

ULTIMATE DANCE PARTY

Final Report
18-551 Fall 2008

Group 2

Yang Zhou (yangzhou@andrew.cmu.edu)
Tina Milo (cmilo@andrew.cmu.edu)

David Tuzman (dtuzman@andrew.cmu.edu)

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 2 of 2

TABLE OF CONTENTS

1 Project Explanation...4

1.1 Problem ...4
1.2 Solution ...4
1.3 Initial Goals ...5

2 Prior Projects ...6
2.1 One Voice: Vocal Harmony Generator Fall 2006, Group 9................................6
2.2 Look Who’s Talking Fall 2007, Group 2 ..7

3 Algorithms..7
3.1 Beat Detection ...7
3.2 Phase Vocoder ...11

4 Obstacles Encountered..16
4.1 Internal Memory Usage Issues ..16
4.2 Speed Issues and Estimates ...18
4.3 Effects on Sampling Rate and FFT size ..21
4.4 Optimizations ..22
4.5 Page Alignment ...22

5 Results/Demo ...23
5.1 Signal Flow..23
5.2 Database ..24
5.3 Demo: what worked ..24
5.4 GUI..27

6 Additional Work..29
7 Schedule/Who Did What...30
8 Future Work ..31

8.1 Using FastRTS ..31
8.2 Get 8kHz codec playback to work ..32
8.3 Workout page alignment ...32

9 Additional References ...33

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 3 of 3

TABLE OF FIGURES

Figure 1: Initial Beat Detection Diagram ..8
Figure 2: Final Beat Detection Diagram ...10
Figure 3: STFT Example...11
Figure 4: Magnitude Interpolation ..12
Figure 5: Phase Accumulation ..13
Figure 6: ISTFT Example..14
Figure 7: Libraries Used..18
Figure 8: Cycle times for various math functions on the DSK ...19
Figure 9: System Diagram...23
Figure 10: DSK and PC Data Flow ...24
Figure 11: Original Spectrogram...25
Figure 12: Spectrogram with r = 1 ..26
Figure 13: Spectrogram with r = 2 ..26
Figure 14: Main GUI Screen ...27
Figure 15: Progress Bar for Beat Detection ..28
Figure 16: Dialog box for sending song to DSK...28
Figure 17: Entertainment while phase vocoder is processing ...28

Table 1: Beat Detection versus Pitch Detection..6
Table 2: DSK memory configuration excerpt from map file (in bytes)17
Table 3: Memory Used and Page Size Correlation ...17
Table 4: Values of variables in the phase vocoder algorithm ...18
Table 5: STFT Estimate ..20
Table 6: ISTFT Estimate ...20
Table 7: Observed Cycles..22
Table 8: Cycles after Optimization ...29
Table 9: Schedule ..30
Table 10: STFT Estimate using FastRTS..31
Table 11: ISTFT Estimate using FastRTS ..31
Table 12: Total Estimates for Phase Vocoder using FastRTS ..32

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 4 of 4

1 Project Explanation

1.1 Problem
The problem we are addressing is called beat synchronization. Beat

synchronization refers to the process of first detecting the number of beats per minute
(also known as the tempo) of a given recorded song or clip of music, and then modifying
that tempo to match another desired tempo. However, simply altering the playback speed
introduces unwanted effects in pitch (think of playing a 33 rpm vinyl record at 45 rpm),
and it is therefore desirable to perform beat synchronization without affecting the
frequency characteristics of the original song. Beat synchronization is common and
extremely useful in modern music processing. For example there are many software-
based products (such as Ableton Live or Digidesign “X-form” plug-in) that perform beat
synchronization for music playback and computer music composition, but not any well-
known hardware implementations. Other possible applications include slowing down
speech (while otherwise minimally effecting the signal) for increased intelligibility, and,
of course, the ultimate dance party, in which many songs can be normalized to one tempo
and then strung together to provide maximum grooveability.

1.2 Solution
Our project aims to automate the beat synchronization process. In other words, an

input song can be manipulated to have a desired tempo, or two input songs can be
manipulated to have the same tempo. Most modern popular music has envelope peaks
repeated in time with the tempo of the song. Using this assumption, we find peak patterns
in the input data (the song). In order to separate different instruments in the recording,
we analyze the input song using filter banks and search for patterns within groups of
frequencies (loosely distinguishing drums/guitar/bass/vocals). We then perform time-
scaling to change the bpm. Our project not only performs automatic beat synchronization
of two songs, but also allows for user-defined time scaling of one input song.

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 5 of 5

1.3 Initial Goals

The signal to be processed will be professionally recorded music that has a static
tempo. We will only analyze 2 seconds from the middle of the song for beat detection.
The sampling frequency should optimally be 44.1 kHz to capture the entire bandwidth of
the audio range: 20 Hz to 20 kHz. After initial calculations we chose an acceptable
sampling rate of 22.050 kHz, however, we later had to reduce the sampling rate to
improve efficiency. This will be detailed in the “Computations” section.

