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1  Project Explanation 
 

1.1  Problem 
The problem we are addressing is called beat synchronization. Beat 

synchronization refers to the process of first detecting the number of beats per minute 
(also known as the tempo) of a given recorded song or clip of music, and then modifying 
that tempo to match another desired tempo.  However, simply altering the playback speed 
introduces unwanted effects in pitch (think of playing a 33 rpm vinyl record at 45 rpm), 
and it is therefore desirable to perform beat synchronization without affecting the 
frequency characteristics of the original song. Beat synchronization is common and 
extremely useful in modern music processing. For example there are many software-
based products (such as Ableton Live or Digidesign “X-form” plug-in) that perform beat 
synchronization for music playback and computer music composition, but not any well-
known hardware implementations. Other possible applications include slowing down 
speech (while otherwise minimally effecting the signal) for increased intelligibility, and, 
of course, the ultimate dance party, in which many songs can be normalized to one tempo 
and then strung together to provide maximum grooveability.  
 

1.2 Solution 
Our project aims to automate the beat synchronization process. In other words, an 

input song can be manipulated to have a desired tempo, or two input songs can be 
manipulated to have the same tempo. Most modern popular music has envelope peaks 
repeated in time with the tempo of the song. Using this assumption, we find peak patterns 
in the input data (the song).  In order to separate different instruments in the recording, 
we analyze the input song using filter banks and search for patterns within groups of 
frequencies (loosely distinguishing drums/guitar/bass/vocals). We then perform time-
scaling to change the bpm. Our project not only performs automatic beat synchronization 
of two songs, but also allows for user-defined time scaling of one input song.
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1.3 Initial Goals 
 

The signal to be processed will be professionally recorded music that has a static 
tempo. We will only analyze 2 seconds from the middle of the song for beat detection. 
The sampling frequency should optimally be 44.1 kHz to capture the entire bandwidth of 
the audio range: 20 Hz to 20 kHz. After initial calculations we chose an acceptable 
sampling rate of 22.050 kHz, however, we later had to reduce the sampling rate to 
improve efficiency. This will be detailed in the “Computations” section. 
 
 For the beat detection component of our project, we will implement the algorithm 
developed in “Beat This”1, a project from Rice University. “Beat This” utilizes functions 
in MATLAB in order to detect a beat in a song. The MATLAB code for the beat 
detection algorithm is published and is tailored to run on a PC. We plan to combine the 
algorithm developed in this project with an algorithm constructed using wavelets2. We 
will first implement our combined algorithm in MATLAB code and then develop C code.  
In addition, we will need to implement code to change the tempo of a song, while 
maintaining its pitch, to match the beat detected earlier.  We will use a Phase Vocoder3 
algorithm to implement this change. 

 
The database that the DSK will use will be a group of 50 songs, residing on the 

PC. The DSK will take two songs as inputs: one song will have the target beat and the 
other song will be changed to have the beat as the first. We will perform beat detection, 
apply the phase vocoder, and the output from the DSK will be the new song playing in 
real time with a changed beat. 

                                                
1 http://www.owlnet.rice.edu/~elec301/Projects01/beat_sync/beatalgo.html 
2 http://soundlab.cs.princeton.edu/publications/2001_amta_aadwt.pdf  
3 http://www.panix.com/~jens/pvoc‐dolson.par  
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2 Prior Projects 
 

2.1  One Voice: Vocal Harmony Generator Fall 2006, Group 9 
This project focused on pitch detection and pitch scaling, which is similar to our 

focus of beat detection and time scaling.  Their pitch detection algorithm started similarly 
by attempting to discover the periodicity of the signal through autocorrelation.  Our 
strategy first split the signal into multiple filter banks and analyzed them separately since 
our input is composed of multiple fundamental tones; One Voice separated the unvoiced 
and voiced parts of speech and only analyzed the voiced parts.  Both of our initial 
algorithms used multiple smoothing filters followed by autocorrelation.  After this, both 
of our algorithms attempted to detect the periodicity of the signal (in their project 
periodicity = pitch; in our project periodicity = tempo).  Both of our projects found the 
autocorrelation to be difficult to adapt to a robust algorithm applicable to various signals 
without individual tweaking for each, and we both decided to choose a varying comb 
filter in replacement of the autocorrelation (Carpentier algorithm). 

The pitch scaling part of One Voice also is similar to the time scaling (phase 
vocoder) part of our project.  Their algorithm manually detects peaks in the time domain 
throughout the song (wavelength follows pitch) and synthesizes them into a new signal 
through overlap-add, mapping detected peaks to new peak positions to scale the pitch 
(Pitch Synchronous OverLap-Add).  Since our input signal is composed of many more 
frequencies, we use an STFT to estimate the magnitudes of multiple (N/2) frequencies.  
This estimation is compensated in our phase reconstruction, which also suppresses the 
noise caused by overlap-add process of PSOLA. 

In short, One Voice pitch scales strictly in the time domain, precisely detecting 
single periodicities, and constructing result through overlap-add; Ultimate Dance Party 
pitch/time scales in a frequency domain (STFT), approximating multiple periodicities, 
and reconstructing through magnitude interpolation and phase accumulation. 

