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1. Introduction 

 
The interaction between human and computer develops dramatically in recent years. Mouse 

and keyboard have been widely used and well accepted as standard input devices. However, 

hand gesture, as a more convenient way to input instructions, has been well implemented into 

computer language. In out project, we want to use a webcam to recognize human hand gesture 

in a complex background with satisfactory matching rate. And then use this input signal to 

control a pc-based mini snake game. 

We are going to implement a relatively robust and accurate static hand gesture recognition 

system allowing user to input their hand gestures in a complex background with various 

orientations. In order to do that, hand image extraction, feature extraction and image matching 

are required.  Detailed discussion will be listed below. 

2. Previous Projects and Candidate Algorithms 

 
Among previous 18-551 projects, the most relevant one is G3 2003 ‘Handslation’ (They also give 

us ideas on our project name). The aim of the previous project is to recognize American Sign 

Language alphabet to facilitate the communication of people with hearing problems to outside 

world. To realize it, they use webcam to acquire raw data of each letter and build 26 MINACE 

filters (one for each letter).When a new letter is given, they compare the correlation results of 

each filter and the given image to recognize the new letter as the filter generating the highest 

correlation value. At this point, we can see that there is a mint of pattern recognition notion in 

their project. We adopt the same method of acquiring data. But we followed the basic concepts 

of pattern recognition through our project from feature extraction to classifier training to tackle 

this problem. As a result, by delicate feature selection, our algorithm only needs one 5-

dimension feature vector to represent each gesture, which will save substantial amount of 

computing time as well as energy and eventually make our algorithm robust in embedded real-

time scenario. 

Gradient processing is a useful way to get good feature of an image, which has wide application 

in texture-rich image recognition. A hand gesture image is generally considered scarce in 

texture. However hand gesture image is rich in orientation information at the boundaries 

between foreground and background. Global orientation histogram used as hand gesture 

features is brought forward firstly in [2]. The algorithm is basically pretty simple. It calculates the 

gradient of each pixel and records it in an orientation histogram vector whose dimension is 

determined by how large the angle been used. However, due to its lack of concentrating on local 

features, the feature vectors cannot be distinguished between certain different gestures, thus it 

has a limited alphabet for hand gestures. [3] reported the correctness is around 75%. By 

augmenting local vector features as well as increasing the dimension of feature vector space, 

hand gesture recognition is successfully implemented in [1]. However, the algorithm in [1] is not 
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friendly to DSP implementation considering the large volume of data. In our project, due to 

some inconsistency in our rotation algorithm, we didn’t adopt local orientation histogram to get 

hand gestures’ features. And basically global information is adequate to make our project 

robust. 

3. Algorithm Design 

 
Decided on adopting Global Orientation Histogram to extract feature of the raw image, we first 

consider the resolution of the raw data. In previous project, the resolution is 64*64, and in [1] 

80*100 resolution for hand region is used. The image captured by webcam is generally set to 

320*240, and we think resample it to 160*120 will be a good choice since according to our 

demonstration settings, hand gesture is usually located in a square with side length varied from 

80 to 100 around the center of the image. 

 

Generally, for a given gesture there are mainly three different variances: in-plane translation, in-

plane rotation and out-plane rotation. In our settings, we assume that user will place his or her 

hand on desk to give instructions and thus can ignore the effect of out-plane rotation. Histogram 

is by nature immune to in-plane translation, however we still have processes in the algorithm to 

find the center of the palm and place it at the center of the image in order to ease following 

rotation process as well as give us the potential to use local histogram features. Last but not 

least, as for in-plane rotation, we use rotation adjusting algorithm to offset its great influence on 

orientation histogram features.   

 

Since the both centriod finding algorithm and rotation adjusting algorithm are sensitive to how 

much the wrist shows in the image, for some gestures we  get different variants. It is common in 

pattern recognition field to treat these variants as different gestures and have different training 

sets for each of them, which will be quite tedious and take substantial amount of time. Instead, 

we simply tune our matching algorithm to consider the variants. 
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4. Data Flow Chart 

4-1. Overall Data Flow 
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4-2. Detailed Flow Chart on DSK 

 

 

5. Detailed Algorithm 
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5-2. DSK-Side Processing 

5-2-1. Details on Pre-Processing and Image Extraction 

 
 Judge current frame 

The purpose of this process is to determine whether the current frame needs to 

be processed. 

 

The first step is to determine whether the current frame is different from the 

precious one. The method we applied here the subtract one from the other, and 

calculate the square sum of all the elements. The threshold we use here is 

1650000. In other words, if it is greater than 1650000, the system will consider 

then as different frames. Otherwise, they will be considered as the same. 

1650000 is not critical value. However, if it is too large, it is very hard to trigger 

the next gesture recognition which will be discussed later. If it is too small, some 

intermediate pose will be taken as input gesture. From our application, we think 

1650000 are quite appropriate. One thing we need to take note is that it is highly 

depend on the portion of the hand in the picture as well.    

