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1. Introduction – The Project 

The goal of our project was to classify gestures using only x-, y-, and z-axis accelerometers 
as input.  We used a min-max algorithm created from scratch that used dynamic time warping 
(DTW) to calculate the distance a test input would be from those boundaries. 

2. The Problem  

The adoption of small mobile devices is becoming more widespread today. One of the major 
problems with these devices is obtaining inputs. Traditional methods of obtaining inputs such as 
keyboard have limitations in terms of speed, accuracy (touch screen keyboard), size of keys 
(too small to press), etc. Besides the keyboard, a pen stylus can be also used to obtain inputs. 
However, the stylus has its own sets of issues. They range from the inaccuracy of handwriting 
recognition through image processing (lack of time information), and the stylus is easily lost.  
Making small intricate hand movements using either the keyboard or stylus may aggravate 
certain conditions such as Carpal tunnel and arthritis.  Today, there are still no popular devices 
that track human gesture movement for daily communication purposes.  

 
The goal of our project is to make use of a well developed hardware device, the 

accelerometer, to recognize hand gesture and alphanumeric characters. Currently, 
accelerometers are present in a multitude of electronic devices such as the Wii controller. The 
Wii controller is going to be the input device of our system. 

3. Motivation 

The main motivation when we came up with the idea for Wii gesture recognition was that it 
was a unique challenge that had not been surmounted previously in an 18-551 project.  Instead, 
we looked to conference papers and IEEE explorer to find resources related to our area of 
interest.  Surprisingly, we had trouble finding much information related to the Wiimote or 
accelerometer based character recognition.  The few papers we did find seemed inadequate, 
only looking at small subsets of the general problem.  Some looked at small sets of dynamic 
gestures (ones where the user moves his or her arm arm) to recognize, for example 
differentiating between a circle, square, rotating the wiimote along the length of it, the letter Z, 
and a tennis serve [3].  These had the obvious fault of expansion.  Of course, five gestures will 
be easily recognized.  But there was no way to know if the algorithms suggested would support 
a larger data set.  Others looked at only static gestures, and differentiated between them, 
determining the orientation of the Wiimote by looking at which direction was the direction of 
gravity.  This isn’t very useful except for video games where the user will be sitting motionless.  
Gestures are generally dynamic and in large quantities.  We were motivated to try and develop 
a more robust, general gesture recognition system that could be user-independent and support 
larger gesture sets: in our case, the English alphabet, Arabic numerals, and a set of general 
gestures.  

4. Our Initial Solution 

We chose to use dynamic time warping, or DTW, as the algorithm for our project, although 
as the project continued the use of DTW was refined.  Dynamic Time Warping is a Dynamic 
Programming technique to find the distance between two given images [5] (in our case 
accelerometer signals).  We accumulate the distance between the current sample of the test set 
and the current sample of the training set, and add it to the minimum value of the adjacent spots 
in the matrix (left, down, and down-left).  Thus in the top right corner we will have the shortest 
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distance from the current training and test image calculated.  That is the value we use to 
determine which character is matched.  Whichever training set the test set is closest to is 
determined to be the recognized character. The code we found goes further calculating the 
normalized distance between the characters.  It accumulates squared distances and at the end 
divides by the length of the line (the number of steps from start to finish). 

 
At first our goal was to use DTW over the whole training image to find the distance between 

a training image and a test image, but that had a multitude of issues including time consumption.  
DTW is an O(n^2) function and the length of a training set (for one axis) is around 45 to 100 
samples.  So it will take a long time to fill up a DTW matrix with that many samples per side. 

 
We found faster DTW code that gave us under one second per character to be classified 

which we felt was good enough for real-time.  A method to speed up this task is to constrain our 
search space [6].  The C code we found does this using Sakoe-Chiba band.  We will not do 
calculations outside of that radius (the radius is ours to choose).  The code we found goes 
further calculating the normalized distance between the characters.  It accumulates squared 
distances and at the end divides by the length of the line (the number of steps from start to 
finish).  The code was faster since it constrained the DTW matrix into a parallelogram, using the 
Sakoe-Chiba method.  We implemented this on the DSK and ran some more tests.  It showed 
that the algorithm was fine with the training set being the current users, but when someone else 
tried to use the system, their numbers would be much lower.  After hearing about lots of 
possible faults in this design, like brute force, nearest neighbor decisions on classification, and 
the large storage waste in the brute force method, we decided to develop a better algorithm.  
The suggestions we tried to improve on were user-independence and clustering to conserve on 
memory space.   

5. Clustering Algorithm 

The new algorithm we began to implement was based off basic clustering where we would 
average the DTW of all the training sets for a character onto one of the training sets.  This would 
then be the “center of gravity” of that cluster, so instead of running DTW five times for every test 
image and averaging the distances, we’d do the DTW once on the average of the five inputs.  
Below is an example of this original clustering algorithm.  It is the cluster for A (x-axis only). 