2.1.1  Beat detection vs. pitch detection 
Beat detection and pitch detection are similar processes, since they both detect the 

frequency of a signal.  The human ear interprets audio as a beat (impulse) or a Tone 
depending on the signal’s frequency, thus determining the range of frequencies each 
algorithm will find: 
 
 Beat Detection Pitch Detection 
What your ear hears: Beat / Impulse Tone 
Range in Hz (cyc/sec) 0 – 20 20 – 20,000 
Range in BPM (cyc/min) 0 – 1,200 1,200 – 1,200,000 
 

Table 1: Beat Detection versus Pitch Detection 
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2.2  Look Who’s Talking Fall 2007, Group 2 
This project’s aim was to detect certain words spoken from a voice source.  The 

project involved training through Dynamic Time Warping to account for different speeds 
of speech.  Through completing their project, they discovered Dan Ellis’s A Phase 
Vocoder in MatLab and commented that it is a superior algorithm for time shifting due to 
its clever way of magnitude interpolation.  We have taken their advice and used his 
algorithm as a starting point in our project. 
 
 

3 Algorithms 
 

3.1  Beat Detection 
 

3.1.1 Initial Desired Beat Detection Algorithm 
 

Our initial beat detection algorithm works as follows: a 2 second segment is 
extracted from the input song, and passed through a filter bank so that different 
instrument groups (bass, treble etc) are divided into frequency bands and can therefore be 
analyzed separately. Then for each frequency band, the signal is smoothed with a 
Hamming window to extract the envelope of the signal, and then differentiated to 
emphasize the change in the envelope. Then half-wave rectification is performed and the 
resulting signals are summed together. The goal of this is to obtain a signal with more 
salient beats so that the autocorrelation of this signal will produce distinct periodic peaks 
corresponding to each beat. We will then calculate the tempo based on the period of these 
peaks, repeat the whole process for other 2 second segments, and average the calculated 
tempos to obtain our final detected tempo. 
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Figure 1: Initial Beat Detection Diagram 
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3.1.2  Final “Beat This” Algorithm 
 

The beat detection algorithm we used in the end (the “Beat This” algorithm) 
works the same way except for the last step. Instead of adding the processed (filtered, 
windowed, differentiated, rectified) signals, each frequency banded signal is convolved 
with a comb filter, the energy of the filtered signals is computed and added across the 
frequency bands. This process is then repeated for different comb filters that span a bpm 
range specified by the user. The bpm detected is the periodicity of the comb filter that 
yields the highest energy. 

We had initially planned on adapting the “Beat This” algorithm to improve 
efficiency for optimal implementation on the DSK. The main difference was replacing 
the last step of the “Beat This” algorithm (a comb filter) with an autocorrelation. The 
comb filter appears to be quite inefficient because a separate filter is applied to the 
processed signal for every bpm (default range is 60-240 bpm with integer increments, ie 
180 iterations!) before calculating the energy of the filtered signal and choosing the comb 
filter period that yielded the highest resulting energy as the detected bpm. In MATLAB 
the first steps of the algorithm (filterbank, differentiating etc) take about .2 seconds, while 
the last step takes almost 9 seconds, which is almost 5 times the length of the segment 
being analyzed. Our idea was the replace the 180 comb filters with 1 autocorrelation of 
processed signal summed across frequency bands. Periodic peaks in the autocorrelation 
would indicate the periodicity of the segment, ie the bpm we are looking for. However, 
robustly implementing this in MATLAB was not as simple as it seemed. The peak 
heights and smoothness of the curve were too inconsistent to develop a simple peak 
detection algorithm without making modifications for each song. We therefore returned 
to just implementing the “Beat This” algorithm, which, although slow, was robust and 
accurate. 

We then began to translate the “Beat This” MATLAB code to C, hoping that the 
comb filter would not cause too much of a delay. However there was no improvement in 
computation time for the bpm of a 2 second segment. Since we will only be calculating 
the bpm once for each input song, prior to calling the phase vocoder (which will be more 
than enough work for the DSK), we decided to perform beat detection “off-line” by 
calling the MATLAB code before beginning the time-scaling on the DSK. 
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Figure 2: Final Beat Detection Diagram 
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3.2  Phase Vocoder 
The Phase Vocoder algorithm 
begins with a Short Time Fourier 
Transform.  This captures the 
frequency spectrum as it changes 
in time.  In our implementation,     
N = 512 and Hop = 128: 
 
A) Take N-size sections of the 
original signal.  The start/end  
points of each section are offset by 
Hop.  When Hop is smaller than N, 
the STFT retains faster changes in 
the frequency spectrum. 
 
B) Multiply the each section by a 
Hamming window in order to 
suppress side lobes in the 
frequency spectrum 
 
C) Perform N-point FFT on each 
of the windowed sections.  The 
magnitudes and phases are stored 
in columns of separate matrixes. 
 