 For the beat detection component of our project, we will implement the algorithm
developed in “Beat This”1, a project from Rice University. “Beat This” utilizes functions
in MATLAB in order to detect a beat in a song. The MATLAB code for the beat
detection algorithm is published and is tailored to run on a PC. We plan to combine the
algorithm developed in this project with an algorithm constructed using wavelets2. We
will first implement our combined algorithm in MATLAB code and then develop C code.
In addition, we will need to implement code to change the tempo of a song, while
maintaining its pitch, to match the beat detected earlier. We will use a Phase Vocoder3
algorithm to implement this change.

The database that the DSK will use will be a group of 50 songs, residing on the

PC. The DSK will take two songs as inputs: one song will have the target beat and the
other song will be changed to have the beat as the first. We will perform beat detection,
apply the phase vocoder, and the output from the DSK will be the new song playing in
real time with a changed beat.

1 http://www.owlnet.rice.edu/~elec301/Projects01/beat_sync/beatalgo.html
2 http://soundlab.cs.princeton.edu/publications/2001_amta_aadwt.pdf
3 http://www.panix.com/~jens/pvoc‐dolson.par

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 6 of 6

2 Prior Projects

2.1 One Voice: Vocal Harmony Generator Fall 2006, Group 9
This project focused on pitch detection and pitch scaling, which is similar to our

focus of beat detection and time scaling. Their pitch detection algorithm started similarly
by attempting to discover the periodicity of the signal through autocorrelation. Our
strategy first split the signal into multiple filter banks and analyzed them separately since
our input is composed of multiple fundamental tones; One Voice separated the unvoiced
and voiced parts of speech and only analyzed the voiced parts. Both of our initial
algorithms used multiple smoothing filters followed by autocorrelation. After this, both
of our algorithms attempted to detect the periodicity of the signal (in their project
periodicity = pitch; in our project periodicity = tempo). Both of our projects found the
autocorrelation to be difficult to adapt to a robust algorithm applicable to various signals
without individual tweaking for each, and we both decided to choose a varying comb
filter in replacement of the autocorrelation (Carpentier algorithm).

The pitch scaling part of One Voice also is similar to the time scaling (phase
vocoder) part of our project. Their algorithm manually detects peaks in the time domain
throughout the song (wavelength follows pitch) and synthesizes them into a new signal
through overlap-add, mapping detected peaks to new peak positions to scale the pitch
(Pitch Synchronous OverLap-Add). Since our input signal is composed of many more
frequencies, we use an STFT to estimate the magnitudes of multiple (N/2) frequencies.
This estimation is compensated in our phase reconstruction, which also suppresses the
noise caused by overlap-add process of PSOLA.

In short, One Voice pitch scales strictly in the time domain, precisely detecting
single periodicities, and constructing result through overlap-add; Ultimate Dance Party
pitch/time scales in a frequency domain (STFT), approximating multiple periodicities,
and reconstructing through magnitude interpolation and phase accumulation.

2.1.1 Beat detection vs. pitch detection
Beat detection and pitch detection are similar processes, since they both detect the

frequency of a signal. The human ear interprets audio as a beat (impulse) or a Tone
depending on the signal’s frequency, thus determining the range of frequencies each
algorithm will find:

 Beat Detection Pitch Detection
What your ear hears: Beat / Impulse Tone
Range in Hz (cyc/sec) 0 – 20 20 – 20,000
Range in BPM (cyc/min) 0 – 1,200 1,200 – 1,200,000

Table 1: Beat Detection versus Pitch Detection

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 7 of 7

2.2 Look Who’s Talking Fall 2007, Group 2
This project’s aim was to detect certain words spoken from a voice source. The

project involved training through Dynamic Time Warping to account for different speeds
of speech. Through completing their project, they discovered Dan Ellis’s A Phase
Vocoder in MatLab and commented that it is a superior algorithm for time shifting due to
its clever way of magnitude interpolation. We have taken their advice and used his
algorithm as a starting point in our project.

3 Algorithms

3.1 Beat Detection

3.1.1 Initial Desired Beat Detection Algorithm

Our initial beat detection algorithm works as follows: a 2 second segment is
extracted from the input song, and passed through a filter bank so that different
instrument groups (bass, treble etc) are divided into frequency bands and can therefore be
analyzed separately. Then for each frequency band, the signal is smoothed with a
Hamming window to extract the envelope of the signal, and then differentiated to
emphasize the change in the envelope. Then half-wave rectification is performed and the
resulting signals are summed together. The goal of this is to obtain a signal with more
salient beats so that the autocorrelation of this signal will produce distinct periodic peaks
corresponding to each beat. We will then calculate the tempo based on the period of these
peaks, repeat the whole process for other 2 second segments, and average the calculated
tempos to obtain our final detected tempo.

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 8 of 8

Figure 1: Initial Beat Detection Diagram

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 9 of 9

3.1.2 Final “Beat This” Algorithm

The beat detection algorithm we used in the end (the “Beat This” algorithm)
works the same way except for the last step. Instead of adding the processed (filtered,
windowed, differentiated, rectified) signals, each frequency banded signal is convolved
with a comb filter, the energy of the filtered signals is computed and added across the
frequency bands. This process is then repeated for different comb filters that span a bpm
range specified by the user. The bpm detected is the periodicity of the comb filter that
yields the highest energy.