 

If the two frames are different, the system will wait until any two adjacent 

frames are the same.   

 

The second step is to determine whether the previous frame was judged as the 

input gesture. If it is, then the current frame does not need to be processed 

because it makes no sense to recognize the same gesture for more than one 

time. In reality it means that if the user pose one gesture and hold it for seconds, 

the system will only recognize the very first frame and ignore the following. 

Base these two criteria, the system will judge whether the current frame needs 

to be processed. We can see that in order to let the system recognize the next 

gesture, two adjacent frames need to be different so that the system will think 

the user is changing the gesture. So if the threshold is too large, no change can 

be detected. 

The following is the example: 
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Change:             -           No    Yes 

Input gesture:   Yes           No    No  

 

 
 

Change:           Yes          Yes                Yes 

Input gesture:    No                      No    No 

 

  
 

Change:           No   No 

Input gesture:    Yes   No 

So only No.1 and No.7 will be judge as input gesture and further processing will 

be taken.  

 

 Subtract the background 

  Subtract the background from the Get the grey scale image of the hand 

 

 Convert to binary image 

We use Otsu Algorithm to binaries the grayscale image, the detailed algorithm is 

described as below: 

Assumed that the gray scale is H = ,0, 1, …, L-, and the total numbers of pixels, of 

which gray value is I, are ni , then the total numbers of pixels is 




n

i

niN
1 . The 

probability of gray value of the i is NniPi /  and the threshold value is t, then 

H is divided into two categories: C0 : ,0, 1, … , t-, C1: ,t+1,t+2, ….. ,t-. The 

probability of C0 and C1 are  
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Since it is very computational intensive, thus only applies when it is absolutely 

necessary. In other words, we will convert those “input gesture” images into 

binary images.   

 

The following is the binary image we get from testing: 

 

 
 

 3*3 erosion 

Erosion is used to get rid of the noise dots. Noise dots are most likely in single 

form because by using Otsu Algorithm, the threshold for binary image is around 

36, so in order to make one noise dots appears, the difference for background 

needs to be greater than 36. For our case, the background variance is only about 

3 on average. So the probability for a noise dot is actually very low. However, the 

noise dot will affect the rotation heavily. So in order to make sure we can get rid 

of the noise dots, we choose to apply a 3*3 erosion. For the code, TI image 

library is used (.asm code) 
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 3*3 dilation 

It is use to restore the boundary information, it can be found in TI image library 

as well. 

                                         
 

 Find orientation 

First of all, we have to hind the center of the palm. Get the projection of the 

binary hand image, and then find peak value of the projection. Use peak 

value/1.1 as the threshold value to get rid of the wrist and the fingers. For the 

remaining region, find the center of the region, which should be the center of the 

palm. This method is quite simple but not robust. In our test, if the hand is 

vertical or almost vertical, it is very good at telling the palm region of the whole 

hand image. The results will be +/- 10 pixels compare to the manual result. 

However, if rotation is more than 45 degrees, it will give us a lot of variance. 

Since our application is a snake game, thus most likely the user won’t put their 

hand in such a huge angle which is not comfortable at all. Besides, this simple 

method gives us a satisfactory accuracy and computation cycles. Second, we are 

going to find the farthest point from the center of the palm. Basically, we just go 

through the image, find all the ‘on’ pixels and calculate the distance between 

them and the center we find.  After we find both the center and the farthest 

point, the line they defined will be considered as the orientation of the hand 

gesture. 

 

 Linear transformation  

This process is used to move the hand in the center of the frame and cut off the 

wrist. Since we are using orientation histogram for image matching, whether the 

hand is at the center does not matter. However, in order to make sure the 

following rotation won’t move any part of the hand out of the picture, this 

process is necessary. After transformation, the 1-45 rows will be ignored (wrist 

part). 
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 Rotation 

The rotation is to make the line connecting the two points mentioned earlier 

vertical.  We are using reversed rotation to make use that there is no “holes” in 

the hand region after the rotation. The algorithm is to use the rotation matrix 










 



cossin

sincos
 to determine its original position and fill the new pixel according 

to the original position. Basically, the rotation won’t give us the only result. 

However, it is always in certain patterns.  

 
We also find some interesting phenomenon about webcam’s input. 

 
When we place our hand to left side of the camera, we will have edge noises as 

indicating in the last line of above figure.  We try two different webcams and find 

the same thing happen. We have no explanation for it. However, it is not hard to 

tackle the problem. All we need to do is ignore the last row of the image when 

we try to find the farthest point. 