In this way, progressing through a 
column of the FFT (Mag or Phase) 
matrix will relate to the FFT of the 
original samples: 
{Hop*Col#, Hop*Col# + N} 
For N = 512, Hop = 128 (as we 
use), and original signal length = 
2048 (for example), the first few 
columns represent:{0 through 511} 
{128 through 639} 
{256 through 767} 
{384 through 895} 
…and the last few columns: 
{1152 through 1663} 
{1280 through 1791}  
{1408 through 1919} 

Figure 3: STFT Example 
{1536 through 2047} 
Total Number of Columns = (length – N)/Hop + 1 = 13 Columns 
Note: We choose “length” so that (length – N)/Hop is an integer 

Short Time Fourier Transform Example 
N = 512, Hop = 256… 3 iterations 
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Once the original signal is translated 
into the frequency domain via STFT, 
the Phase Vocoder builds a new set 
of magnitude values based on a 
scaled time array t(k). 
 
A) Time array t(k) is computed from 
scaling factor R where t(k) = R*k. 
t(k) must never be greater than the 
largest column index, so:  t(k) is size 
= floor((numCols-1)/R) + 1 
 
B) The new magnitude matrix is 
constructed using t(k) to scale 
appropriate original magnitudes and 
store into a new matrix. 
 
For R = 0.8, continuing from STFT 
example where numCols = 13: 
t(k) = 0, 0.8, 1.6, … 10.4, 11.2, 12.0 

t(k)size = 16 
 

Figure 4: Magnitude Interpolation 
 
The new magnitude columns will depend on values from the original signal indexes: 
{0 through 511} 
{0 through 639} 
{128 through 767} 
{256 through 895} 
… 
{1152 through 1791} 
{1280 through 1919} 
{1408 through 2047} 
{1536 through 2047} 
 
 
Note: This is where page alignment gets tricky.  For each value of R, the new 
magnitude/phase columns will correspond to different values of the original signal. 

Magnitude Interpolation Example 
R = 0.8… 4 iterations 
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In order to construct the new phase matrix, the Phase Vocoder first computes the 
expected phase advance dphi(n) of each bin: dphi(n) =  2πHop*n / N.  This is the phase 
advance you would see from a sinusoid at the center frequency of a bin in an N point FFT 
if you shifted the input window by Hop points.  This is used to estimate the frequency of 
a sinusoid that makes the phase difference observed in the original phase matrix.  
 
Note: This is only necessary when the STFT and iSTFT have different Hop sizes.  In our 
implementation, the Hop size is constant.  We did not realize this until the end of our 
project.  In the code, dphi(n) is simply added and then subtracted from the final phase, 
rendering it pointless. 
 
To start accumulating the phase, the phase of the first new column is set equal to the 
phase of the old new column.  Then, using the same bounds and t(k)  as the Magnitude 
Interpolation, the phase difference between respective original column is added to the 
current phase values. 

Figure 5: Phase Accumulation 
 
The new STFT Phase columns depend on the same indexes from the original signal as the 
new STFT Magnitude columns (refer to prior page).  
 

Phase Accumulation Example 
R = 1.2… 3 iterations 
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Finally, the iSTFT is performed: 
 
A) The new phase and magnitude 
values are converted in 
rectangular coordinates.  N-
point iFFT is performed on 
each section, and the result is 
Hamming windowed. 
 
B) The resulting sections are 
each offset accordingly 
(Offset(k) = Hop*k) and 
summed in order to produce 
the final output. 
 
C) Except for the first and 
last group of samples of the 
final output, each sample is 
the sum of four values.  The 
first and last N-Hop samples 
(384 in our case) do not have 
enough overlapping iFFTs to 
sum similarly, thus they are 
inaccurately scaled and 
useless. 
 
 
 
 
 

Figure 6: ISTFT Example 
 
t(0) depends on original signal values of indexes {0 through 511} 
t(1) depends on original signal values of indexes {0 through 629} 
t(2) depends on original signal values of indexes {128 through 767} 
t(3) depends on original signal values of indexes {256 through 895} 
t(4) depends on original signal values of indexes {384 through 1023} 
t(5) depends on original signal values of indexes {512 through 1151} 
t(6) depends on original signal values of indexes {512 through 1151} 
Values summed between the beginning and end of t(4) are accurate, therefore the original 
signal was accurately solved for indexes {384 through 1023}, leaving unsolved values of 
size 384 at the beginning of the input and the of size 128 at the end of the input. 
  
Note: While deriving this algorithm earlier, we wrongly found that the number of useless 
values on each side of the output was equal to N.  We did not find our error until after the 
presentation and demo. 

Inverse Short Time Fourier Transform Example 
R = 0.8, N = 512, Hop = 128… 7 iterations 
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3.2.1 Page Alignment 
 

In Dan Ellis’s MatLab Phase Vocoder algorithm, the STFT for the entire song is 
executed at once.  This causes only two cases of inaccurate output values (edge errors).  
Since these values are at the beginning and end of the song, which normally contains 
silence or near silence, the effect of these errors is negligible. 
In our DSK implementation, we perform the STFT of multiple input pages (splices) of 
the song.  This causes the edge errors to occur multiple times in the output.  In addition to 
this, all the pages must be concatenated together smoothly.  This requires the end of one 
page to align perfectly with the beginning of the next page.  If the pages are not aligned 
properly, there will be audible distortion in the output. 
 
