10/17/08-11/15/08 Tested Algorithm – where we found fast
DTW code and stress tested it.

All

10/17/08-11/15/08 Implemented fast DTW algorithm in
Matlab

Jeff L, David

11/15/08-12/01/08 Implemented fast DTW algorithm in C Jeff P

11/02/08-11/16/08 Developed a JAVA GUI for demo Jeff L

11/15/08-12/01/08 Revamped algorithm – implemented
new clustering algorithm in MATLAB

Jeff L

11/20/08- 12/01/08 Implemented final algorithm in JAVA –
Resampling and normalization

David

11/20/08-12/01/08 Implemented final algorithm in C – new
DTW calculations

Jeff P

11/20/08-12/02/08 Finalized the GUI. Improved for ease of
use and appearance.

Jeff L

 24

19. Task Division

There are no clear set boundaries on what each member should or should not do in this
project. Almost every aspect of this project was done together. However, there are certain areas
where one member contributed more than the others due to familiarity of hardware or software.
In other words, each member tried to contribute more in his area of expertise.

Jeffrey Lai did most of the GUI development and algorithm testing in Matlab.

Tian Seng Leong helped with the algorithm testing in Matlab and did the PC Side
Processing in Java and DSK – PC communications protocol.

Jeffrey Panza did most of the C implementation & DSK side processing in addition to
helping in Matlab with algorithm testing.

20. Hardware Purchases

We spent a total of $53.28 for hardware purchases on this project. The break down of this
amount is as follows:

Wii Remote Controller + Shipping $46.94
Bluetooth 1.2/2.0 USB Adapter + Shipping $6.88

21. Future Improvements and General Recommendations

A) Gesture Rejection Mechanism:

Our current algorithm does not include any rules for gesture rejection. Our algorithm
chooses the lowest DTW output, the gesture with the shortest distance from the max-min
bounds and blindly claims it to be the correct character. What if what was drawn was none
of the characters in the training set? The output will look random and will probably frustrate
the user.

One of our proposed solutions to reject incorrect inputs is to create a DTW threshold for
every training sample. The threshold is to ensure that the DTW output is always within two
standard deviations of the DTW value for the successful match before the output alphabet
for the corresponding lowest DTW score is considered a match. For English characters, all
26 threshold values will be calculated before hand using the five training samples as input to
obtain the referencing DTW score.

Below is the gesture rejection mechanism:

lowest_DTW_output suggests ‘B’ as the output
If (Lowest_DTW_output < 2*std (DTW_value for input = actual’B’))
 Accept ‘B’ as output;
Else
 Reject ‘B’ as output;

Remarks: two standard deviations contains 95.45% of all possible outputs (it should be all
inclusive if we add two standard deviations to the mean

 25

Char Top Three Distance #1 Distance #2 Distance #3

X XDP 0.67118 1.2314 1.8647
X XDP 0.5496 1.1124 1.4765
X XDP 0.66642 1.0798 1.645
X XPD 0.58172 1.2202 1.3385
X XDP 0.86958 0.96327 1.776

Mean 0.6677
1.5 STD 0.8546
2 STD 0.9169

 We thought two standard deviations might be too lenient and will not recognize any
inputs as “no decision”, so we tried restricting the limit to 1.5 standard deviations.

 For example, in this case we’d expect X to be recognized as correct. If we use 1.5
standard deviations it will be a “no decision”, and if we use 2 standard deviations, we will
recognize X. This is just one example of why using 2 standard deviations is a safe policy to
prevent false negatives. This algorithm would be added simply to inform the user that the
test results would be unusual (seemingly random) since the input was nowhere near any
cluster.

Now, we will introduce a new idea to set up a tolerance to which an output can be
accepted. As we see in the following there are three DTW result plots. Each of these plots
represent the corresponding DTW results obtained by warping test inputs A,B,C to all 26
training sets. The red dots occur at places where the DTW values are the minimum,
indicating the best match for that specific test input.

Figure 25 - E.g. Red dots occurring at Training Set A shows that the test input (A) is best
matched with training set (A)

 26

Figure 26

Figure 27

Figure 28 - The process of locating the minimum DTW values is repeated for all test input
A-Z until we obtain the plot connecting every minimum red dot (Green line below). We call
this line the “Gesture Rejection Threshold”.

 27

Figure 29 - “Gesture Rejection Threshold” is useful in justifying the calculated gesture
outputs. For instance, a “G” might be returned to the user if he/she draws something
randomly, say a “Star”. But since the lowest DTW values returned at “G” is above the
Gesture Rejection Threshold, the output as a result will be rejected.