We had initially planned on adapting the “Beat This” algorithm to improve
efficiency for optimal implementation on the DSK. The main difference was replacing
the last step of the “Beat This” algorithm (a comb filter) with an autocorrelation. The
comb filter appears to be quite inefficient because a separate filter is applied to the
processed signal for every bpm (default range is 60-240 bpm with integer increments, ie
180 iterations!) before calculating the energy of the filtered signal and choosing the comb
filter period that yielded the highest resulting energy as the detected bpm. In MATLAB
the first steps of the algorithm (filterbank, differentiating etc) take about .2 seconds, while
the last step takes almost 9 seconds, which is almost 5 times the length of the segment
being analyzed. Our idea was the replace the 180 comb filters with 1 autocorrelation of
processed signal summed across frequency bands. Periodic peaks in the autocorrelation
would indicate the periodicity of the segment, ie the bpm we are looking for. However,
robustly implementing this in MATLAB was not as simple as it seemed. The peak
heights and smoothness of the curve were too inconsistent to develop a simple peak
detection algorithm without making modifications for each song. We therefore returned
to just implementing the “Beat This” algorithm, which, although slow, was robust and
accurate.

We then began to translate the “Beat This” MATLAB code to C, hoping that the
comb filter would not cause too much of a delay. However there was no improvement in
computation time for the bpm of a 2 second segment. Since we will only be calculating
the bpm once for each input song, prior to calling the phase vocoder (which will be more
than enough work for the DSK), we decided to perform beat detection “off-line” by
calling the MATLAB code before beginning the time-scaling on the DSK.

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 10 of 10

Figure 2: Final Beat Detection Diagram

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 11 of 11

3.2 Phase Vocoder
The Phase Vocoder algorithm
begins with a Short Time Fourier
Transform. This captures the
frequency spectrum as it changes
in time. In our implementation,
N = 512 and Hop = 128:

A) Take N-size sections of the
original signal. The start/end
points of each section are offset by
Hop. When Hop is smaller than N,
the STFT retains faster changes in
the frequency spectrum.

B) Multiply the each section by a
Hamming window in order to
suppress side lobes in the
frequency spectrum

C) Perform N-point FFT on each
of the windowed sections. The
magnitudes and phases are stored
in columns of separate matrixes.

In this way, progressing through a
column of the FFT (Mag or Phase)
matrix will relate to the FFT of the
original samples:
{Hop*Col#, Hop*Col# + N}
For N = 512, Hop = 128 (as we
use), and original signal length =
2048 (for example), the first few
columns represent:{0 through 511}
{128 through 639}
{256 through 767}
{384 through 895}
…and the last few columns:
{1152 through 1663}
{1280 through 1791}
{1408 through 1919}

Figure 3: STFT Example
{1536 through 2047}
Total Number of Columns = (length – N)/Hop + 1 = 13 Columns
Note: We choose “length” so that (length – N)/Hop is an integer

Short Time Fourier Transform Example
N = 512, Hop = 256… 3 iterations

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 12 of 12

Once the original signal is translated
into the frequency domain via STFT,
the Phase Vocoder builds a new set
of magnitude values based on a
scaled time array t(k).

A) Time array t(k) is computed from
scaling factor R where t(k) = R*k.
t(k) must never be greater than the
largest column index, so: t(k) is size
= floor((numCols-1)/R) + 1

B) The new magnitude matrix is
constructed using t(k) to scale
appropriate original magnitudes and
store into a new matrix.

For R = 0.8, continuing from STFT
example where numCols = 13:
t(k) = 0, 0.8, 1.6, … 10.4, 11.2, 12.0

t(k)size = 16

Figure 4: Magnitude Interpolation

The new magnitude columns will depend on values from the original signal indexes:
{0 through 511}
{0 through 639}
{128 through 767}
{256 through 895}
…
{1152 through 1791}
{1280 through 1919}
{1408 through 2047}
{1536 through 2047}

Note: This is where page alignment gets tricky. For each value of R, the new
magnitude/phase columns will correspond to different values of the original signal.

Magnitude Interpolation Example
R = 0.8… 4 iterations

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 13 of 13

In order to construct the new phase matrix, the Phase Vocoder first computes the
expected phase advance dphi(n) of each bin: dphi(n) = 2πHop*n / N. This is the phase
advance you would see from a sinusoid at the center frequency of a bin in an N point FFT
if you shifted the input window by Hop points. This is used to estimate the frequency of
a sinusoid that makes the phase difference observed in the original phase matrix.

Note: This is only necessary when the STFT and iSTFT have different Hop sizes. In our
implementation, the Hop size is constant. We did not realize this until the end of our
project. In the code, dphi(n) is simply added and then subtracted from the final phase,
rendering it pointless.

To start accumulating the phase, the phase of the first new column is set equal to the
phase of the old new column. Then, using the same bounds and t(k) as the Magnitude
Interpolation, the phase difference between respective original column is added to the
current phase values.

Figure 5: Phase Accumulation

The new STFT Phase columns depend on the same indexes from the original signal as the
new STFT Magnitude columns (refer to prior page).

Phase Accumulation Example
R = 1.2… 3 iterations

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 14 of 14

Finally, the iSTFT is performed:

A) The new phase and magnitude
values are converted in
rectangular coordinates. N-
point iFFT is performed on
each section, and the result is
Hamming windowed.