Note: The following derivation is INCORRECT.  This is what we were using at the time 
of the presentation and demo.  The equations were found through using multiple values of 
R, finding their appropriate values, and then constructing equations which solved for all 
values of R. 
 
This derivation uses N = 512 and Hop = 128, Scaling factor = R. 

Assuming the output of each page has 512 useless values in the beginning and 
512+384=896 in the end, we must pad the input with more values accordingly.  In order 
to solve how much padding is necessary, we will start from the output. 
 The useless values in the output correspond to the first and last 4 columns of the 
new STFT.  The original STFT values that correspond to the useless output depend on R 
as such: 

Front columns floor(4*R) and lower are not solved for correctly 
End columns ceil((numCols – 5)*R) and higher are not solved for correctly 

 The useless columns in the original STFT matrix correspond to unsolved indexes 
in the original signal.  This correspondence does not depend on R besides the column 
values: 

Front indexes Hop*floor(4*R) - 1 and lower are not solved for correctly 
End indexes Hop*ceil((numCols – 5)*R) and higher are not solved for correctly 

 This results in Hop*floor(4*R) error-prone values the beginning of the page and 
Hop*floor(4*R) + 384 error-prone values in the end of the page.  We chose to have a 
constant 2048 non-error-prone values between these values.  To account for the error-
prone values, each input page is offset from its neighbor by only 2048, rather than entire 
page length. 

 
Note: We have not yet derived an accurate padding scheme.  Some things we know are 
incorrect in our derivation is the assumption of useless values in the output and the 
conversion of the highest accurate original STFT column and the highest non-error-
prone index. 
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4  Obstacles Encountered 
 
During the course of development we run into a variety of issues which hindered 

the successful transition of the phase vocoder from C code on the PC to C code on the 
DSK. The main obstacles that we encountered related to storage, speed, paging, and code 
optimization. 

4.1  Internal Memory Usage Issues 
 
In order to ensure that memory accesses would not bog down our computations, 

we determined that all of the arrays needed for the phase vocoder needed to be on the 
DSK in internal memory. However, during the initial phases of the transition between PC 
code and DSK code, we found out that there was not enough internal memory to store the 
arrays needed for the phase vocoder. Our previous estimates for storage requirements 
were incorrect because we did not take into account additional internal memory storage 
that is not a product of the phase vocoder.  
 

Storage elements that we did not take into account were the code size (.text) and 
DSK network code from net.lib (.nettextfast and .nettextslow). The code size for our 
project ended up taking approximately 66,656 bytes and code from net.lib 54,944 bytes. 
Refer to Table x for more information. Thus code alone took up 121,600 bytes and since 
the DSK has only about 260 KB of internal memory this left only 103,500 bytes for our 
phase vocoder arrays (after taking into account all other memory usages). In order to 
maximize the amount of storage available for the algorithm, we had to evict sections of 
code from internal memory and place them in external memory. We tried to place .text in 
external memory but that drastically increased execution time. Because the PC->DSK 
transfer is only done in the beginning before the start of the algorithm, we moved net.lib 
from internal to external memory as this would not impact the execution time of the 
phase vocoder. Although this freed up much needed memory, everything still did not fit. 
We then proceeded to reduce the page size from 3048 samples to 2048 samples. Thus we 
finally had the room necessary to perform the phase vocoder entirely in internal memory. 
Refer to Table x+1 for additional information about page size and total memory needed. 
 
 The scaling factor is directly proportional to the amount of memory needed to 
store the phase vocoder arrays. As scaling factor increases, the amount of memory 
needed also increases. This is because additional padding is needed during paging to 
compensate for the unusable portions of the output at the beginning and at the end. For 
more information about the phase vocoder please refer to the phase vocoder section of 
this document. The code that we have written can accommodate a song with a maximum 
scaling factor of 3.0.
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Latest Memory Configuration (Bytes) 
 

Name Length Used 
ONCHIP_RAM 262,144 226,250 

SDRAM 16,777,216 10,540,704 
 

Memory Descriptor Length OnChip? 
.nettextfast 30,112 N 
.nettextslow 24,832 N 

.sysmem 10,485,760 N 
.text 66,656 Y 

.const 1,374 Y 
.cinit 2,484 Y 

.switch 36 Y 
.cio 288 Y 

.stack 32,768 Y 
.far 122,644 Y 

 
Table 2: DSK memory configuration excerpt from map file (in bytes) 

Note: the DSK places all global and static variables in .far 
 
 
 

Memory Usage for Arrays 
 

Memory Used (Bytes) Page Size (elements) 
164,372 3048 
111,500 2048 

 
Table 3: Memory Used and Page Size Correlation 
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Figure 7: Libraries Used 