 

       - 
Figure 1      Figure 2 
Training Sets 0 to 4 (Training Set 0 is red)  Output after all have DTW done with Training Set 0 
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Figure 3 
Average of the five DTW outputs 
 
 This algorithm actually produced worse results than our original algorithm which makes 
sense since we are combining lots of information into one representative curve.  Basically the 
goal of clustering is to reduce the amount of memory storage for our training set, which is a 
useful optimization, especially when the user’s data set is large, but this is not the case with our 
project.  The problem is the cost of accuracy which is important to character recognition. 
 
 We still wanted to achieve user-independence and clustering.  Instead of using the DTW 
implementations we are used to, we decided to go in a different direction. 
 

6. Final Algorithm (Max-Min Bound) 

The algorithm uses the same simple method of using DTW to calculate the distance 
from the cluster or a single training set, but instead we calculate the distance from the maximum 
and minimum boundary of the training set. 

 
First we take in the five training sets of one character from the user.  The training sets 

will then be resampled to 50 samples.  Then, they will get normalized from -1 to 1 for every axis 
and training set, individually.  Finally, this data will be used to define a global max curve over all 
five training sets.  The same will be done for a global minimum curve. 

 
Once we accept training sets for all gestures, we will then accept a test input.  This input 

will also be resampled to 50 samples and normalized to -1 to 1.  This input will then be sent to 
the DSK for processing. 

 
The input will then be compared to each max and min curve for each character.  When 

the input curve goes over the maximum bounding curve, we will run DTW over all points until 
the input goes back within bounds.  And, when the input curve goes below the minimum 
bounding curve, we will run DTW over all points until it goes back within bounds.  We sum all of 
these DTW results for one character.   

 
The DTW we use is the original, slow DTW, NOT the fast DTW using constraints.  It 

seems the fast DTW used squared distances that got divided by the length of the shortest 
distance path length, and this seemed to cause problems with the algorithm dropping the 
algorithms accuracy by 40% at least, so we moved back to the original DTW algorithm that used 
Euclidean Distance and had no constraints.  It was okay to do this since even though DTW is 
O(n^2) in complexity to compute, we are doing many small DTWs now, so many short DTWs 
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will not add up to the runtime of one DTW that runs over the entire signal, which we used to use.  
This could also be a problem of the constrained DTW.  It may have gone out of bounds to easily 
since the matrix was so small, although we put FLT_MAX as the radius of the constraint (aka 
run with no constraints) and we still got very inaccurate results, we are fairly confident it has to 
do with the fact that the distance was not Euclidean. 

 
We sum all of these DTW results for one character.  Then, we weight these results to 

attenuate the y-axis.  In our system, the y-axis is the direction outward from the user, the least 
important direction for natural writing.  We don’t completely get rid of the y-axis simply because 
we noted a drop in accuracy when doing this.  We believe that the y-axis is important because 
the user will not always hold the Wiimote with the x- and z-axis in those directions, there could 
be lots of wrist motion and as a result, all directions are important, but in-XZ-plane data is most 
important for recognition of a two-dimensional image.  In the end, we chose 40% for x- and z-
axis weighting and 20% for the y-axis weighting.  Finally, we take the top three shortest 
distances calculated and return those characters to the user. 

 
The idea we use to think about how this works is to compare it to the original clustering 

algorithm, since it is just a variation on a clustering algorithm.  To recap, the original algorithm 
takes a scattering of points of a known cluster and then averages them to find a center of gravity 
(note the black dots in Figure 5).  When given a test input, the user would then find which 
cluster center it is nearest. 

 
Our new algorithm will instead make a boundary around our cluster and then decide 

which boundary it is closest to (note the colored, dotted lines in Figure 5).  This is more lenient 
to training sets that aren’t as tight or well-clustered.  Basically, this assumes that if the user is 
good at making his or her training set, he or she will continue to be good at writing that 
character and will require tests very close to the actual character to be accepted, which a 
character that the user seems to have trouble writing, it will assume that the user is writing it 
more often than another character. 

 
The benefits of this algorithm are that it not only reduces the number of training sets to 

two instead of five or any number of training sets, so memory storage on the DSK is reduced, 
but that it also has the benefit of user-independence according to our test results.  It might be a 
result of the leniency that the algorithm gives to harder to write characters and gestures. 
 

 
Figure 4 – These graphs show the bounding algorithm at work in Matlab.  The blue graphs are 
the max and min curves for the training set of the letter “A”.  The red line for each graph is the 
test input for A, C, and R respectively.  To get an idea of the distances calculated in these 
graphs, the result for A is 0.5934, C is 9.9235, and R is 4.7123. 
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Figure 5 

http://www.nature.com/nbt/journal/v23/n12/fig_tab/nbt1205-1499_F1.html 
 

7. Test Results 

Recognition Result for Each Character Based on 5 User Inputs 
Training Set  : Medium Speed Jeffrey Lai Set 1 
User Input   : Medium Speed Jeffrey Lai Set 2 
Algorithm  : Max-Min Bound Algorithm 
Recognition Rate : 94.62% 

 
Figure 6 - Although the user input is Q, it is being recognized as G in this graph. We think the 
reason for this is that the stroke pattern of alphabet Q is similar to G. Another reason that we 
can think of is that Jeffrey Lai made some mistake when training his medium speed Q alphabet. 
 
