
1

C a r n e g i e M e l l o n

U n i v e r s i t y

5 0 0 0 F o r b e s A v e n u e

P i t t s b u r g h , P A 1 5 2 1 3

(4 1 2) 2 6 8 - 2 4 6 4

(4 1 2) 2 6 8 - 6 3 4 5

1 2 / 8 / 2 0 0 8

A robust and accurate static hand gesture recognition

system, which allowing user to input their hand gestures

in a complex background with various orientations, for

controlling various PC game

Bingran Liu

Ke Wang

Fu-Chieh Chuang

HandTroller

2

Contents
1. Introduction .. 3

2. Previous Projects and Candidate Algorithms .. 3

3. Algorithm Design ... 4

4. Data Flow Chart... 5

4-1. Overall Data Flow .. 5

4-2. Detailed Flow Chart on DSK .. 6

5. Detailed Algorithm .. 6

5-1. PC-Side Processing .. 6

5-2. DSK-Side Processing .. 7

5-2-1. Details on Pre-Processing and Image Extraction .. 7

5-2-2. Details on Orientation Histogram Feature of an Image ... 12

5-2-3. Details on Hand Gesture Design ... 15

5-2-4. Details on Matching .. 16

6. Training and Testing Sets .. 17

7. Profiling and Optimization .. 17

8. Schedule and Task ... 18

9. Demo ... 19

10. Conclusion and Future Work .. 19

11. Reference and Comments... 20

3

1. Introduction

The interaction between human and computer develops dramatically in recent years. Mouse

and keyboard have been widely used and well accepted as standard input devices. However,

hand gesture, as a more convenient way to input instructions, has been well implemented into

computer language. In out project, we want to use a webcam to recognize human hand gesture

in a complex background with satisfactory matching rate. And then use this input signal to

control a pc-based mini snake game.

We are going to implement a relatively robust and accurate static hand gesture recognition

system allowing user to input their hand gestures in a complex background with various

orientations. In order to do that, hand image extraction, feature extraction and image matching

are required. Detailed discussion will be listed below.

2. Previous Projects and Candidate Algorithms

Among previous 18-551 projects, the most relevant one is G3 2003 ‘Handslation’ (They also give

us ideas on our project name). The aim of the previous project is to recognize American Sign

Language alphabet to facilitate the communication of people with hearing problems to outside

world. To realize it, they use webcam to acquire raw data of each letter and build 26 MINACE

filters (one for each letter).When a new letter is given, they compare the correlation results of

each filter and the given image to recognize the new letter as the filter generating the highest

correlation value. At this point, we can see that there is a mint of pattern recognition notion in

their project. We adopt the same method of acquiring data. But we followed the basic concepts

of pattern recognition through our project from feature extraction to classifier training to tackle

this problem. As a result, by delicate feature selection, our algorithm only needs one 5-

dimension feature vector to represent each gesture, which will save substantial amount of

computing time as well as energy and eventually make our algorithm robust in embedded real-

time scenario.

Gradient processing is a useful way to get good feature of an image, which has wide application

in texture-rich image recognition. A hand gesture image is generally considered scarce in

texture. However hand gesture image is rich in orientation information at the boundaries

between foreground and background. Global orientation histogram used as hand gesture

features is brought forward firstly in [2]. The algorithm is basically pretty simple. It calculates the

gradient of each pixel and records it in an orientation histogram vector whose dimension is

determined by how large the angle been used. However, due to its lack of concentrating on local

features, the feature vectors cannot be distinguished between certain different gestures, thus it

has a limited alphabet for hand gestures. [3] reported the correctness is around 75%. By

augmenting local vector features as well as increasing the dimension of feature vector space,

hand gesture recognition is successfully implemented in [1]. However, the algorithm in [1] is not

4

friendly to DSP implementation considering the large volume of data. In our project, due to

some inconsistency in our rotation algorithm, we didn’t adopt local orientation histogram to get

hand gestures’ features. And basically global information is adequate to make our project

robust.