4.2  Speed Issues and Estimates 
 

We ran into a major problem after handling our storage issues. We found that 
even with all of our arrays stored in internal memory the DSK still did not run the phase 
vocoder algorithm correctly for our real-time implementation. More specifically, the 
buffer storing the processed contents was being played twice by the codec. This implies 
that the output buffer was not getting refreshed with processed data quickly enough. After 
careful analysis, we found that the initial timing estimates computed for the phase 
vocoder algorithm were inaccurate . We did not account for the processing time it would 
take to execute math functions such as cosf, powf, sinf and atan2f. In addition, the paging 
process introduced additional code and made computation slower than was estimated. 
Another important variable that we did not account for was the fact that the arguments for 
fftn.c (the fft function used in the C implementation of the phase vocoder algorithm on 
the PC) were very different from the fft functions we used on the DSK. The fft functions 
used on the DSK needed real and imaginary data to be interleaved into one array whereas 
fftn.c took separate arrays for real and imaginary data. Thus, a process of interleaving and 
de-interleaving data had to be introduced making our code longer and adding additional 
computations / memory accesses.  
 Out of all of the new code that was introduced into the DSK phase vocoder, the 
critical elements were found to be loops containing math functions. These math functions 
increased the cycle time for each function considerably. The most notable computation 
that took the longest amount of time was the calculation of the magnitude and phase 
during the STFT part of the phase vocoder algorithm. This calculation took 3 powf calls 
and one tan2f call for each pair of output from the FFT. During each paging process the 
FFT was called 13 times and for each FFT output, 256 magnitude and phase calculations 
had to be performed. 
 The following is a delineation of how the speed estimates were calculated. Refer 
to table 1 for values of variables which were helpful in estimating cycle times. Refer to 
figure 1 for average speeds of various math functions on the DSK. 
 

Page Size: 2048 
Number of Rows: 257 
Number of Columns: 13 

 
Table 4: Values of variables in the phase vocoder algorithm 
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Figure 8: Cycle times for various math functions on the DSK 

Note: rts6701 was used, not FastRTS 
 

Source: TMS320C67x FastRTS Library Programmer’s Reference 
http://focus.ti.com.cn/cn/lit/ug/spru100a/spru100a.pdf 
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4.2.1 STFT Estimate in Cycles 
The major components of the STFT part of the phase vocoder algorithm were the FFT 
and the magnitude and phase computations. 
 
Time to compute magnitude and phase = (3*(time for powf) + (time for atan2f))*number 
of rows 
Total = (Time for FFT + Time to compute magnitude and phase) * number of columns 
 

FFT Compute 
magnitude and 
phase 

Number of 
Columns 

Total Cycles 

108000 660000 13 9984000 
 

Table 5: STFT Estimate 
 

4.2.2 ISTFT Estimate in Cycles 
The major components of the ISTFT function were the computation of real and 
imaginary components from magnitude and phase components, the IFFT, and the 
filtering of very small outputs from the IFFT. The reason very small outputs must be 
filtered (anything smaller than 10^-6 was set to 0) from the IFFT is because the IFFT is 
only accurate to a certain degree. 
 
“The function is accurate to about 130dB of signal to noise ratio to the DFT function 
below:” 
 (DSPF_sp_ifftSPxSP, line 76)      
 
 Values which are very close to 0 represent errors in the IFFT algorithm and must be 
filtered out for risk of corrupting of other values. 
 
Time to compute real and imaginary = (time for cosf + time for sinf) * number of rows 
Time to filter small numbers = (time for powf + time for fabs) * FFT Size 
Total = (Time to compute real and imaginary + time to filter small numbers + Time for 
IFFT) * number of columns 
 
IFFT Compute real 

and imaginary 
Filter Number of 

Columns 
Total Cycles 

108000 102000 348000 13 7254000 
Table 6: ISTFT Estimate 
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4.2.3 PVSample Estimate in Cycles 
Computing the timing estimate for PVSample is quite difficult. The floor function 

was used 5 times in a loop that iterates 6144 times. In addition, much of the computation 
inside PVSample involved floating point multiplication which usually takes more than 
one cycle, and the number of cycles it will take is hard to predict. This number is not 
known and can fluctuate depending on the values of each factor in the multiply. 
 

4.3 Effects on Sampling Rate and FFT size 
Based on our initial calculations, we decided the DSK could support our 

algorithm using a sampling rate of 22.050kHz and 1024-point FFTs. We wanted to use 
TI’s fast radix-4 ASM FFT code, but this code is not-interruptible and therefore 
incompatible with codec playback. We acquired a newer version of the same code which 
is interrupt tolerant, but disabling interrupts before FFTs and then enabling interrupts 
afterwards causing significant lags in playback. We finally used mixed-radix C code 
which is fully interruptible but slow for computations at 22.050kHz. According to the 
FFT documentation, the 512 ASM FFT should take about 10,000 cycles, but our C FFT 
function took about 95,000 samples (measured with profiling). We did not profile the 
ASM FFT, so we are not sure if the measured discrepancy would be this large. We then 
decreased the sampling rate to 16kHz, which improved the output quality slightly. We 
also changed our FFT size from 1024 to 512 because tests in MATLAB revealed that a 
higher FFT size (2048 at 22.050kHz and 1024 at 16kHz) introduced a reverb-like effect 
which is an unwanted distortion. Unfortunately, after these modifications, processing and 
playback at 16kHz was still slow, and the output sounded quite choppy and delayed (even 
with all significant variables crammed into internal memory). We then profiled our phase 
vocoder function (see table below) and determined that each page (1024 samples) was 
taking about .0991 seconds to process, which is a much longer than the time required to 
play one page (1024 samples at 16kHz = .064 seconds). Based on these calculations, we 
think our phase vocoder could work in real-time if the sampling rate were reduced to 
8kHz since 1024 samples at 8kHz = .128 seconds, which is greater than the .0991 second 
computation time. We tried to make this adjustment, but did not have time to complete 
the changes and debugging. 
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4.3.1 Observed Calculations 
Profiling with 16kHz sampling rate and minimal optimization 
 