Training Set  : Medium Speed Jeffrey Lai Set 1 
User Input   : Fast Speed Jeffrey Lai Set 2 
Algorithm  : Max-Min Bound Algorithm 
Recognition Rate : 87.69% 
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Figure 7 - The actual recognized result for character K is R, which is really similar to K in terms 
of stroke order. In addition, when the user writes K in a fast manner, the probability of it 
resembling R is high. The same reasoning goes with N which is recognized as W in this test. In 
addition, the character W is recognized as N which proves that N & W are often confused with 
each other. Alphabet Y is also confused with alphabet T for stroke order reasons.  
 
Training Set  : Medium Speed Jeffrey Lai Set 1 
User Input   : Slow Speed Jeffrey Lai Set 2 
Algorithm  : Max-Min Bound Algorithm 
Recognition Rate : 90.77% 

 
Figure 8 - The most pronounced error here is for alphabet F to be recognized as K. We 
speculate that F and K look similar after resampling and normalization. Since the user input is a 
slow version, the acceleration data when F is written is not so pronounced and thus makes it 
look like a normally written K. 
 
Training Set  : Medium Speed Jeffrey Lai Set 1 
User Input   : Medium Speed Jeffrey Lai Set 2 
Algorithm  : Fast DTW with a Clustered Training Set 
Recognition Rate : 78.42% 
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Figure 9 - The most obvious error here is for alphabet P to be recognized as D, alphabet R to be 
recognized as K, and alphabet W to be recognized as N. This error is more pronounced when 
the training set is clustered as 4 out of the 5 training set will resemble the 1st training set.  
 
Training Set  : Medium Speed Jeffrey Lai Set 1 
User Input   : Medium Speed Jeffrey Lai Set 2 
Algorithm  : Fast DTW without a Clustered Training Set 
Recognition Rate : 73.85% 

 
Figure 10 - In this case, alphabet P was recognized as D, R as K, W as N, Y as R and X as D. 
All of the combinations are quite familiar to us by now except for X as D. We believe that our 
user input for character X was corrupted in a manner unfamiliar to us. 
 
Training Set  : Medium Speed Jeffrey Lai Set 1 
User Input   : Fast Speed Jeffrey Lai Set 2 
Algorithm  : Fast DTW without a Clustered Training Set 
Recognition Rate : 28.46% 

 
Figure 11 - The recognition rate for this test is so low due the fact that when a user writes really 
fast, much of the acceleration data is inconsistent and warping them to the training set will try to 
make the input resembles the erroneous training set. 
 
Training Set  : Medium Speed Jeffrey Lai Set 1 
User Input   : Medium Speed David Leong Set 1 
Algorithm  : Max-Min Bound Algorithm 
Recognition Rate : 75.38% 
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Figure 12 - We believe that the cross user test result yield was good except for P which was 
recognized as D and Q recognized as G. These two problems have been present due to the 
similarities of P with D and Q with G. Additionally, the additional variation supplied by having 
Jeffrey Lai train the training set and Tian Seng Leong testing the training set makes the data 
vulnerable to wrists (angular) motion which we believe account for some inputs being 
recognized correctly and some not. 
 
Training Set  : Medium Speed Jeffrey Lai Set 1 
User Input   : Medium Speed David Leong Set 1 
Algorithm  : Fast DTW with a Clustered Training Set 
Recognition Rate : 56.15 % 

 
Figure 13 
 
Training Set  : Medium Speed Jeffrey Lai Set 1 
User Input   : Medium Speed David Leong Set 1 
Algorithm  : Fast DTW without a Clustered Training Set 
Recognition Rate : 63.85 % 

 
Figure 14 - The recognition rate for this test is much better than for the same user (Jeffrey Lai 
when he inputs a fast set). As mentioned before, when a user writes fast, there is a lot of 
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variation in the acceleration data and Fast DTW will try to warp the fast input to the medium 
speed training set, resulting in loss of data. As usual, there are a lot of differences in recognition 
results between two users due to wrists motion and writing style in addition to characters being 
almost similar such as R and K, W and N, U and V and Z and I 

8. Training Set Specifications 

The training sets for testing the algorithms in Matlab before implementing and testing on 
the DSK were collected from members of the group. 
 

The training sets are acceleration outputs sampled at 30 Hz from the Wiimote.   The 
driver cannot control the sampling rate.  It seems to be sent over Bluetooth already sampled. 
 

We are requiring five training set inputs to get a good idea of how the user writes.  We 
thought any smaller and the user might not have a representative character set, and if it was 
any larger the user might get bored and make bigger mistakes that may skew the min-max 
algorithm. 
 
