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ABSTRACT 

 

Object Recognition techniques have made significant progress in the past few years. Some of this research 

has been focused towards the development of artificial intelligence systems. Other research is designed to 

provide efficient solutions for real-life problems we face. Within this context, we discuss in this paper the 

complete methodology for the detection and classification of road signs. The progress in this field has 

allowed us to foresee completely dependent systems which could aide the driver in recognizing most 

common street signs encountered on the roads, and to provide forewarning if the situation calls for it. In our 

system we implement a reliable detection/recognition model which revolves around accurate detection 

techniques using color thresh holding and a feature based classification algorithm designed for the specific 

testing database. Our implementation has been built on the C67 Texas Instruments DSK. We see that this 

system provides sufficiently high accuracy without using more complex structures such as neural networks.
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INTRODUCTION: 
 

The purpose of road signs is to provide the driver with important information about the road ahead. The 

problem arises when the driver is negligent or blatantly disobedient of traffic laws. In the former case we can 

ensure a safe and comfortable driving experience by developing an accurate road sign detection and 

recognition system which can forewarn the driver of approaching signs. Such a system would lower the 

burden on the driver and prevent unwanted hazardous situations. For example such a system could warn the 

driver if he were about to enter a Do Not Enter zone, or could help avoid the driver from unwanted speeding. 

Further applications of this system could have it integrated with the cruise control system to release the 

driver of stressful driving on the freeway. Today’s luxury automobiles come with a variety of sensors which 

assist the driver. One of the most innovative ones is the parking sensor which enables the car to park itself. 

We hope that this natural integration of signal processing technology in automobiles continues to evolve. We 

foresee that automated sign recognition systems will one day be carefully integrated with the Global 

Positioning interface that already exists in cars and will provide the driver with visual information about the 

surrounding. These are just the few beginning steps as we continue to develop automated systems in 

everyday life. 
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THE PROBLEM: 
 

Our objective is to develop a system on the Texas Instruments C67 which will detect and recognize common 

road signs. Due to the limited time that we are working with and the inherent variability with real time signal 

processing of video images we have decided to scale back the project to fit into a semester long time frame. 

The signs that we have attempted to classify are shown in figure 1. 

 

We shall be analyzing digital images of traffic signs, and shall be processing them instead of the frames of a 

video stream. All our testing images have been taken from the areas that constitute and surround Pittsburgh, 

PA. However our project can be applied to signs of other states due to their generic nature. We have 

encountered several difficulties that we hope has not slowed us down: 

 

Handling of Occluded Signs: 

Several signs are sometimes partially occluded, which makes it hard for us to recognize. To overcome this 

problem we have implemented a scale invariant feature as part of our classification. 

 

Bad lighting conditions: 

Several problems arise while using the RGB color space in conditions of bad lighting. We can over come this 

problem by converting our RGB space image to HSV (Hue Saturation Value). These aides in separating the 

‘red’ color in good and bad lighting conditions. 

 

Shifted signs: 

Some road signs are partially rotated which makes it hard for us to compute its features in the recognition 

stage. We remove this problem by allowing for aspect ratio errors and resizing features within our system. 

  
 

   

Figure 1 



 6 

 

 

Excessive Noise: 

Too much background noise can hurt the detection phase. We have adopted an adaptive filter based on the 

brightness of the picture which helps in removing noise. There is also significant difficulty in identifying 

signs in the night. Although the image may appear dark, the presence of street lamps shifts the spectrum of 

the image into the red region resulting in large amounts of noise. 



 7 

 

PREVIOUS WORK: 
 

We are basing our work on the basis of various research papers written on the subject. The previous Digital 

Signal Processing project that addressed this problem was done by Group No 7 in 2002- (Michael Kaye 

Anusha Krishnakumar Loris Stehle) [1]. We have worked upon improving their detection and recognition 

techniques which can be broken down as follows: 

Detection algorithm:  

− Extract Red Areas  

− Apply morphology 

− Label selected areas and retrieve coordinates 

Recognition algorithm: 

− Perform RGB differencing  

− Perform maximum edge detection  

− Perform Mahanalobis distancing to find minimum distance and classify signs 

Significant Differences: 

• The previous group worked with a sign of much higher resolution. They scaled that picture down and 

performed their calculations on a 200 x 200 sized image. We have decided to use 640 x 480 resolution 

image. By virtue of the observer we have decided that road signs can only appear in the upper right %75 of 

the entire image. Based on this our processing is done on a 360 x 480 sized image. 

• We have also decided to perform HSV conversion for our image as it helps us in distinguishing colors 

better than in the RGB space, which was employed by the previous group. 

• Another significant difference between our projects is the labeling methodology for all valid blobs 

considered. Our algorithm is robust and much more efficient than the previous. 