Functions within phase vocoder Cycles per page Seconds per page 

STFT 11,468,669 .0505 

pvsample 2,778,692 .0122 

ISTFT 8,281,685 .0364 

   

Total 22,529,046 .0991 

Table 7: Observed Cycles 

4.4  Optimizations 
At the time of the demo we used optimization level 01 (register optimization), 

which is the highest opt level possible while using interrupts, because we had all of our 
code lumped into one file. We hypothesized that a higher level of optimization would 
improve real-time performance, but did not get to test this until after the demo (see 
Additional Work section). In order to minimize some redundant computations we pre-
processed a few unchanging variables like Hamming windows, the bit reversal table and 
twiddle factors for the FFT. During profiling we realized that our math functions, like 
arctanf, cosf, and powf, take a long time and slow down our code. However we also did 
not get to work on improving this (see Future Work section). 
 

4.5 Page Alignment 
 The derivation of the input and output page indexes must be improved in order to 
have a fully accurate output.  Our derivation found in Section 4.3.1 is known to be 
incorrect.  In order to find the accurate indexes and values, we could preserve the entire 
iSTFTs of each page and compare them to the proper output in MatLab.  This process 
simply requires time and effort.  We believe it would be possible to derive the correct 
page alignment equations given more time. 
 Setting the STFT hop size equal to the FFT size might also solve the page 
alignment problem.  This will eliminate the issue of insufficient overlap on the edges of 
each page.  With this, every output value would be accurate and the input pages would 
not need any padding.  A foreseeable problem with this strategy is that the original STFT 
would not detect as much transient information with such a large hop size.  This could be 
tested in Matlab and researched in IEEE papers on STFTs and iSTFTs. 
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5 Results/Demo 
 

5.1 Signal Flow 
 

Below is an overview of our system and the dataflow between the PC and the 
DSK. Basically, the user either selects two input songs to beatmatch or selects one input 
song and a time scaling factor. For example, the user can pick a song and specify a 
scaling factor of 2 which indicates a desired output that is twice as fast as the original 
song. The input song, or song to be scaled is then transferred to the DSK and stored in 
external memory. Then chunks, or pages, of the song are paged into internal memory, 
processed with our phase vocoder, and played out through the codec while the next page 
is brought in and processed. Since we did not get our phase vocoder computations fast 
enough for real-time playback through the codec, we added the capability to send each 
processed paged back to the PC. Once the whole song is processed, all the pages are 
concatenated on the PC side, and the compiled output song can be played in MATLAB or 
another media player. In summary, the DSK stores the input song, handles paging, 
processes each page, and finally sends each processed block to the codec and to the PC. 
The PC read in the input files, performs the beat detection algorithm, hosts the GUI, 
sends the song, user inputs, and bpm to the DSK, and finally concatenates the DSK 
output chunks to create the final output song.  
 

 
 

Figure 9: System Diagram 
 
 

PC Audio Playback 
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Figure 10: DSK and PC Data Flow 

5.2  Database 
 
Our database is segments of recorded music, wav files specifically. We planned to rip 
songs from various Billboard CD collections, but ended up using wav files from Sony 
Music website (pop and r&b songs), and converting them to 16kHz in MATLAB. For 
beat synchronization, we also assume that the song has a static tempo, which is generally 
true for pop music, but definitely not for classical music. 
 

5.3 Demo: what worked 
 
For our demo, the user was able to select a file, and select a time-scaling factor for the 
input file in a slider in the GUI. Then the beat is detected, the song is processed, the 
output wav file is created from the output pages sent by the DSK, and the output is read 
in and played using MATLAB. As we mentioned above, we were not able to play the 
output in real-time from the DSK. Because of this, we were also unable to create a 
playback slider for the user to jump forward or backward in the song. Also, during the 
demo, we did not beat match two input files, but modifying our demo procedure for this 
is trivial.  
 
To evaluate the results of the phase vocoder, beat detection can be called on the output of 
the phase vocoder to verify the that new bpm is the product of the selected time scaling 

 
7b. Send processed chunk to PC 
PC concatenates chunks for 
continuous play back 
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factor and the original bpm. We also plot spectrograms in MATLAB of the original 
signal, the output with a scaling factor of 1, and the output with a scaling factor of 2. In 
the plots below, all song segments are the same length but the third signal is twice as fast 
as the first two and therefore looks compressed. 
 