 The training set will go through resampling and normalization before being put on the 
DSK.  We decided to resample all user input to 50 samples to simplify C coding and to optimize 
slightly.  We decided on this value specifically because of the following data collected: 
 
Jeffrey Lai 
Average length in samples for quickly drawn gestures -   48.4154 
Average length in samples for average speed gestures -   99.7615 
Average length in samples for slowly drawn gestures -   112.0692 
Average length in samples for a varied speed set of gestures -  75.6923 
 
David Leong 
Average length in samples for quickly drawn gestures -   43.4000 
Average length in samples for average speed gestures -   73.1154 
Average length in samples for slowly drawn gestures -   83.5692 
Average length in samples for a varied speed set of gestures -  59.600 
 
Jeffrey Panza 
Average length in samples for quickly drawn gestures -   36.2231 
Average length in samples for average speed gestures -   54.4846 
Average length in samples for slowly drawn gestures -   69.1154 
Average length in samples for a varied speed set of gestures -  43.2462 
 
We plan to only focus on capital letters, numbers and gestures separately 
and ignore the lower case character recognition, since we want 
to concentrate on recognition accuracy and not quantity. 
 
The upper and lower bound are the only data that is going to be stored on the DSK.  
  
(1 max bound + 1 min bound) * 3 axis * sizeof(float) * 50 = 1200 bytes per 
character/number/gesture 
 
Since there are 26 alphabets + 10 numbers + 16 gestures, we need to have 62400 bytes. The 
16MB off-chip memory capacity dwarfs the 62400 bytes required.  And this carries the benefit 
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that it will never increase if we were to increase the training set size.  The only way it would 
increase is if we were to add more characters to our training set entirely, but there is no way to 
avoid that. 

9. Analysis of The Core of Our Code (the DTW) 

The DTW function is the core of the program since it gets called hundreds of times to 
help classify one character.  So it would be good to explain the details of this core algorithm. 

 
The function first has to initialize a matrix of the Euclidean distance between any two 

samples (A, B): “A” being a point along the training set and “B” being a point along the test set 
given.  Since we are filling a 2-dimensional matrix, this portion of the code will take O(n^2) time.  
To calculate Euclidean distance for each cell in the array we need: 

• 2 multiplications 
• 3 additions/subtractions 
 
The next function in the DTW is to initialize the first column of our final matrix.  We 

basically are adding the current distance in the Euclidean distance matrix with the value below it 
in the new matrix.  This function is obviously O(n). This has this many operations per loop: 

• 3 multiplications 
• 2 additions/subtractions 
 
The next function in the DTW is to initialize the first row of our final matrix.  We basically 

are adding the current distance in the Euclidean distance matrix with the value to the left of it in 
the new matrix.  This function is obviously O(n). This has this many operations per loop:  

• 2 additions/subtractions 
 
The final function of the DTW is to finish filling the matrix by taking the minimum value of 

what is below, left, and down-left diagonally from the current value in the new matrix and adding 
it to the current position in the Euclidean distance matrix.  Since this is filling a 2-dimensional 
matrix, it will take O(n^2) time to complete.  The specific operations are too many to list here but 
there are many conditionals to calculate the minimum value and there are many pointer 
arithmetic operations and normal arithmetic operations per loop. 

 
We tried to optimize this core function of our code.  We checked to see how good our 

loop was with no optimization, optimization two, and optimization three.  All returned 1x parallel 
in each subloop of the DTW.  We then tried to improve this by loop unrolling.  We did loop 
unrolling by two and still no better than 1x parallel in each subloop.  This makes sense though.  
DTW cannot really be optimized since every calculation in the matrix is dependent on three 
previous values of the matrix.  As a result, we stopped trying to optimize our core part of the 
DSK code. 

10. Profiling Results 

As aforementioned, the DTW function is of much importance. Therefore, it is imperative that 
we obtain the results from profiling the DTW function. Based on the profile function method, we 
managed to obtain the following results after running the Core DTW function (dtwMeh()) 100 
times: 
Include Average = 633118 cycles 
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We think the following computations contribute most to the cycle count 
Loop 1: O(n^2) � 50^2   =  2500  cycles 
Loop 2: O(n)  �  50*2    =  100   cycles(We multiply 2 due to 3 mult ops) 
Loop 3: O(n)  � 50      =   50 cycles 
Loop 4: O(n^2) � 2500.5 = 12500 cycles(We multiply 5 due to 5 mult and 14 add ops) 
Memory transfer from External to Internal Memory - 7.125 cycles per word 
Loop 1: There are 2 external to internal memory transfers and 1 internal to external: 2500   *3 
Loop 2: There are 2 external to internal memory transfers and 1 internal to external: 50       *3 
Loop 3: There are 2 external to internal memory transfers and 1 internal to external: 50       *3 
Loop 4: There are 4 external to internal memory transfers and 1 internal to external: 2500   *5 
           : There are 8 external to internal memory transfers in the min() function   : 2500   *8 
 