B) The resulting sections are
each offset accordingly
(Offset(k) = Hop*k) and
summed in order to produce
the final output.

C) Except for the first and
last group of samples of the
final output, each sample is
the sum of four values. The
first and last N-Hop samples
(384 in our case) do not have
enough overlapping iFFTs to
sum similarly, thus they are
inaccurately scaled and
useless.

Figure 6: ISTFT Example

t(0) depends on original signal values of indexes {0 through 511}
t(1) depends on original signal values of indexes {0 through 629}
t(2) depends on original signal values of indexes {128 through 767}
t(3) depends on original signal values of indexes {256 through 895}
t(4) depends on original signal values of indexes {384 through 1023}
t(5) depends on original signal values of indexes {512 through 1151}
t(6) depends on original signal values of indexes {512 through 1151}
Values summed between the beginning and end of t(4) are accurate, therefore the original
signal was accurately solved for indexes {384 through 1023}, leaving unsolved values of
size 384 at the beginning of the input and the of size 128 at the end of the input.

Note: While deriving this algorithm earlier, we wrongly found that the number of useless
values on each side of the output was equal to N. We did not find our error until after the
presentation and demo.

Inverse Short Time Fourier Transform Example
R = 0.8, N = 512, Hop = 128… 7 iterations

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 15 of 15

3.2.1 Page Alignment

In Dan Ellis’s MatLab Phase Vocoder algorithm, the STFT for the entire song is
executed at once. This causes only two cases of inaccurate output values (edge errors).
Since these values are at the beginning and end of the song, which normally contains
silence or near silence, the effect of these errors is negligible.
In our DSK implementation, we perform the STFT of multiple input pages (splices) of
the song. This causes the edge errors to occur multiple times in the output. In addition to
this, all the pages must be concatenated together smoothly. This requires the end of one
page to align perfectly with the beginning of the next page. If the pages are not aligned
properly, there will be audible distortion in the output.

Note: The following derivation is INCORRECT. This is what we were using at the time
of the presentation and demo. The equations were found through using multiple values of
R, finding their appropriate values, and then constructing equations which solved for all
values of R.

This derivation uses N = 512 and Hop = 128, Scaling factor = R.

Assuming the output of each page has 512 useless values in the beginning and
512+384=896 in the end, we must pad the input with more values accordingly. In order
to solve how much padding is necessary, we will start from the output.
 The useless values in the output correspond to the first and last 4 columns of the
new STFT. The original STFT values that correspond to the useless output depend on R
as such:

Front columns floor(4*R) and lower are not solved for correctly
End columns ceil((numCols – 5)*R) and higher are not solved for correctly

 The useless columns in the original STFT matrix correspond to unsolved indexes
in the original signal. This correspondence does not depend on R besides the column
values:

Front indexes Hop*floor(4*R) - 1 and lower are not solved for correctly
End indexes Hop*ceil((numCols – 5)*R) and higher are not solved for correctly

 This results in Hop*floor(4*R) error-prone values the beginning of the page and
Hop*floor(4*R) + 384 error-prone values in the end of the page. We chose to have a
constant 2048 non-error-prone values between these values. To account for the error-
prone values, each input page is offset from its neighbor by only 2048, rather than entire
page length.

Note: We have not yet derived an accurate padding scheme. Some things we know are
incorrect in our derivation is the assumption of useless values in the output and the
conversion of the highest accurate original STFT column and the highest non-error-
prone index.

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 16 of 16

4 Obstacles Encountered

During the course of development we run into a variety of issues which hindered

the successful transition of the phase vocoder from C code on the PC to C code on the
DSK. The main obstacles that we encountered related to storage, speed, paging, and code
optimization.

4.1 Internal Memory Usage Issues

In order to ensure that memory accesses would not bog down our computations,

we determined that all of the arrays needed for the phase vocoder needed to be on the
DSK in internal memory. However, during the initial phases of the transition between PC
code and DSK code, we found out that there was not enough internal memory to store the
arrays needed for the phase vocoder. Our previous estimates for storage requirements
were incorrect because we did not take into account additional internal memory storage
that is not a product of the phase vocoder.

Storage elements that we did not take into account were the code size (.text) and
DSK network code from net.lib (.nettextfast and .nettextslow). The code size for our
project ended up taking approximately 66,656 bytes and code from net.lib 54,944 bytes.
Refer to Table x for more information. Thus code alone took up 121,600 bytes and since
the DSK has only about 260 KB of internal memory this left only 103,500 bytes for our
phase vocoder arrays (after taking into account all other memory usages). In order to
maximize the amount of storage available for the algorithm, we had to evict sections of
code from internal memory and place them in external memory. We tried to place .text in
external memory but that drastically increased execution time. Because the PC->DSK
transfer is only done in the beginning before the start of the algorithm, we moved net.lib
from internal to external memory as this would not impact the execution time of the
phase vocoder. Although this freed up much needed memory, everything still did not fit.
We then proceeded to reduce the page size from 3048 samples to 2048 samples. Thus we
finally had the room necessary to perform the phase vocoder entirely in internal memory.
Refer to Table x+1 for additional information about page size and total memory needed.