 
Figure 11: Original Spectrogram 



18-551: Group 2, Fall 2008 Ultimate Dance Party 

Page 26 of 26 

 
Figure 12: Spectrogram with r = 1 

 
Figure 13: Spectrogram with r = 2
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5.4 GUI 
 
 Since a major part of the Demo would involve the user interaction with the GUI, 
copious amounts of effort was poured into the development of a Graphical User Interface 
that would be simple yet effective. Also, since beat detection was done on the PC and 
was already implemented in MATLAB, we decided to use the MATLAB GUI editor 
(guide). In order to transfer a song from MATLAB to the DSK, MATLAB’s MEX library 
was invoked so that MATLAB would be able to pass data back and forth from C code 
written on the PC. This involved researching the various intricacies that revolved around 
writing C code that can interface with MATLAB. This was not a trivial task. See the 
references section for a helpful website on using the MEX library in MATLAB. Much 
effort went into providing the user with a GUI that would execute tasks autonomously 
without manual help from the user (such as manually running separate C code). 
 
The main GUI screen is as follows. 
 

 
 

Figure 14: Main GUI Screen

Result of beat detection 

Acceptable scaling values 
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The GUI interfaces with MATLAB code on beat detection to compute the BPM of any 
wave file selected via a browse button. In addition, since beat detection can take 
anywhere from 5 to 10 seconds per song, a progress bar was added to the GUI to inform 
the user what the PC is doing.  This progress bar not only computes percent done but also 
time left. 
 

 
Figure 15: Progress Bar for Beat Detection 

 
Dialog boxes were created and used for user confirmation. Since DSK processing can 
take anywhere from 10 to 30 seconds, it is necessary for the user to be absolute sure that 
they are ready to begin the phase vocoder progress on the DSK or risk losing their 
valuable time. In addition, entertainment was provided for the user to look at while the 
DSK is processing the song so that the user does not become overwhelmed with 
boredom. This entertainment came in the form of a popup playing a movie of a popular 
dancing banana within MATLAB. 
 

 
Figure 16: Dialog box for sending song to DSK 

 

 
Figure 17: Entertainment while phase vocoder is processing 
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6 Additional Work 
 

After the demo we did some additional optimizations and calculations to try to 
address some of the issues we had not completed by the time of the demo. In an effort to 
speed up the calculation time for each page or section of the input song, we separated our 
code into a main function, which incorporates the PC to DSK transfers and the Codec 
interrupts, and a phase vocoder file which includes all of the phase vocoder calculations 
(FFTs, interpolation etc). We then optimized the phase vocoder file and FFT code at the 
highest level (File optimization –o3) which we were not able to do previously on the 
entire file because of the interrupts. This resulted in a slight improvement, .084 seconds 
(see detailed profiling table below) as opposed to .099 seconds. But, since the time 
needed to play this chunk of audio (1024 samples at 16kHz) is .064 seconds, this still 
fails to compute fast enough to play each segment in real time. 
 
Profiling with 16kHz sampling rate and maximal optimization 
 
Functions within phase vocoder Cycles per page Seconds per page 

STFT 10,310,245 .0454 

pvsample 2,722,604 .0120 

ISTFT 6,926,832 .0305 

   

Total 19,959,681 .0879 

  
Table 8: Cycles after Optimization
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7 Schedule/Who Did What 
 
Adapting /debugging phase vocoder for DSK: David, Yang, Tina 
Paging from external to internal memory: David, Yang, Tina 
Set up audio playback through codec: Tina, David 
Implementations of Radix-2 FFT in C: David, Yang 
Memory manipulations: David, Yang, Tina 
Sending processed chunks to PC: Yang 
Page alignment: David 
Computation estimations/ FS modifications: Tina 
Developed GUI: Yang 
System tests: David, Yang, Tina 
Profiling: Yang, Tina 
 
        
          
Step Description Duration End Date Completed? 

1 

Implement beat detection and time 
expansion/compression via the phase 
vocoder in MATLAB. 0.5 weeks 10/9/2008 Yes 

2 

Test the MATLAB implementation and 
tweak the code if necessary to ensure that 
the algorithms work as intended. 0.5 weeks 10/12/2008 Yes 

3a 
Figure out how to read and parse a wave 
file in C and transfer it to the DSK 4 weeks 11/10/2008 Yes 

3b 
Translate the phase vocoder algorithm for 
use on the PC in C. 4 weeks 11/10/2008 Yes 

3c 

Compute maximum sample rate and 
chunk size for real time implementation 
on the DSK 4 weeks 11/10/2008 Yes 

4 Transfer song from PC to DSK 0.5 weeks 11/10/2008 Yes 

5 
Convert C code for the phase vocoder for 
use on the DSK and test 2 weeks 11/24/2008 Yes 

6 GUI Development on the PC 1 week 11/30/2008 Yes 
7 System Test 1 day 12/2/2008 Yes 
          
  Total Duration:  ~8 weeks + Thanksgiving Break 
 

Table 9: Schedule 
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8 Future Work 
 

8.1 Using FastRTS 
A major improvement that could be implemented to speed up the processing on the DSK 
is the usage of FastRTS math functions instead of the regular rts6701 math functions. 
From figure 1 it can be seen that FastRTS can offer significant performance 
improvements, especially in areas where math functions are the major bottleneck. This is 
the case in our STFT and ISTFT functions. 
 