Total cycles predicted 287137.5 * 2 = 574275 cycles 
 

Another function that we think is important is the dtwTest() function. The dtwTest() 
function is the outer shell of the Core DTW function. It goes through all the characters to be 
recognized and then decides the top three choices based on the distances returned by the Core 
DTW function. In addition to calling Core DTW, the dtwTest() function calls dtwNew() which is 
responsible for maximum and minimum bound checking. The following results were obtained 
when dtwTest() was profiled. 
Include Average = 36932275 cycles 

11. Task Division between PC & DSK 

Task Machine Reason 

Obtaining User Input PC GUI implementation in Java that resides on PC 
Storing Training Set DSK Training set is small compared to the memory 

available on the DSK. Data available on the DSK 
is more easily accessible in terms of speed. 

Computing Fast 
Dynamic Time Warping 

DSK Main algorithm should utilize the DSK for 
computation 

Displaying Recognition 
Results 

PC The Java GUI which resides on the PC will need 
to display the recognition results to the user. 

12. What Code We Reused 

The only code that we were able to reuse was the DTW code in Matlab which many other 
previous groups have used, the fast DTW code in C with capabilities for converting to Matlab 
(a .mex file) using Sakoe-Chiba band as a constraint, and finally we inherited the Wiimote Java 
driver to collect acceleration data via Bluetooth which is Mac compatible only from a friend of 
the group, Peter Pong. In addition, we used the LEDataStream class [13] to convert a byte 
stream from big-endian to little-endian and vice versa. 
 

Otherwise, all code was theorized and implemented by our group.  This includes the Java 
GUI, all other C code for each implementation (min-max bound and original DTW), all Java code 
unrelated to the Wii driver (which includes data transfer to the DSK and preprocessing of data 
before sending off to the DSK). 

 
 
 



 14 

13. DSK Packet Structure 

Header Structure 
 
Before sending the user input to the DSK for either storage or recognition, a header structure of 
five integers (20 bytes) is sent to provide some information. The header structure is illustrated 
and described further below. 
 
flag mode char_identifier sample_no dataArrLength * 

sizeof(float) 
 
Field Description 

flag If flag == 1 -> Training set 
If flag == 2 -> User input for recognition 

mode If mode == 1 -> English Alphabet Recognition 
If mode == 2 -> Arabic Numeral Recognition 
If mode == 3 -> General Gesture Recognition 

char_identifier The character that is going to be sent next. This identifier is 
based on the ASCII encoding. For example, we will set 
char_identifier to 65 for ‘A’ 

sample_no Training set number – This field ranges from 0 to 1 
0 == Max boundary curve 
1 == Min boundary curve 

dataArrLength * sizeof(float) Size of user input (in bytes) that is going to be sent to the DSK. 
 
Result from DSK 
 
The DSK will return the result to the PC in the form shown below. This data structure will be an 
array of three bytes. The top three matches is returned to the PC so that the PC could give 
better suggestions to the user. 
 
char1 char2 char3 
 
Field Description 
char1 Best character match obtained from recognition process 
char2 2nd best character match obtained from recognition process 
char3 3rd best character match obtained from recognition process 



 15 

14. DSK Flowgraph 

Obtain User Resampled and 

Rescaled Input from PC

Separate Input into its X, Y, Z 

components

Compare each axis of the user 

input with the maximum and 

minimum bound

Input > Maximum bound Input < Minimum bound

Perform DTW on sections 

where Input > Maximum bound 

OR Input < Minimum bound

Obtain distance from DTW 

computation for each axis

Compute Total Distance as a 

weighted sum of each axis

Return the 3 best possible match 

based on the lowest total 

distance heuristic to the PC

Repeat algorithm for each character’s 

maximum and minimum bound

 
 
 
Figure 15 
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15. Data Flow Graph 

Figure 16 
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16. DSK Detail and Discussion 

Data Transfer Rates 
 

For every user input, the PC will send a 20-byte fixed size header to the DSK for 
processing. This header will describe the property of the data array that will be sent to the PC 
after the header has been sent.  
 

The transfer rate between the PC and DSK according to specification is 2.5 MB/s. 
However, due to the nature of our project requiring a small packet header, we were not able to 
achieve this optimal transfer rate.  We manage to obtain an estimation of the PC to DSK 
transfer rate by doing the following: 
 
Transferring a 20-byte fixed size header 100 times (Time elapsed: 0.015s) 
 
(100*20) * 1 MB/ 1048576 bytes * 1/0.015s = 0.127156575 MB/s 
  
Transferring a 20-byte fixed size header 1000 times (Time elapsed: 0.172s) 
 
(1000 *20) * 1 MB/ 1048576 bytes * 1/0.172s = 0.1108924 MB/s 
 
Transferring a 20-byte fixed size header 100000 times (Time elapsed 17.04s) 
 