 The scaling factor is directly proportional to the amount of memory needed to
store the phase vocoder arrays. As scaling factor increases, the amount of memory
needed also increases. This is because additional padding is needed during paging to
compensate for the unusable portions of the output at the beginning and at the end. For
more information about the phase vocoder please refer to the phase vocoder section of
this document. The code that we have written can accommodate a song with a maximum
scaling factor of 3.0.

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 17 of 17

Latest Memory Configuration (Bytes)

Name Length Used
ONCHIP_RAM 262,144 226,250

SDRAM 16,777,216 10,540,704

Memory Descriptor Length OnChip?
.nettextfast 30,112 N
.nettextslow 24,832 N

.sysmem 10,485,760 N
.text 66,656 Y

.const 1,374 Y
.cinit 2,484 Y

.switch 36 Y
.cio 288 Y

.stack 32,768 Y
.far 122,644 Y

Table 2: DSK memory configuration excerpt from map file (in bytes)

Note: the DSK places all global and static variables in .far

Memory Usage for Arrays

Memory Used (Bytes) Page Size (elements)
164,372 3048
111,500 2048

Table 3: Memory Used and Page Size Correlation

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 18 of 18

Figure 7: Libraries Used

4.2 Speed Issues and Estimates

We ran into a major problem after handling our storage issues. We found that
even with all of our arrays stored in internal memory the DSK still did not run the phase
vocoder algorithm correctly for our real-time implementation. More specifically, the
buffer storing the processed contents was being played twice by the codec. This implies
that the output buffer was not getting refreshed with processed data quickly enough. After
careful analysis, we found that the initial timing estimates computed for the phase
vocoder algorithm were inaccurate . We did not account for the processing time it would
take to execute math functions such as cosf, powf, sinf and atan2f. In addition, the paging
process introduced additional code and made computation slower than was estimated.
Another important variable that we did not account for was the fact that the arguments for
fftn.c (the fft function used in the C implementation of the phase vocoder algorithm on
the PC) were very different from the fft functions we used on the DSK. The fft functions
used on the DSK needed real and imaginary data to be interleaved into one array whereas
fftn.c took separate arrays for real and imaginary data. Thus, a process of interleaving and
de-interleaving data had to be introduced making our code longer and adding additional
computations / memory accesses.
 Out of all of the new code that was introduced into the DSK phase vocoder, the
critical elements were found to be loops containing math functions. These math functions
increased the cycle time for each function considerably. The most notable computation
that took the longest amount of time was the calculation of the magnitude and phase
during the STFT part of the phase vocoder algorithm. This calculation took 3 powf calls
and one tan2f call for each pair of output from the FFT. During each paging process the
FFT was called 13 times and for each FFT output, 256 magnitude and phase calculations
had to be performed.
 The following is a delineation of how the speed estimates were calculated. Refer
to table 1 for values of variables which were helpful in estimating cycle times. Refer to
figure 1 for average speeds of various math functions on the DSK.

Page Size: 2048
Number of Rows: 257
Number of Columns: 13

Table 4: Values of variables in the phase vocoder algorithm

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 19 of 19

Figure 8: Cycle times for various math functions on the DSK

Note: rts6701 was used, not FastRTS

Source: TMS320C67x FastRTS Library Programmer’s Reference
http://focus.ti.com.cn/cn/lit/ug/spru100a/spru100a.pdf

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 20 of 20

4.2.1 STFT Estimate in Cycles
The major components of the STFT part of the phase vocoder algorithm were the FFT
and the magnitude and phase computations.

Time to compute magnitude and phase = (3*(time for powf) + (time for atan2f))*number
of rows
Total = (Time for FFT + Time to compute magnitude and phase) * number of columns

FFT Compute
magnitude and
phase

Number of
Columns

Total Cycles

108000 660000 13 9984000

Table 5: STFT Estimate

4.2.2 ISTFT Estimate in Cycles
The major components of the ISTFT function were the computation of real and
imaginary components from magnitude and phase components, the IFFT, and the
filtering of very small outputs from the IFFT. The reason very small outputs must be
filtered (anything smaller than 10^-6 was set to 0) from the IFFT is because the IFFT is
only accurate to a certain degree.

“The function is accurate to about 130dB of signal to noise ratio to the DFT function
below:”
 (DSPF_sp_ifftSPxSP, line 76)

 Values which are very close to 0 represent errors in the IFFT algorithm and must be
filtered out for risk of corrupting of other values.

Time to compute real and imaginary = (time for cosf + time for sinf) * number of rows
Time to filter small numbers = (time for powf + time for fabs) * FFT Size
Total = (Time to compute real and imaginary + time to filter small numbers + Time for
IFFT) * number of columns

IFFT Compute real

and imaginary
Filter Number of

Columns
Total Cycles

108000 102000 348000 13 7254000
Table 6: ISTFT Estimate

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 21 of 21

4.2.3 PVSample Estimate in Cycles
Computing the timing estimate for PVSample is quite difficult. The floor function

was used 5 times in a loop that iterates 6144 times. In addition, much of the computation
inside PVSample involved floating point multiplication which usually takes more than
one cycle, and the number of cycles it will take is hard to predict. This number is not
known and can fluctuate depending on the values of each factor in the multiply.