3. Algorithm Design

Decided on adopting Global Orientation Histogram to extract feature of the raw image, we first

consider the resolution of the raw data. In previous project, the resolution is 64*64, and in [1]

80*100 resolution for hand region is used. The image captured by webcam is generally set to

320*240, and we think resample it to 160*120 will be a good choice since according to our

demonstration settings, hand gesture is usually located in a square with side length varied from

80 to 100 around the center of the image.

Generally, for a given gesture there are mainly three different variances: in-plane translation, in-

plane rotation and out-plane rotation. In our settings, we assume that user will place his or her

hand on desk to give instructions and thus can ignore the effect of out-plane rotation. Histogram

is by nature immune to in-plane translation, however we still have processes in the algorithm to

find the center of the palm and place it at the center of the image in order to ease following

rotation process as well as give us the potential to use local histogram features. Last but not

least, as for in-plane rotation, we use rotation adjusting algorithm to offset its great influence on

orientation histogram features.

Since the both centriod finding algorithm and rotation adjusting algorithm are sensitive to how

much the wrist shows in the image, for some gestures we get different variants. It is common in

pattern recognition field to treat these variants as different gestures and have different training

sets for each of them, which will be quite tedious and take substantial amount of time. Instead,

we simply tune our matching algorithm to consider the variants.

5

4. Data Flow Chart

4-1. Overall Data Flow

Start

Send request for

background mean and

variance

Find mean and variance

for each pixels from 100

background pictures

Send mean and variance

of 100 background

pictures

Taking background

100 picture

Waiting for request from

DSK

Receive and Store

background mean and

variance

Send request for current

frame

Waiting for request from

DSK

Retrieve the current

frame from WebCam

Grayscaling the current

frame

Send the current frame

(after grayscaling)

Receive the current

frame (after grayscaling)

Processing

(See details below)

Send request to PC for

receiving recognition

result

Waiting for request from

DSK

Receiving the recognition

result

Update the command in

the game

Send the recognition

result

Start

C
o

n
tin

u
e

C
o

n
tin

u
e

Data Length and Command

Data Length and Command

Data Length and Command

Send Data

Send Data

Send Data

6

4-2. Detailed Flow Chart on DSK

5. Detailed Algorithm

5-1. PC-Side Processing

Due to illumination noise and limited sensitivity of the camera, there will be

variance for each pixel. Since back ground image is critical to our following

processing, we need relatively accurate data. So on PC side we will take 100

pictures to get the mean of the background. We prefer to do this process on PC

side because the memory requirement is high (19.2k*100 =1.92M), but the

computation is not intensive. On GUI, the camera will white balance the image

first, so the system will wait for 8 seconds to take the background images. Then,

each frame (after re-sampling and grayscale) is transferred to the DSK to do the

further processing.

Send request for current

frame

Send request for current

frame

Send request for current

frame

Send request for current

frame

Send request for current

frame

Send request for current

frame

Send request for current

frame

Send request for current

frame

Send request for current

frame

Send request for current

frame

Send request for current

frame

7

5-2. DSK-Side Processing

5-2-1. Details on Pre-Processing and Image Extraction

 Judge current frame

The purpose of this process is to determine whether the current frame needs to

be processed.

The first step is to determine whether the current frame is different from the

precious one. The method we applied here the subtract one from the other, and

calculate the square sum of all the elements. The threshold we use here is

1650000. In other words, if it is greater than 1650000, the system will consider

then as different frames. Otherwise, they will be considered as the same.

1650000 is not critical value. However, if it is too large, it is very hard to trigger

the next gesture recognition which will be discussed later. If it is too small, some

intermediate pose will be taken as input gesture. From our application, we think

1650000 are quite appropriate. One thing we need to take note is that it is highly

depend on the portion of the hand in the picture as well.