(100000 *20) * 1 MB/ 1048576 bytes * 1/17.04s = 0.111934 MB/s 
 
 

On the other hand, the specified transfer rate between the DSK and PC is 10MB/s. As 
expected, we were unable to replicate this transfer rate. Our estimation of the DSK and PC 
transfer rate based on sending a 3-byte fixed array is as follows: 
 
Transferring a 3-byte fixed size array 100 000 times (Time elapsed: 5.125s) 
 
(100 000 * 3) * 1 MB/ 1048576 bytes * 1/5.125s = 0.055824 MB/s 
 
Transferring a 3-byte fixed size array 1 000 000 times (Time elapsed: 48.826s) 
 
(1 000 000 * 3) * 1 MB/ 1048576 bytes * 1/48.826s = 0.0585963 MB/s 
 
Transferring a 3-byte fixed size array 100000 times (Time elapsed: 486.138s) 
 
(10 000 000 * 3) * 1 MB/ 1048576 bytes * 1/486.138s = 0.0588521 MB/s 
 
 

Since we are sending a 3-byte array from the DSK to PC, we believe that the DSK did 
not utilize the buffer for sending data from the DSK to PC. The buffer played an important role in 
achieving high transfer rates in Lab 2. In addition, we see a slower rate compared to the PC – 
DSK transfer because of the overhead computation required for each transfer. Sending small 
amounts of data is not cost effective as a lot of overhead cost had to be incurred before data 
can be sent. (Setting up connection, making sure that each party receives the correct amount of 
data, etc). Therefore, if more data is sent at once instead of small bits of data, a higher data 
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throughput can be achieved. This is the reason our project packed the acceleration data of three 
axes (X, Y & Z) into an array to be sent to the DSK in one load.  
 
Storage considerations on the DSK  
 
Based on the DSK Specifications, we have 256kB of On-Chip Memory and 16MB of Off-Chip 
Memory.  
 
Average size of a user input data : 1153 bytes 
Number of Characters  : 26 
Number of Training Sets  : 5 
Total Storage Needed   : 149890 bytes  150kB 

17. Graphic User Interface 

The GUI consists of two phases: Training Mode and User Input Mode. The GUI written in 
JAVA was used to facilitate the above two steps. The following table shows the basic controls 
for the Wiimote: 
 

Purposes  Buttons  

Drawing Characters  Button B (and hold) 

Switch From Training Mode ���� User Input Mode  Button 2 

Switch From User Input Mode ���� Training Mode  Button 1 

Switch Between Alphabet Input/ Numerical Input/Gesture 
Input  

Button A 

Navigation  Directional pad 

Load all Training Sets in the “Training” Folder + 

 

 
 
Figure 17 - http://wiki.linuxmce.org/images/a/ab/Wiimote.jpg 
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Training Mode 
 

 
Figure 18 
 

In this mode, users will be prompted to draw five samples for each of the 26 English 
characters (A-Z), 10 Arabic numerals (0-9) and 16 gestures. The GUI will move on to the next 
characters automatically when the users finish recording each character. The red dot inside the 
bold character will slide continuously to indicate the stroke orders that the user is supposed to 
follow. 
 

The rectangular scope below will display the user input acceleration data in x, y, z 
directions simultaneously as the user starts drawing. Red represents the x-direction, blue 
represents the y-direction, and green represents the z-direction. 
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User Input Mode 
 

 
Figure 19 
 

In this mode, users will be prompted to enter gestures that they wish to be recognized. 
Users can select which dataset (Alphabets, Numbers, Gestures) by pressing Button A. Once the 
user has drawn the character on the GUI, the three corresponding closest matches will be 
printed on the GUI, with the closest match in the middle (largest), second closest on the left, and 
third closest on the right. 
 

Once the closest match has been made, the three scopes on the right will display both 
the maximum bound and minimum bound in the training set for the recognized character. When 
the user presses left/ right, the top three closest matched characters will rotate, and the max-
min bounds on the three scopes will change accordingly. 
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Figure 20 
 

 
Figure 21 

 
Figure 22 
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Mini Text Editor 
 

Our GUI also provides a mini text editor for texts, numbers, symbols displaying on the 
upper right space. This allows users to be able to continuously keep writing characters. To 
backspace, simply press the “Up” button. Second and third closest characters can also be 
chosen by pressing the left and right button. 
 
 

 
Figure 23 
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Figure 24 

18. Full Semester Schedule 

  
Dates Goals Who 

10/08/08- 10/17/08 Determined initial DTW algorithm for 
classification 

All 

10/11/08 Found driver in JAVA to synchronize 
wiimote with DSK 

David 

10/17/08-11/15/08 Tested Algorithm – where we found fast 
DTW code and stress tested it. 