 

 3*3 erosion 

The very last erosion is used to remove the orientation noise caused by the 

rotation. 
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5-2-2. Details on Orientation Histogram Feature of an Image 

 
Generally, orientation histogram is derived from a grayscale image. In our project, 

considering we are going to implement it in an embedded environment, we choose to 

make the input binary image, which will save great amounts of floating point 

calculations and retains much of the boundary information we are interested in. 

However, when the input is binary image, we can only generate histogram of 4 

different angles (45 degree, 90 degree, 135 degree and 180 degree) with respect to 

horizontal axis, which will yield quantization error in some sense and limit the 

recognition space to 4 dimensions. Below is a sample orientation histogram vector: 

]31  71  98  57[v  

To generate such a feature vector from a binary image, we count the frequency of 

each degree. For example, a subset of pixels has a pattern as 









11

10

 indicating there 

is a 45 degree edge inside this image. In implementation, we are using a kernel










12

48

 to correlate with the image to decide each pixel’s orientation. It can be 

implemented by using bit-shifting operations only which will make it even faster. Our 

detailed feature extraction is as follows. 

 

Orientation Pixel pattern 

45 degree 
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180 degree 
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We examine some properties for our feature extraction algorithm. For example, 
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 A one pixel wide horizontal line with length n will generate a feature vector: 

]2*202[ nv   

No matter what the relative position of the line. 

 

And an image of a 45 degree line as below will generate a feature vector: 

                                                   ]0202*[nv   

Where n is the projection length of the line in x or y axis. 

Generally, a line with arbitrary orientation larger than 45 degree will yield non-zero 

number in both 45 degree and 90 degree and the same apply to orientation smaller 

than 45 degree. For example, the vector representing the image below is  

]0212260[v  

 

One can argue that the )tan( , where   is the orientation value, can be 

approximated by the ratio of 90 degree and 45 degree, but it needs theoretical proof 

to clarify it. And obviously, if the ratio is not larger than 1, it will not generate 

legitimate value for )tan( . 
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We also discover that this fashion of extracting orientation feature may incur some 

problems for images of periodic patterns. For example, a binary matrix looks like this: 

                                                         



















1111

1010

1111

1010

 

According to our algorithm, will not generate any 90 degree and 180 degree elements 

in the feature vector. (‘0’s represent the background and ‘1’s indicate the hand 

gesture region in our project.) We have two remarks to make on it. First is that we can 

assume that this kind of pattern doesn’t happen frequently in our hand gesture image, 

for under common circumstances we don’t have wholes scattering in our hand region. 

This assumption is bolstered by the fact that when we change our algorithm to get all 

the degrees included, for example, as for pixel pattern 








11

10
, it shall generate 45 

degree, 90 degree as well as 135 degree, we didn’t see much change. Second, it 

indicates that 45 and 135 degree are more sensitive to threshold errors (wholes in 

hand). 

  

One interesting property of feature extraction is that the good property of invariance 

to in-plane translation will largely limit the alphabet of our project. Considering the 

next two images, they will generate exactly the same feature vector.  

  

 

Basically, if we have different objects in the image, any combination of them will not 

have impact on the feature vector we generate. That is the reason it will be hard to 

differentiate the two gestures we originally used in our project. 
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For these two gestures, when we rotate them to the ‘standard’ position, they will 

have neighboring values for the feature vector. To interpret it, the index finger will 

generate the same value as the little in the 90 degree, even though they are at the 

different position of the palm. 

To deal with the different size of the user’s hands, we attempt to normalize the 

feature vector by dividing each element with the sum of all the elements. But this 

substantially degrades our system performance, one reason for that is the sum of the 

vector may enjoy much more variance than one element and the normalization will 

render the system inconsistency.  Fortunately, during our test, the scale problem 

seldom occurs and we suggest user training to prevent this problem occurring. 

5-2-3. Details on Hand Gesture Design 

 
Since for our project we need only 5 gestures to control the game, we attempt to 

choose the gesture sets that make our system robust. The final gesture sets are as 

follows. 

 

 

 

1     2          3                             4                   5 

When we choose the gesture, we want them invariant to the errors in palm-center 

finding and rotation algorithms. And at the same time, each gesture should generate 

different feature vectors meaning they will be apart from each other in feature space. 

We show the mean of our database in the following table. 
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Gesture No. 45 degree 90 degree 135 degree 180 degree 

1 48.8000 75.5750    45.2500    32.0250   

2 81.7826  111.2609    45.3478    30.7391   

3 67.9636  71.1636    46.8000    62.4727   

4 85.0357   168.3929    79.3214    52.6071   

5 44.9388    39.5102    45.3469    31.5918   

 

Basically, gesture 5 should be included for it has the smallest orientation histogram 

vector values and can serve as a reference value for other gestures.   

As we can see, for gesture 1, we have index finger pointed out (actually any one finger 

pointed out), we will see an increase in 90 degree element. And for gesture 2 we will 

get increment from gesture 1 for 90 degree as well as more projection on 45 degree. 