8.1.1 Speed Estimates for STFT using FastRTS 
Time to compute magnitude and phase = (3*(time for powf) + (time for atan2f))*number 
of rows 
Total = (Time for FFT + Time to compute magnitude and phase) * number of columns 
 

FFT Compute 
magnitude and 
phase 

Number of 
Columns 

Total Cycles 

108,000 195,063 13 3,939,819 
 

Table 10: STFT Estimate using FastRTS 
 

8.1.2 ISTFT Estimate in Cycles 
Time to compute real and imaginary = (time for cosf + time for sinf) * number of rows 
Time to filter small numbers = (time for powf + time for fabs) * FFT Size 
Total = (Time to compute real and imaginary + time to filter small numbers + Time for 
IFFT) * number of columns 
 
IFFT Compute real 

and imaginary 
Filter Number of 

Columns 
Total Cycles 

108,000 38,293 114,688 13 3,392,753 
 

Table 11: ISTFT Estimate using FastRTS
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8.1.3 Total Estimates for Phase Vocoder 
 
Functions 
within phase 
vocoder 

Cycles per page 
without Fast 
RTS 

Cycles per page with 
FastRTS 

Seconds per page with 
FastRTS 

STFT 10,310,245 3,939,819 .0173 

pvsample 2,722,604 2,722,704 .0120 

ISTFT 6,926,832 3,392,753 .0149 

    

Total 19,959,681 10,055,276 .0442 
Table 12: Total Estimates for Phase Vocoder using FastRTS 

 
As can be seen from Table 4, the usage of FastRTS should enable the phase vocoder 
algorithm to compute quickly enough so that the codec can play the song correctly. 
 

8.2  Get 8kHz codec playback to work 
We felt that we were very close to implementing the phase vocoder in real-time, since 

it worked properly but was simply too slow for 16kHz. We tried to simply change the 
sampling rate set for the codec, since the sampling rate does not affect anything else in 
our code, like variable sizes or FFT parameters, but the codec output sounded static-y and 
we are not sure what the problem is. If we had a little more time, we would finish 
debugging the codec setup and any other adjustments for playback at 8kHz. 

8.3  Workout page alignment 
See Section 4.3.1 about page alignment in the phase vocoder explanation. 
 The derivation of the input and output page indexes must be improved in order to 
have a fully accurate output.  Our derivation found in 4.3.1 is known to be incorrect.  In 
order to find the accurate indexes and values, we could preserve the entire iSTFTs of 
each page and compare them to the proper output in MatLab.  This process simply 
requires time and effort.  We believe it would be possible to derive the correct page 
alignment equations given more time. 
 The page alignment problem might also be solved by setting the STFT hop size 
equal to the FFT size.  This will eliminate the problem of insufficient overlap on the 
edges of each page.  With this, every output value would be accurate and the input pages 
would not need any padding.  A foreseeable problem with this strategy is that the original 
STFT would not detect as much transient information with such a large hop size.  This 
could be tested in MatLab and researched in IEEE papers on STFTs and iSTFTs. 
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9 Additional References 
 
• MATLAB Code for phase vocoder 

– A Phase Vocoder in MatLab 
Ellis 
Columbia University 
http://labrosa.ee.columbia.edu/MatLab/pvoc/ 

• MATLAB Code for beat detection algorithm 
– Beat This: A Beat Synchronization Project 

Cheng, Nazer, Uppuluri, Verret 
Rice University 
http://www.owlnet.rice.edu/~elec301/Projects01/beat_sync/beatalgo.html 

• FFT Code for phase vocoder testing on PC Side 
– From 18551 Homework 2 

• ASM Code for FFT Routine on the DSK 
– Lab 2 (Texas Instruments) 
– DSPF_sp_cfftr4_dif -- Single Precision floating point Decimation in  

Frequency radix-4 FFT with complex input      
• C Code for FFT Routine on the DSK 

– Texas Instruments 
– DSPF_sp_fftSPxSP -- Single Precision floating point mixed radix                

forwards FFT with complex input 
– DSPF_sp_ifftSPxSP -- Single Precision floating point mixed radix                

inverse FFT with complex input 
• New Phase Vocoder Techniques for Pitch Shifting, Harmonizing and 

Other Exotic Effects 
– Jean Laroche and Mark Dolson  
– http://www.ee.columbia.edu/~dpwe/papers/LaroD99-pvoc.pdf  
– Uses very similar phase vocoder algorithm, but for pitch detection/shifting 

instead of time-scaling. Also suggests desirable parameters such as 
amount of overlap. However, Ellis documentation is more useful and ideal 
for our purposes 

– Other IEEE resources were found to be overly convoluted and not aimed 
towards real-time time-scaling for music.  

• Using the MEX Library in MATLAB 
– Provides examples of how to write C code so that MATLAB can call a C 

file like it calls a function 
– Supports the passing of arguments/data from MATLAB to C and vice 

versa. 
– https://people.scs.fsu.edu/~burkardt/m_src/MatLab_c/MatLab_c.html 
 

 