All 

10/17/08-11/15/08 Implemented fast DTW algorithm in  
Matlab   

Jeff L, David 

11/15/08-12/01/08 Implemented fast DTW algorithm in C Jeff P 

11/02/08-11/16/08 Developed a JAVA GUI for demo Jeff L 

11/15/08-12/01/08 Revamped algorithm – implemented 
new clustering algorithm in MATLAB 

Jeff L 

11/20/08- 12/01/08 Implemented final algorithm in JAVA – 
Resampling and normalization 

David 

11/20/08-12/01/08 Implemented final algorithm in C – new 
DTW calculations 

Jeff P 

11/20/08-12/02/08 Finalized the GUI.  Improved for ease of 
use and appearance. 

Jeff L 
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19. Task Division 

There are no clear set boundaries on what each member should or should not do in this 
project. Almost every aspect of this project was done together. However, there are certain areas 
where one member contributed more than the others due to familiarity of hardware or software. 
In other words, each member tried to contribute more in his area of expertise. 

 
Jeffrey Lai did most of the GUI development and algorithm testing in Matlab. 
 
Tian Seng Leong helped with the algorithm testing in Matlab and did the PC Side 
Processing in Java and DSK – PC communications protocol. 
 
Jeffrey Panza did most of the C implementation & DSK side processing in addition to 
helping in Matlab with algorithm testing. 

20. Hardware Purchases 

We spent a total of $53.28 for hardware purchases on this project. The break down of this 
amount is as follows: 
 
Wii Remote Controller + Shipping    $46.94 
Bluetooth 1.2/2.0 USB Adapter + Shipping    $6.88 
 

21. Future Improvements and General Recommendations 

A) Gesture Rejection Mechanism: 
 

Our current algorithm does not include any rules for gesture rejection. Our algorithm 
chooses the lowest DTW output, the gesture with the shortest distance from the max-min 
bounds and blindly claims it to be the correct character.  What if what was drawn was none 
of the characters in the training set? The output will look random and will probably frustrate 
the user. 
 

One of our proposed solutions to reject incorrect inputs is to create a DTW threshold for 
every training sample. The threshold is to ensure that the DTW output is always within two 
standard deviations of the DTW value for the successful match before the output alphabet 
for the corresponding lowest DTW score is considered a match. For English characters, all 
26 threshold values will be calculated before hand using the five training samples as input to 
obtain the referencing DTW score. 
 
Below is the gesture rejection mechanism: 
 
lowest_DTW_output suggests ‘B’ as the output 
If (Lowest_DTW_output < 2*std (DTW_value for input = actual’B’)) 
 Accept ‘B’ as output; 
Else 
 Reject ‘B’ as output; 
 
Remarks: two standard deviations contains 95.45% of all possible outputs (it should be all 
inclusive if we add two standard deviations to the mean 
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Char        Top Three Distance #1        Distance #2         Distance #3 

 
X  XDP  0.67118       1.2314   1.8647 
X  XDP  0.5496       1.1124       1.4765 
X  XDP  0.66642       1.0798        1.645 
X  XPD  0.58172       1.2202     1.3385 
X  XDP  0.86958      0.96327        1.776 
 
Mean  0.6677     
1.5 STD 0.8546 
2 STD 0.9169 
 
 We thought two standard deviations might be too lenient and will not recognize any 
inputs as “no decision”, so we tried restricting the limit to 1.5 standard deviations. 
 
 For example, in this case we’d expect X to be recognized as correct.  If we use 1.5 
standard deviations it will be a “no decision”, and if we use 2 standard deviations, we will 
recognize X.  This is just one example of why using 2 standard deviations is a safe policy to 
prevent false negatives.  This algorithm would be added simply to inform the user that the 
test results would be unusual (seemingly random) since the input was nowhere near any 
cluster. 
 

Now, we will introduce a new idea to set up a tolerance to which an output can be 
accepted. As we see in the following there are three DTW result plots. Each of these plots 
represent the corresponding DTW results obtained by warping test inputs A,B,C to all 26 
training sets. The red dots occur at places where the DTW values are the minimum, 
indicating the best match for that specific test input.  

 
 

 
Figure 25 - E.g. Red dots occurring at Training Set A shows that the test input (A) is best 
matched with training set (A) 
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Figure 26 
 

 
Figure 27 
 

 
Figure 28 - The process of locating the minimum DTW values is repeated for all test input   
A-Z until we obtain the plot connecting every minimum red dot (Green line below). We call 
this line the “Gesture Rejection Threshold”. 
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Figure 29 - “Gesture Rejection Threshold” is useful in justifying the calculated gesture 
outputs. For instance, a “G” might be returned to the user if he/she draws something 
randomly, say a “Star”. But since the lowest DTW values returned at “G” is above the 
Gesture Rejection Threshold, the output as a result will be rejected.  
 

 Since we never implemented this on the DSK, we have no definitive answer for this 
problem.  This is just some initial research for those who have an interest in improving our 
algorithm. 
 