4.3 Effects on Sampling Rate and FFT size
Based on our initial calculations, we decided the DSK could support our

algorithm using a sampling rate of 22.050kHz and 1024-point FFTs. We wanted to use
TI’s fast radix-4 ASM FFT code, but this code is not-interruptible and therefore
incompatible with codec playback. We acquired a newer version of the same code which
is interrupt tolerant, but disabling interrupts before FFTs and then enabling interrupts
afterwards causing significant lags in playback. We finally used mixed-radix C code
which is fully interruptible but slow for computations at 22.050kHz. According to the
FFT documentation, the 512 ASM FFT should take about 10,000 cycles, but our C FFT
function took about 95,000 samples (measured with profiling). We did not profile the
ASM FFT, so we are not sure if the measured discrepancy would be this large. We then
decreased the sampling rate to 16kHz, which improved the output quality slightly. We
also changed our FFT size from 1024 to 512 because tests in MATLAB revealed that a
higher FFT size (2048 at 22.050kHz and 1024 at 16kHz) introduced a reverb-like effect
which is an unwanted distortion. Unfortunately, after these modifications, processing and
playback at 16kHz was still slow, and the output sounded quite choppy and delayed (even
with all significant variables crammed into internal memory). We then profiled our phase
vocoder function (see table below) and determined that each page (1024 samples) was
taking about .0991 seconds to process, which is a much longer than the time required to
play one page (1024 samples at 16kHz = .064 seconds). Based on these calculations, we
think our phase vocoder could work in real-time if the sampling rate were reduced to
8kHz since 1024 samples at 8kHz = .128 seconds, which is greater than the .0991 second
computation time. We tried to make this adjustment, but did not have time to complete
the changes and debugging.

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 22 of 22

4.3.1 Observed Calculations
Profiling with 16kHz sampling rate and minimal optimization

Functions within phase vocoder Cycles per page Seconds per page

STFT 11,468,669 .0505

pvsample 2,778,692 .0122

ISTFT 8,281,685 .0364

Total 22,529,046 .0991

Table 7: Observed Cycles

4.4 Optimizations
At the time of the demo we used optimization level 01 (register optimization),

which is the highest opt level possible while using interrupts, because we had all of our
code lumped into one file. We hypothesized that a higher level of optimization would
improve real-time performance, but did not get to test this until after the demo (see
Additional Work section). In order to minimize some redundant computations we pre-
processed a few unchanging variables like Hamming windows, the bit reversal table and
twiddle factors for the FFT. During profiling we realized that our math functions, like
arctanf, cosf, and powf, take a long time and slow down our code. However we also did
not get to work on improving this (see Future Work section).

4.5 Page Alignment
 The derivation of the input and output page indexes must be improved in order to
have a fully accurate output. Our derivation found in Section 4.3.1 is known to be
incorrect. In order to find the accurate indexes and values, we could preserve the entire
iSTFTs of each page and compare them to the proper output in MatLab. This process
simply requires time and effort. We believe it would be possible to derive the correct
page alignment equations given more time.
 Setting the STFT hop size equal to the FFT size might also solve the page
alignment problem. This will eliminate the issue of insufficient overlap on the edges of
each page. With this, every output value would be accurate and the input pages would
not need any padding. A foreseeable problem with this strategy is that the original STFT
would not detect as much transient information with such a large hop size. This could be
tested in Matlab and researched in IEEE papers on STFTs and iSTFTs.

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 23 of 23

5 Results/Demo

5.1 Signal Flow

Below is an overview of our system and the dataflow between the PC and the
DSK. Basically, the user either selects two input songs to beatmatch or selects one input
song and a time scaling factor. For example, the user can pick a song and specify a
scaling factor of 2 which indicates a desired output that is twice as fast as the original
song. The input song, or song to be scaled is then transferred to the DSK and stored in
external memory. Then chunks, or pages, of the song are paged into internal memory,
processed with our phase vocoder, and played out through the codec while the next page
is brought in and processed. Since we did not get our phase vocoder computations fast
enough for real-time playback through the codec, we added the capability to send each
processed paged back to the PC. Once the whole song is processed, all the pages are
concatenated on the PC side, and the compiled output song can be played in MATLAB or
another media player. In summary, the DSK stores the input song, handles paging,
processes each page, and finally sends each processed block to the codec and to the PC.
The PC read in the input files, performs the beat detection algorithm, hosts the GUI,
sends the song, user inputs, and bpm to the DSK, and finally concatenates the DSK
output chunks to create the final output song.

Figure 9: System Diagram

PC Audio Playback

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 24 of 24

Figure 10: DSK and PC Data Flow

5.2 Database

Our database is segments of recorded music, wav files specifically. We planned to rip
songs from various Billboard CD collections, but ended up using wav files from Sony
Music website (pop and r&b songs), and converting them to 16kHz in MATLAB. For
beat synchronization, we also assume that the song has a static tempo, which is generally
true for pop music, but definitely not for classical music.

5.3 Demo: what worked

For our demo, the user was able to select a file, and select a time-scaling factor for the
input file in a slider in the GUI. Then the beat is detected, the song is processed, the
output wav file is created from the output pages sent by the DSK, and the output is read
in and played using MATLAB. As we mentioned above, we were not able to play the
output in real-time from the DSK. Because of this, we were also unable to create a
playback slider for the user to jump forward or backward in the song. Also, during the
demo, we did not beat match two input files, but modifying our demo procedure for this
is trivial.