 Since we never implemented this on the DSK, we have no definitive answer for this
problem. This is just some initial research for those who have an interest in improving our
algorithm.

B) Better Formation of Bounding Curves

 Consider the case where a user-inputs a varying training set. For example, the user
has four consistent training sets and one really bad training set that makes the boundary for
accepted inputs too lenient. Several problems can arise:

1) The cluster that gets trained may be so big it engulfs many other clusters. We
noticed this issue when testing on the DSK. If we made an intentionally bad
training set for one character, it would almost always return that badly trained
character for any test input. This algorithm thus requires a learning curve for the
user so they can make their own training set, or as we did in our demo, we made
a good training set and imported it upon loading our GUI.

2) Next is the issue of training. We were hoping the user could add more training to
it and it could adapt, but if the min-max ever has one bad training input, the user
will have to clear all the training sets and start again to make sure there isn’t an
oversized cluster formed. We want something that will still stay very tight, maybe
not so accepting to inputs.

Our idea for a future improvement was, instead of generating a max and min curve

explicitly from the five training sets, to generate a max and min bound from the mean by
adding or subtracting a standard deviation or two to the curve. We tried implementing this in
Matlab and for tests involving both Jeff Lai’s training and test data, the accuracy went down
by about 2% consistently from the max-min bound method. And, when doing cross tests,
where Jeff Lai’s training set would be used and Jeff Panza’s inaccurate training set was

 28

used, the numbers went up by about 5-10%. This implies that this method could be used
to possibly increase a more user-independent system especially if people have lots of
trouble learning it. But, if all the users have passed the learning curve with the system, then
we get better results using the min-max (probably because the user is good enough to make
a good training set and to follow it). Thus we feel that the max-min bound is still the best
algorithm which is why in the end we chose it to be our final algorithm. We wish we could
have coded both though, since most of the problems with the max-min algorithm seemed to
be resolved by this other version.

Figure 30 - http://en.wikipedia.org/wiki/Wiimote

Nintendo recently announced the Wii MotionPlus add-on to the Wii remote controller

that accurately traces motions in 3-D space using improved hardware.

“According to Nintendo, the device incorporates a dual-axis “tuning fork”, angular

rate sensor which can determine rotational motion. The information captured by the angular
rate sensor can then be used to distinguish true linear motion from the accelerometer
readings.”

We believe that the addition of this enhancement will enable us to cancel angular

motion coming from a user’s wrist and elbow movements. Variations in our data are mostly
caused by angular motion which seems to be unique to each writer.

With the gyroscope, there might be also a possibility of doing a 2-D projection from

the acceleration data. Future groups can experiment with image processing algorithms to
recognize a character if they can successfully project a 2-D image from the acceleration
data.

C) Alphabet Similarities

One of the biggest challenges to recognize English alphabets is that some characters
are very similar in the way they are drawn. In our experience, drawing ‘K’ and ‘D’ are
particularly similar to drawing ‘R’ and ‘P’ respectively. By observing the DTW values for
these troublesome characters, we can see how similar these characters really are.

The two plots below show the corresponding DTW results when K/R/D/P are warped

with all A –Z training sets. The lowest valued alphabet on the x-axis indicates the closest
match to the test input. (Fig.1) shows the DTW result plot for K and R while (Fig.2) shows D
and P’s.

 29

Figure 31

Figure 32

From the two examples above, it is obvious to see that letter K (D) could be recognized
as R (P), or the other way around since they both have the lowest peak at the same spot.
However, our new algorithm is smart enough to take care of this subtle difference and still
be able to produce the right result, except for one highlighted one.

Analytical Result
[Test Input]->[1st match][2ndmatch][3rd match][corresponding DTW values]
K->KRB 0.41173 0.58181 0.89671
K->KRB 0.5431 0.80175 1.3856
K->KRY 0.38362 0.526 1.2002
K->KRY 0.64066 0.66103 1.57
K->KRB 0.45108 1.0242 1.0246

[Test Input]->[1st match][2ndmatch][3rd match][corresponding DTW values]
R->RKY 0.37042 0.50804 1.0082
R->RKB 0.62143 0.69834 1.0669
R->RKB 0.39845 0.51589 1.4576
R->KRB 0.55106 0.65464 1.0038
R->RKY 0.39878 0.63668 1.2422

 30

[Test Input]->[1st match][2ndmatch][3rd match][corresponding DTW values]
D->DPF 0.57185 1.1314 2.7519
D->DXP 1.063 1.3071 1.7466
D->DPX 0.32336 0.69153 1.8722
D->DPX 0.99424 1.5385 2.3345
D->DPX 0.41732 1.2048 1.7177