B) Better Formation of Bounding Curves 
 
 Consider the case where a user-inputs a varying training set.   For example, the user 
has four consistent training sets and one really bad training set that makes the boundary for 
accepted inputs too lenient.  Several problems can arise: 
 
 

1) The cluster that gets trained may be so big it engulfs many other clusters.  We 
noticed this issue when testing on the DSK. If we made an intentionally bad 
training set for one character, it would almost always return that badly trained 
character for any test input.  This algorithm thus requires a learning curve for the 
user so they can make their own training set, or as we did in our demo, we made 
a good training set and imported it upon loading our GUI. 

2) Next is the issue of training.  We were hoping the user could add more training to 
it and it could adapt, but if the min-max ever has one bad training input, the user 
will have to clear all the training sets and start again to make sure there isn’t an 
oversized cluster formed.  We want something that will still stay very tight, maybe 
not so accepting to inputs. 

 
Our idea for a future improvement was, instead of generating a max and min curve 

explicitly from the five training sets, to generate a max and min bound from the mean by 
adding or subtracting a standard deviation or two to the curve.  We tried implementing this in 
Matlab and for tests involving both Jeff Lai’s training and test data, the accuracy went down 
by about 2% consistently from the max-min bound method.  And, when doing cross tests, 
where Jeff Lai’s training set would be used and Jeff Panza’s inaccurate training set was 
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used, the numbers went up by about 5-10%.    This implies that this method could be used 
to possibly increase a more user-independent system especially if people have lots of 
trouble learning it.  But, if all the users have passed the learning curve with the system, then 
we get better results using the min-max (probably because the user is good enough to make 
a good training set and to follow it).  Thus we feel that the max-min bound is still the best 
algorithm which is why in the end we chose it to be our final algorithm.  We wish we could 
have coded both though, since most of the problems with the max-min algorithm seemed to 
be resolved by this other version. 

 

 
Figure 30 - http://en.wikipedia.org/wiki/Wiimote 

 
Nintendo recently announced the Wii MotionPlus add-on to the Wii remote controller 

that accurately traces motions in 3-D space using improved hardware. 
 
“According to Nintendo, the device incorporates a dual-axis “tuning fork”, angular 

rate sensor which can determine rotational motion. The information captured by the angular 
rate sensor can then be used to distinguish true linear motion from the accelerometer 
readings.” 

 
We believe that the addition of this enhancement will enable us to cancel angular 

motion coming from a user’s wrist and elbow movements. Variations in our data are mostly 
caused by angular motion which seems to be unique to each writer. 

 
With the gyroscope, there might be also a possibility of doing a 2-D projection from 

the acceleration data. Future groups can experiment with image processing algorithms to 
recognize a character if they can successfully project a 2-D image from the acceleration 
data. 

 
C) Alphabet Similarities 
 

One of the biggest challenges to recognize English alphabets is that some characters 
are very similar in the way they are drawn. In our experience, drawing ‘K’ and ‘D’ are 
particularly similar to drawing ‘R’ and ‘P’ respectively. By observing the DTW values for 
these troublesome characters, we can see how similar these characters really are. 

 
The two plots below show the corresponding DTW results when K/R/D/P are warped 

with all A –Z training sets. The lowest valued alphabet on the x-axis indicates the closest 
match to the test input. (Fig.1) shows the DTW result plot for K and R while (Fig.2) shows D 
and P’s. 
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Figure 31 

 
Figure 32 
 

From the two examples above, it is obvious to see that letter K (D) could be recognized 
as R (P), or the other way around since they both have the lowest peak at the same spot. 
However, our new algorithm is smart enough to take care of this subtle difference and still 
be able to produce the right result, except for one highlighted one. 

  
Analytical Result 
[Test Input]->[1st match][2ndmatch][3rd match][corresponding DTW values] 
K->KRB         0.41173     0.58181     0.89671 
K->KRB         0.5431     0.80175      1.3856 
K->KRY         0.38362       0.526      1.2002 
K->KRY         0.64066     0.66103        1.57 
K->KRB         0.45108      1.0242      1.0246 
 
[Test Input]->[1st match][2ndmatch][3rd match][corresponding DTW values] 
R->RKY         0.37042     0.50804      1.0082 
R->RKB         0.62143     0.69834      1.0669 
R->RKB         0.39845     0.51589      1.4576 
R->KRB         0.55106     0.65464      1.0038 
R->RKY         0.39878     0.63668      1.2422 
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[Test Input]->[1st match][2ndmatch][3rd match][corresponding DTW values] 
D->DPF         0.57185      1.1314      2.7519 
D->DXP        1.063      1.3071      1.7466 
D->DPX        0.32336     0.69153      1.8722 
D->DPX        0.99424      1.5385      2.3345 
D->DPX        0.41732      1.2048      1.7177 
 
[Test Input]->[1st match][2ndmatch][3rd match][corresponding DTW values] 
P->PDE        0.45998      1.0806      2.5271 
P->PDX        0.46929     0.67341      1.2488 
P->PDX        0.28182     0.84716      1.4013 
P->PXD        0.43219     0.67704     0.80983 
P->PDX        0.37115      0.9114      1.7501 
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