If the two frames are different, the system will wait until any two adjacent

frames are the same.

The second step is to determine whether the previous frame was judged as the

input gesture. If it is, then the current frame does not need to be processed

because it makes no sense to recognize the same gesture for more than one

time. In reality it means that if the user pose one gesture and hold it for seconds,

the system will only recognize the very first frame and ignore the following.

Base these two criteria, the system will judge whether the current frame needs

to be processed. We can see that in order to let the system recognize the next

gesture, two adjacent frames need to be different so that the system will think

the user is changing the gesture. So if the threshold is too large, no change can

be detected.

The following is the example:

8

Change: - No Yes

Input gesture: Yes No No

Change: Yes Yes Yes

Input gesture: No No No

Change: No No

Input gesture: Yes No

So only No.1 and No.7 will be judge as input gesture and further processing will

be taken.

 Subtract the background

 Subtract the background from the Get the grey scale image of the hand

 Convert to binary image

We use Otsu Algorithm to binaries the grayscale image, the detailed algorithm is

described as below:

Assumed that the gray scale is H = ,0, 1, …, L-, and the total numbers of pixels, of

which gray value is I, are ni , then the total numbers of pixels is




n

i

niN
1 . The

probability of gray value of the i is NniPi / and the threshold value is t, then

H is divided into two categories: C0 : ,0, 1, … , t-, C1: ,t+1,t+2, ….. ,t-. The

probability of C0 and C1 are





t

t
ii PP t

0

)(

9





L

ti
ii

tt PPP
1

0
)(1)(

)(
)(

0

1
0 t

i

t
P

P
u

L

ti
i



)(
)(

1

1
1 t

i

t
P

P
u

L

ti
i







L

i
PiT Pu it

0

)(

ó
2

B
)(

0
tP

)(
1

tP [
)(

1
tu -

)(
0

tu]2

)(maxarg 2

10

*

tt B
lt






Since it is very computational intensive, thus only applies when it is absolutely

necessary. In other words, we will convert those “input gesture” images into

binary images.

The following is the binary image we get from testing:

 3*3 erosion

Erosion is used to get rid of the noise dots. Noise dots are most likely in single

form because by using Otsu Algorithm, the threshold for binary image is around

36, so in order to make one noise dots appears, the difference for background

needs to be greater than 36. For our case, the background variance is only about

3 on average. So the probability for a noise dot is actually very low. However, the

noise dot will affect the rotation heavily. So in order to make sure we can get rid

of the noise dots, we choose to apply a 3*3 erosion. For the code, TI image

library is used (.asm code)

10

 3*3 dilation

It is use to restore the boundary information, it can be found in TI image library

as well.

 Find orientation

First of all, we have to hind the center of the palm. Get the projection of the

binary hand image, and then find peak value of the projection. Use peak

value/1.1 as the threshold value to get rid of the wrist and the fingers. For the

remaining region, find the center of the region, which should be the center of the

palm. This method is quite simple but not robust. In our test, if the hand is

vertical or almost vertical, it is very good at telling the palm region of the whole

hand image. The results will be +/- 10 pixels compare to the manual result.

However, if rotation is more than 45 degrees, it will give us a lot of variance.

Since our application is a snake game, thus most likely the user won’t put their

hand in such a huge angle which is not comfortable at all. Besides, this simple

method gives us a satisfactory accuracy and computation cycles. Second, we are

going to find the farthest point from the center of the palm. Basically, we just go

through the image, find all the ‘on’ pixels and calculate the distance between

them and the center we find. After we find both the center and the farthest

point, the line they defined will be considered as the orientation of the hand

gesture.

 Linear transformation

This process is used to move the hand in the center of the frame and cut off the

wrist. Since we are using orientation histogram for image matching, whether the

hand is at the center does not matter. However, in order to make sure the

following rotation won’t move any part of the hand out of the picture, this

process is necessary. After transformation, the 1-45 rows will be ignored (wrist

part).