To evaluate the results of the phase vocoder, beat detection can be called on the output of
the phase vocoder to verify the that new bpm is the product of the selected time scaling

7b. Send processed chunk to PC
PC concatenates chunks for
continuous play back

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 25 of 25

factor and the original bpm. We also plot spectrograms in MATLAB of the original
signal, the output with a scaling factor of 1, and the output with a scaling factor of 2. In
the plots below, all song segments are the same length but the third signal is twice as fast
as the first two and therefore looks compressed.

Figure 11: Original Spectrogram

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 26 of 26

Figure 12: Spectrogram with r = 1

Figure 13: Spectrogram with r = 2

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 27 of 27

5.4 GUI

 Since a major part of the Demo would involve the user interaction with the GUI,
copious amounts of effort was poured into the development of a Graphical User Interface
that would be simple yet effective. Also, since beat detection was done on the PC and
was already implemented in MATLAB, we decided to use the MATLAB GUI editor
(guide). In order to transfer a song from MATLAB to the DSK, MATLAB’s MEX library
was invoked so that MATLAB would be able to pass data back and forth from C code
written on the PC. This involved researching the various intricacies that revolved around
writing C code that can interface with MATLAB. This was not a trivial task. See the
references section for a helpful website on using the MEX library in MATLAB. Much
effort went into providing the user with a GUI that would execute tasks autonomously
without manual help from the user (such as manually running separate C code).

The main GUI screen is as follows.

Figure 14: Main GUI Screen

Result of beat detection

Acceptable scaling values

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 28 of 28

The GUI interfaces with MATLAB code on beat detection to compute the BPM of any
wave file selected via a browse button. In addition, since beat detection can take
anywhere from 5 to 10 seconds per song, a progress bar was added to the GUI to inform
the user what the PC is doing. This progress bar not only computes percent done but also
time left.

Figure 15: Progress Bar for Beat Detection

Dialog boxes were created and used for user confirmation. Since DSK processing can
take anywhere from 10 to 30 seconds, it is necessary for the user to be absolute sure that
they are ready to begin the phase vocoder progress on the DSK or risk losing their
valuable time. In addition, entertainment was provided for the user to look at while the
DSK is processing the song so that the user does not become overwhelmed with
boredom. This entertainment came in the form of a popup playing a movie of a popular
dancing banana within MATLAB.

Figure 16: Dialog box for sending song to DSK

Figure 17: Entertainment while phase vocoder is processing

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 29 of 29

6 Additional Work

After the demo we did some additional optimizations and calculations to try to
address some of the issues we had not completed by the time of the demo. In an effort to
speed up the calculation time for each page or section of the input song, we separated our
code into a main function, which incorporates the PC to DSK transfers and the Codec
interrupts, and a phase vocoder file which includes all of the phase vocoder calculations
(FFTs, interpolation etc). We then optimized the phase vocoder file and FFT code at the
highest level (File optimization –o3) which we were not able to do previously on the
entire file because of the interrupts. This resulted in a slight improvement, .084 seconds
(see detailed profiling table below) as opposed to .099 seconds. But, since the time
needed to play this chunk of audio (1024 samples at 16kHz) is .064 seconds, this still
fails to compute fast enough to play each segment in real time.

Profiling with 16kHz sampling rate and maximal optimization

Functions within phase vocoder Cycles per page Seconds per page

STFT 10,310,245 .0454

pvsample 2,722,604 .0120

ISTFT 6,926,832 .0305

Total 19,959,681 .0879

Table 8: Cycles after Optimization

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 30 of 30

7 Schedule/Who Did What

Adapting /debugging phase vocoder for DSK: David, Yang, Tina
Paging from external to internal memory: David, Yang, Tina
Set up audio playback through codec: Tina, David
Implementations of Radix-2 FFT in C: David, Yang
Memory manipulations: David, Yang, Tina
Sending processed chunks to PC: Yang
Page alignment: David
Computation estimations/ FS modifications: Tina
Developed GUI: Yang
System tests: David, Yang, Tina
Profiling: Yang, Tina

Step Description Duration End Date Completed?

1

Implement beat detection and time
expansion/compression via the phase
vocoder in MATLAB. 0.5 weeks 10/9/2008 Yes

2

Test the MATLAB implementation and
tweak the code if necessary to ensure that
the algorithms work as intended. 0.5 weeks 10/12/2008 Yes

3a
Figure out how to read and parse a wave
file in C and transfer it to the DSK 4 weeks 11/10/2008 Yes

3b
Translate the phase vocoder algorithm for
use on the PC in C. 4 weeks 11/10/2008 Yes

3c

Compute maximum sample rate and
chunk size for real time implementation
on the DSK 4 weeks 11/10/2008 Yes

4 Transfer song from PC to DSK 0.5 weeks 11/10/2008 Yes

5
Convert C code for the phase vocoder for
use on the DSK and test 2 weeks 11/24/2008 Yes

6 GUI Development on the PC 1 week 11/30/2008 Yes
7 System Test 1 day 12/2/2008 Yes

 Total Duration: ~8 weeks + Thanksgiving Break

Table 9: Schedule

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 31 of 31

8 Future Work

8.1 Using FastRTS
A major improvement that could be implemented to speed up the processing on the DSK
is the usage of FastRTS math functions instead of the regular rts6701 math functions.
From figure 1 it can be seen that FastRTS can offer significant performance
improvements, especially in areas where math functions are the major bottleneck. This is
the case in our STFT and ISTFT functions.