Same analysis can be done for gesture 3. We see significant increment in 45, 90 as 

well as 135 degree for 3 is a complex gesture and the thumb will generate more 

projection on 45 and 180 degree. We hope the following figure will show it more 

clearly. 

                                 

5-2-4. Details on Matching 

 
Basically, we calculate the Euclidean distance between each gesture and the 

given vector to assign the gesture vector generating the smallest distance to 

it.  
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6. Training and Testing Sets 

 
Our database is generated by one of our teammate (Ke Wang). We calculate the mean of 40 

samples of each gesture and use the mean matrix in our matching algorithm. 

Each group member makes a testing set. And the test is rigorous in that we generate 50 samples 

for every gesture. The table below shows the correct rate. 

 Ke Wang(trainer) Jeff Ran 

Gesture 1 90% 96% 94% 
Gesture 2 100% 100% 100% 
Gesture 3 98% 100% 100% 
Gesture 4 100% 100% 100% 
Gesture 5 100% 100% 100% 

 

As we can see, through our delicate choice of hand gesture alphabet, we get good results. 

7. Profiling and Optimization 

 
Otsu algorithm  614k 
Check frame change  46k 
Subtract background 161k 
Convert to binary according to threshold 41k 
Feature extraction 518k 
Find palm center 71k 
Find farthest point 205k 
Liner-move 181k 
Rotation 389k 
Image matching 440 
Erosion 7.7k 
Dilation 7.7k 

 

 Optimization 

For Otsu algorithm, it has 614k cycles which is the largest among all the processes. So firstly, 

we change the iteration from 0-255 to 0-50, so the total cycles reduced to 329k. Furthermore, 

we change the iteration pace to 5, the cycle reduced to 309k. For other functions, there is no 

loop can be manually unrolled. From the feedback we get, almost all loops have 3 to 4 

iterations on parallel except feature extraction. In our feature extraction function, due to our 

heavily usage of if statement, the program will keep flushing the pipeline and thus runs 

relatively slow.  



18 
 

The current gray-scaling code takes 40 to 45 milliseconds for conversion. After searching 

online, I found a better gray-scaling code online, which takes only 15 to 16 milliseconds for 

conversion. 

 

8. Schedule and Task 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Bingran Liu           Ke Wang Fu-Chieh Chuang 

Oct 13 Matlab code for hand 

gesture recognition 

(feature extraction) 

Matlab code for hand 

gesture extraction (key 

parameter determination) 

Create database for 

validation set 

Oct 20 Matlab code for hand 

gesture recognition 

(image matching) 

Matlab code for hand 

gesture extraction (linear 

move, rotation), Training set. 

UI  Design 

Oct 27 Implementation of 

recognition algorithm 

(feature extraction) 

Implementation of hand 

gesture extraction (compare 

frame, binary, orientation 

determination)  

Implement webcams 

with UI and keyboard 

control 

Nov 3 Implementation of 

recognition algorithm 

(image matching) 

Implementation of hand 

gesture extraction (linear 

move, rotation) 

Implement snake 

game 

Nov 10 Subsystem test Implement the control of 

the game from UI 

Nov 17 Project combine 

Nov 24 Optimization 

Dec 1 Project Testing 
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9. Demo 

 
In the demo, our entire group member demonstrated on playing the game. And in our GUI we 

showed every intermediate steps of our processing on DSK. Both TAs enjoyed our game and 

Prof. Casasent raised interesting questions according to the image shown.  

The figure below is our GUI. As it shows, we show 5 intermediate stages at the same time when 

a gesture is detected and recognized. 

 

10. Conclusion and Future Work 

 
In this project, we intend to build a robust system allowing user to use hand gesture to control 

computer games. It is arguable that general user would like to use hand gesture to substitute the 

traditional input devices such as keyboard and mouse, considering the possibility to have wrong 

instructions and adaption that must be made to use this kind of unconventional input method. 

However, as long as gamer is concerned, they will obtain novel experience by using our system, 

which will make the game more fun in some sense (you have to consider the inconsistency in the 
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input device). And generally, user of our system show great interest and appreciation to this 

innovative way of playing games. 

 Aiming at adding more fun experience, the future work would be adding custom-designed 

gesture components. It may have features like suggested gesture sets design, provided we have 

deeper knowledge of generating good gesture sets, and training functions. Also to make our 

system compatible with the main stream game, we propose to use DirectInput API. 

Generally as a hand gesture recognition system, our project has much to improve. One simple 

alternation is to use local orientation histogram to generate more useful information for a given 

hand gesture and thus increase our system’s maximum vocabulary. However, in order to do this, 

we need more robust algorithm to find the center of the palm. As stated in 5.2.1, the center will 

not be correctly found if the hand gesture’s rotation is larger than some 45 degree. 
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