11

 Rotation

The rotation is to make the line connecting the two points mentioned earlier

vertical. We are using reversed rotation to make use that there is no “holes” in

the hand region after the rotation. The algorithm is to use the rotation matrix










 



cossin

sincos
 to determine its original position and fill the new pixel according

to the original position. Basically, the rotation won’t give us the only result.

However, it is always in certain patterns.

We also find some interesting phenomenon about webcam’s input.

When we place our hand to left side of the camera, we will have edge noises as

indicating in the last line of above figure. We try two different webcams and find

the same thing happen. We have no explanation for it. However, it is not hard to

tackle the problem. All we need to do is ignore the last row of the image when

we try to find the farthest point.

 3*3 erosion

The very last erosion is used to remove the orientation noise caused by the

rotation.

12

5-2-2. Details on Orientation Histogram Feature of an Image

Generally, orientation histogram is derived from a grayscale image. In our project,

considering we are going to implement it in an embedded environment, we choose to

make the input binary image, which will save great amounts of floating point

calculations and retains much of the boundary information we are interested in.

However, when the input is binary image, we can only generate histogram of 4

different angles (45 degree, 90 degree, 135 degree and 180 degree) with respect to

horizontal axis, which will yield quantization error in some sense and limit the

recognition space to 4 dimensions. Below is a sample orientation histogram vector:

]31 71 98 57[v

To generate such a feature vector from a binary image, we count the frequency of

each degree. For example, a subset of pixels has a pattern as









11

10

 indicating there

is a 45 degree edge inside this image. In implementation, we are using a kernel










12

48

 to correlate with the image to decide each pixel’s orientation. It can be

implemented by using bit-shifting operations only which will make it even faster. Our

detailed feature extraction is as follows.

Orientation Pixel pattern

45 degree


































01

11

11

10

00

01

10

00

90 degree


















01

01

10

10

135 degree


































01

00

00

10

10

11

11

01

180 degree


















11

00

00

11

Ignored


































01

10

10

01

00

00

11

11

We examine some properties for our feature extraction algorithm. For example,

13

 A one pixel wide horizontal line with length n will generate a feature vector:

]2*202[nv 

No matter what the relative position of the line.

And an image of a 45 degree line as below will generate a feature vector:

]0202*[nv 

Where n is the projection length of the line in x or y axis.

Generally, a line with arbitrary orientation larger than 45 degree will yield non-zero

number in both 45 degree and 90 degree and the same apply to orientation smaller

than 45 degree. For example, the vector representing the image below is

]0212260[v

One can argue that the)tan( , where  is the orientation value, can be

approximated by the ratio of 90 degree and 45 degree, but it needs theoretical proof

to clarify it. And obviously, if the ratio is not larger than 1, it will not generate

legitimate value for)tan( .

14

We also discover that this fashion of extracting orientation feature may incur some

problems for images of periodic patterns. For example, a binary matrix looks like this:



















1111

1010

1111

1010

According to our algorithm, will not generate any 90 degree and 180 degree elements

in the feature vector. (‘0’s represent the background and ‘1’s indicate the hand

gesture region in our project.) We have two remarks to make on it. First is that we can

assume that this kind of pattern doesn’t happen frequently in our hand gesture image,

for under common circumstances we don’t have wholes scattering in our hand region.

This assumption is bolstered by the fact that when we change our algorithm to get all

the degrees included, for example, as for pixel pattern 








11

10
, it shall generate 45

degree, 90 degree as well as 135 degree, we didn’t see much change. Second, it

indicates that 45 and 135 degree are more sensitive to threshold errors (wholes in

hand).

One interesting property of feature extraction is that the good property of invariance

to in-plane translation will largely limit the alphabet of our project. Considering the

next two images, they will generate exactly the same feature vector.