8.1.1 Speed Estimates for STFT using FastRTS
Time to compute magnitude and phase = (3*(time for powf) + (time for atan2f))*number
of rows
Total = (Time for FFT + Time to compute magnitude and phase) * number of columns

FFT Compute
magnitude and
phase

Number of
Columns

Total Cycles

108,000 195,063 13 3,939,819

Table 10: STFT Estimate using FastRTS

8.1.2 ISTFT Estimate in Cycles
Time to compute real and imaginary = (time for cosf + time for sinf) * number of rows
Time to filter small numbers = (time for powf + time for fabs) * FFT Size
Total = (Time to compute real and imaginary + time to filter small numbers + Time for
IFFT) * number of columns

IFFT Compute real

and imaginary
Filter Number of

Columns
Total Cycles

108,000 38,293 114,688 13 3,392,753

Table 11: ISTFT Estimate using FastRTS

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 32 of 32

8.1.3 Total Estimates for Phase Vocoder

Functions
within phase
vocoder

Cycles per page
without Fast
RTS

Cycles per page with
FastRTS

Seconds per page with
FastRTS

STFT 10,310,245 3,939,819 .0173

pvsample 2,722,604 2,722,704 .0120

ISTFT 6,926,832 3,392,753 .0149

Total 19,959,681 10,055,276 .0442
Table 12: Total Estimates for Phase Vocoder using FastRTS

As can be seen from Table 4, the usage of FastRTS should enable the phase vocoder
algorithm to compute quickly enough so that the codec can play the song correctly.

8.2 Get 8kHz codec playback to work
We felt that we were very close to implementing the phase vocoder in real-time, since

it worked properly but was simply too slow for 16kHz. We tried to simply change the
sampling rate set for the codec, since the sampling rate does not affect anything else in
our code, like variable sizes or FFT parameters, but the codec output sounded static-y and
we are not sure what the problem is. If we had a little more time, we would finish
debugging the codec setup and any other adjustments for playback at 8kHz.

8.3 Workout page alignment
See Section 4.3.1 about page alignment in the phase vocoder explanation.
 The derivation of the input and output page indexes must be improved in order to
have a fully accurate output. Our derivation found in 4.3.1 is known to be incorrect. In
order to find the accurate indexes and values, we could preserve the entire iSTFTs of
each page and compare them to the proper output in MatLab. This process simply
requires time and effort. We believe it would be possible to derive the correct page
alignment equations given more time.
 The page alignment problem might also be solved by setting the STFT hop size
equal to the FFT size. This will eliminate the problem of insufficient overlap on the
edges of each page. With this, every output value would be accurate and the input pages
would not need any padding. A foreseeable problem with this strategy is that the original
STFT would not detect as much transient information with such a large hop size. This
could be tested in MatLab and researched in IEEE papers on STFTs and iSTFTs.

18-551: Group 2, Fall 2008 Ultimate Dance Party

Page 33 of 33

9 Additional References

• MATLAB Code for phase vocoder

– A Phase Vocoder in MatLab
Ellis
Columbia University
http://labrosa.ee.columbia.edu/MatLab/pvoc/

• MATLAB Code for beat detection algorithm
– Beat This: A Beat Synchronization Project

Cheng, Nazer, Uppuluri, Verret
Rice University
http://www.owlnet.rice.edu/~elec301/Projects01/beat_sync/beatalgo.html

• FFT Code for phase vocoder testing on PC Side
– From 18551 Homework 2

• ASM Code for FFT Routine on the DSK
– Lab 2 (Texas Instruments)
– DSPF_sp_cfftr4_dif -- Single Precision floating point Decimation in

Frequency radix-4 FFT with complex input
• C Code for FFT Routine on the DSK

– Texas Instruments
– DSPF_sp_fftSPxSP -- Single Precision floating point mixed radix

forwards FFT with complex input
– DSPF_sp_ifftSPxSP -- Single Precision floating point mixed radix

inverse FFT with complex input
• New Phase Vocoder Techniques for Pitch Shifting, Harmonizing and

Other Exotic Effects
– Jean Laroche and Mark Dolson
– http://www.ee.columbia.edu/~dpwe/papers/LaroD99-pvoc.pdf
– Uses very similar phase vocoder algorithm, but for pitch detection/shifting

instead of time-scaling. Also suggests desirable parameters such as
amount of overlap. However, Ellis documentation is more useful and ideal
for our purposes

– Other IEEE resources were found to be overly convoluted and not aimed
towards real-time time-scaling for music.

• Using the MEX Library in MATLAB
– Provides examples of how to write C code so that MATLAB can call a C

file like it calls a function
– Supports the passing of arguments/data from MATLAB to C and vice

versa.
– https://people.scs.fsu.edu/~burkardt/m_src/MatLab_c/MatLab_c.html