[Test Input]->[1st match][2ndmatch][3rd match][corresponding DTW values]
P->PDE 0.45998 1.0806 2.5271
P->PDX 0.46929 0.67341 1.2488
P->PDX 0.28182 0.84716 1.4013
P->PXD 0.43219 0.67704 0.80983
P->PDX 0.37115 0.9114 1.7501

22. References & Comments

[1] Wilson, D and Wilson, A. “Gesture Recognition Using the XWand”.

http://www.cs.cmu.edu/~dwilson/papers/xwand.pdf
A previous CMU work where an accelerometer controller was developed and tried using
LTW, DTW, and HMM for simple dynamic recognition of 8 characters. HMM was
discovered to be the best option

[2] Cho, S-J, et al. “Magic Wand: A Hand Drawn Gesture Input Device in 3-D Space with Inertial
Sensors”. 9th International Workshop on Frontiers in Handwriting Recognition. 2004.
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1363895&isnumber=29882

 Similar to 1, except used Bayesian networks on a set of 12 dynamic gestures.

[3] Schlomer, T., et al. “Gesture Recognition with a Wii Controller”. Second International

Conference on Tangible and Embedded Interaction. Feb. 2008. Pg 11.
http://delivery.acm.org/10.1145/1350000/1347395/p11-
schlomer.pdf?key1=1347395&key2=5972436221&coll=GUIDE&dl=&CFID=10254916&C
FTOKEN=63031480
Uses a Wiimote as well, implements HMM and has a set of 5 dynamic gestures.

[4] Gabayan, K. and Lansel, S. “Programming-By-Example Gesture Recognition”.

http://www.stanford.edu/class/cs229/proj2006/GabayanLansel-GestureRecognition.pdf
Uses the same accelerometer built into a Wii. Very vague on details, but claims to have
used LTW, DTW, and HMM in testing gesture recognition. Pointed us to GT2K (Georgia
Tech Gesture Toolkit).

[5] Kale, K. Dynamic Time Warping. http://www.cnel.ufl.edu/~kkale/dtw.html

DTW - explained the algorithm so we could easily understand, so we could try different
ideas with this function.

[6] Salvador, S. and Chan, P. “FastDTW: Toward Accurate Dynamic Time Warping in Linear

time and Space”. http://www.cs.fit.edu/~pkc/papers/tdm04.pdf

 31

FDTW - explained how the code we found was much, much faster, although in the end it
decreased the accuracy of our final implementation.

[7] Ellis, D. Dynamic Time Warp in Matlab. http://labrosa.ee.columbia.edu/matlab/dtw/
 Initial MATLAB code that was slow, O(n^2) time.

[8] DeBarr, D. http://www.mathworks.com/matlabcentral/fx_files/12319/1/cdtw_dist.c

FDTW code that we stripped down and added to our DSK code that accepts data from
PC. Tested in MATLAB and proved less useful in final version.

[9] Keogh, E and Pazzani, M. “Derivative Dynamic Time Warping”.
http://www.cs.rutgers.edu/~mlittman/courses/lightai03/DDTW-2001.pdf

 Discusses the possibility of doing dynamic time warping on the derivative instead of the
actual data, but this was for position data from drawing a character. It also does a good
job explaining DTW in a more complete mathematical way than [5]

[10] Wikipedia – Wiimote page – http://en.wikipedia.org/wiki/Wiimote

Resource for discovering new wiimote attributes that would help for future algorithms

[11] Westyn, T., et al. “Georgia Tech Gesture Toolkit: Supporting Experiments in
Gesture Recognition”. http://www.cc.gatech.edu/ccg/publications/westeyn_ICMI2003.pdf
A toolkit that implements HMM as a form of gesture recognition. We wanted to
implement this in our project, but we wanted to finish what we started concerning DTW.

[12] Lucowicz, P., et al. “Recognizing Workshop Activity Using Body
Worn Microphones and Accelerometers”. PERVASIVE. 2004. Pg 18.
http://www.springerlink.com/content/bdkmbgv8d57dhbl4/fulltext.pdf
One of the papers referenced in [11] that used accelerometers. Not used, but could be
useful for other accelerometer related projects.

[13] Green, R. “LEDataStream”. http://mindprod.com/jgloss/ledatastream.html
LEDataStream is a little-endian analog to DataInputStream and OutputInputStream that
lets a developer write little-ending Intel format binary, least significant byte first. This
class is needed since the DSK is little-endian while Java is big-endian.