Basically, if we have different objects in the image, any combination of them will not

have impact on the feature vector we generate. That is the reason it will be hard to

differentiate the two gestures we originally used in our project.

15

For these two gestures, when we rotate them to the ‘standard’ position, they will

have neighboring values for the feature vector. To interpret it, the index finger will

generate the same value as the little in the 90 degree, even though they are at the

different position of the palm.

To deal with the different size of the user’s hands, we attempt to normalize the

feature vector by dividing each element with the sum of all the elements. But this

substantially degrades our system performance, one reason for that is the sum of the

vector may enjoy much more variance than one element and the normalization will

render the system inconsistency. Fortunately, during our test, the scale problem

seldom occurs and we suggest user training to prevent this problem occurring.

5-2-3. Details on Hand Gesture Design

Since for our project we need only 5 gestures to control the game, we attempt to

choose the gesture sets that make our system robust. The final gesture sets are as

follows.

1 2 3 4 5

When we choose the gesture, we want them invariant to the errors in palm-center

finding and rotation algorithms. And at the same time, each gesture should generate

different feature vectors meaning they will be apart from each other in feature space.

We show the mean of our database in the following table.

16

Gesture No. 45 degree 90 degree 135 degree 180 degree

1 48.8000 75.5750 45.2500 32.0250

2 81.7826 111.2609 45.3478 30.7391

3 67.9636 71.1636 46.8000 62.4727

4 85.0357 168.3929 79.3214 52.6071

5 44.9388 39.5102 45.3469 31.5918

Basically, gesture 5 should be included for it has the smallest orientation histogram

vector values and can serve as a reference value for other gestures.

As we can see, for gesture 1, we have index finger pointed out (actually any one finger

pointed out), we will see an increase in 90 degree element. And for gesture 2 we will

get increment from gesture 1 for 90 degree as well as more projection on 45 degree.

Same analysis can be done for gesture 3. We see significant increment in 45, 90 as

well as 135 degree for 3 is a complex gesture and the thumb will generate more

projection on 45 and 180 degree. We hope the following figure will show it more

clearly.

5-2-4. Details on Matching

Basically, we calculate the Euclidean distance between each gesture and the

given vector to assign the gesture vector generating the smallest distance to

it.

0

20

40

60

80

100

120

140

160

180

45 90 135 180

gesture 1

gesture 2

gesture 3

gesture 4

gesture 5

17

6. Training and Testing Sets

Our database is generated by one of our teammate (Ke Wang). We calculate the mean of 40

samples of each gesture and use the mean matrix in our matching algorithm.

Each group member makes a testing set. And the test is rigorous in that we generate 50 samples

for every gesture. The table below shows the correct rate.

 Ke Wang(trainer) Jeff Ran

Gesture 1 90% 96% 94%
Gesture 2 100% 100% 100%
Gesture 3 98% 100% 100%
Gesture 4 100% 100% 100%
Gesture 5 100% 100% 100%

As we can see, through our delicate choice of hand gesture alphabet, we get good results.

7. Profiling and Optimization

Otsu algorithm 614k
Check frame change 46k
Subtract background 161k
Convert to binary according to threshold 41k
Feature extraction 518k
Find palm center 71k
Find farthest point 205k
Liner-move 181k
Rotation 389k
Image matching 440
Erosion 7.7k
Dilation 7.7k

 Optimization

For Otsu algorithm, it has 614k cycles which is the largest among all the processes. So firstly,

we change the iteration from 0-255 to 0-50, so the total cycles reduced to 329k. Furthermore,

we change the iteration pace to 5, the cycle reduced to 309k. For other functions, there is no

loop can be manually unrolled. From the feedback we get, almost all loops have 3 to 4

iterations on parallel except feature extraction. In our feature extraction function, due to our

heavily usage of if statement, the program will keep flushing the pipeline and thus runs

relatively slow.

18

The current gray-scaling code takes 40 to 45 milliseconds for conversion. After searching

online, I found a better gray-scaling code online, which takes only 15 to 16 milliseconds for

conversion.

8. Schedule and Task

 Bingran Liu Ke Wang Fu-Chieh Chuang

Oct 13 Matlab code for hand

gesture recognition

(feature extraction)

Matlab code for hand

gesture extraction (key

parameter determination)

Create database for

validation set

Oct 20 Matlab code for hand

gesture recognition

(image matching)

Matlab code for hand

gesture extraction (linear

move, rotation), Training set.

UI Design

Oct 27 Implementation of

recognition algorithm

(feature extraction)

Implementation of hand

gesture extraction (compare

frame, binary, orientation

determination)

Implement webcams

with UI and keyboard

control

Nov 3 Implementation of

recognition algorithm

(image matching)

Implementation of hand

gesture extraction (linear

move, rotation)

Implement snake

game

Nov 10 Subsystem test Implement the control of

the game from UI

Nov 17 Project combine

Nov 24 Optimization

Dec 1 Project Testing

19

9. Demo

In the demo, our entire group member demonstrated on playing the game. And in our GUI we

showed every intermediate steps of our processing on DSK. Both TAs enjoyed our game and

Prof. Casasent raised interesting questions according to the image shown.

The figure below is our GUI. As it shows, we show 5 intermediate stages at the same time when

a gesture is detected and recognized.

10. Conclusion and Future Work

In this project, we intend to build a robust system allowing user to use hand gesture to control

computer games. It is arguable that general user would like to use hand gesture to substitute the

traditional input devices such as keyboard and mouse, considering the possibility to have wrong

instructions and adaption that must be made to use this kind of unconventional input method.

However, as long as gamer is concerned, they will obtain novel experience by using our system,

which will make the game more fun in some sense (you have to consider the inconsistency in the

20

input device). And generally, user of our system show great interest and appreciation to this

innovative way of playing games.

 Aiming at adding more fun experience, the future work would be adding custom-designed

gesture components. It may have features like suggested gesture sets design, provided we have

deeper knowledge of generating good gesture sets, and training functions. Also to make our

system compatible with the main stream game, we propose to use DirectInput API.

Generally as a hand gesture recognition system, our project has much to improve. One simple

alternation is to use local orientation histogram to generate more useful information for a given

hand gesture and thus increase our system’s maximum vocabulary. However, in order to do this,

we need more robust algorithm to find the center of the palm. As stated in 5.2.1, the center will

not be correctly found if the hand gesture’s rotation is larger than some 45 degree.

11. Reference and Comments

*1+ “Static Hand Gesture Recognition based on Local Orientation Histogram Feature Distribution

Model” Hanning Zhou, Dennis J. Lin and Thomas S. Huang Proceedings of the 2004 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW’04)

This paper proposed a robust way of using local orientation histogram to recognize hand

gestures. The algorithm requires huge amount of data access and is difficult to implement it as

real-time recognition in embedded environment. Nonetheless, it indicates ways to generate new

good features when global orientation histogram feature fails to distinguish gestures.

*2+ “Orientation Histograms for Hand Gesture Recognition” William T. Freeman, Michal Roth, IEEE

Intl. Wkshp. on Automatic Face and Gesture Recognition, Zurich, June, 1995

Classic Global Orientation Histogram Algorithm for gesture recognition was introduced by

William T. Freeman in 1995. We make a slight change in the classic algorithm to fit it to binary

input images.

[3] http://phd.serkangenc.com/orientation/orientation.php

The website contains source codes for hand gesture recognition system using global histogram.

We are happy to see that such simple algorithm works pretty well in practice.

[4]”Hand Gesture Detection and Segmentation Based on Difference Background Image with

Complex Background,” Qiuyu Zhang, Fan Chen, and Xinwen Liu.

This reference gives detailed information about how complex background should be handled. So

the mean and variance of background as well as the Otsu Algorithm is obtained from this paper.