• Color segmentation and noise reduction are very big parts of our projects as the foundation of the 

recognition stage is in the detection stage. 
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• Our recognition system is not based on Mahanalobis distances. The idea of our feature extraction and 

classification algorithm mainly comes from the paper written by Maldonado-Bascon, S. et al [1]. The rest 

was perfected based on our personal specification and choice of street signs. This gave us a higher 

accuracy at a very low cost. 

 

Overall, we believe we have made a significant improvement over the previous system in terms of speed and 

accuracy. We also have a larger number of signs that we wish to classify. The previous group restricted their 

classification to: Stop, Do not Enter and Yield signs. 

 

Several papers talk about using existing written systems such as Neural Networks and SVM which use test 

data to train and computes the optimum function that would classify the input correctly depending on its 

training. However, since we had only six classes, using such a network seemed a lot more time-consuming 

and not feasible in the short time frame. Moreover, most of our inaccuracies occurred due to issues in 

detection whereas our recognition algorithm seemed to be very robust. 
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FLOW GRAPH: 
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DETAILED ALGORITHM: 
 

In this section, we will describe more in detail the process and algorithm that we adopted in this project. 

Although numerous computations are being done on the images throughout, our project can be broken down 

into three major steps: Detection, Feature Extraction and Hierarchical Classification/Recognition. All the 

steps were tested in Matlab and successfully implemented on the DSK.  

 

Detection 

 

This is the first major subsection of our projection. The input to this section is the entire image under 

consideration and the output are all blobs that are likely to be road signs. Surprisingly and inconsistent with 

most research and work done so far, this section was the most challenging and time-consuming in the entire 

process. This can be attributed to the fact that we intended to work on images with varying lighting 

conditions and that this project was limited to six signs which made our recognition a simpler process. There 

were three sub-steps under detection all of which helped get the most accurate and concise set of blobs. 

 

Color Segmentation: 

When trying to identify signs in images with varying lighting 

conditions, working on the RGB domain is a very bad idea. This is a 

absolute-color based domain and so the R values of the signs would 

be different in bright daylight as opposed to twilight or night. For this 

reason, another domain space was implemented which would provide 

relative color and give more consistent values for the red signs, the HSV (Hue, Saturation and Value.)  

 

This domain is best described by the cone as in figure 3. Hue tells us what color it is and is measured in 

degrees. 0 represents red and moves counter-clockwise in the cone (30 is yellow, 60 is green and so on.)  

Figure 3 
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Saturation measures the intensity of the color and is the weighted distance from the centre of the cone to the 

edge. A bright red pixel would have saturation of 255 whereas a pale red pixel would be lowly saturated and 

white would be close to 0. Lastly, ‘value’ (NOTE: When referring to Value in HSV, it will be indicated in 

single quotes to avoid confusion) shows how dark the color is and it is represented by numbers from 0 to 255 

where 0 would represent a jet black pixel and 255 represents the brightest a pixel can get. In our project we 

have used normalized values for all three indicators i.e. 0-1.  

 

Since all signs under consideration are red in color, our initial thresholds for hue revolved around 0. To 

account for a little variation in color, the hue value could be greater than 0.9 and less than 0.1. Saturation was 

always expected to be above 0.35 as below that the pixels starts becoming pale and white. ‘Value’ had a 

minimum limit of 0.25, below which the pixels would start looking black. Using these thresholds, we 

converted the HSV image to a bitmap. All pixels that fell in these thresholds were marked ‘1’ or made white 

or else a ‘0’ or black.  

 

Even though this domain system gave better results than RGB in case of varying lighting conditions, it was 

far from the solution. For instance, when the above mentioned thresholds were used, they worked for most of 

the daylight images. However in twilight and bad lit images the amount of noise made this system inaccurate. 

This happened because at twilight time most of the image turned reddish, especially the leaves. Moreover, 

the sign itself was darker and did not pass the threshold mentioned.  

 

For this reason, Dynamic Pixel Aggregation was adopted, which means providing thresholds based on 

characteristic of the image itself. Initially, the idea was to find the average ‘value’ of the image and based on 

how dark the image was, the thresholds would be set. However, this did not help while distinguishing some 

images. When a comparison of all image taken from the streets of Pittsburgh at different times of the day was 

made, the ‘value’ values did not provide even a remotely accurate representation of the darkness of the 
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image. In some cases, twilight images seemed to have a much higher average ‘value’ than a day image. Thus, 

this could not be used to dynamically assign thresholds. 

 

The second approach seemed to work better and gave much better results in terms of identifying the sign 

with white pixels and having less white noise around. In this approach, the image was first passed through 

the thresholds mentioned above and calculated the number of white pixels that resulted. This number was 

then used as an indication of how bright or dark the image is. If this number was very high, the thresholds 

were tightened such that we get lesser white pixels in the bitmap and vice-versa. The assumption we made 

before trying this method was that the red pixels in the sign would be ‘redder’ and more prominent than other 

pixels on the image. So when the number of white pixels is very high, we believed that when tightening the 

thresholds, the noise would disappear rather than the sign itself.  

 

Fortunately, this sum of white pixels was a good indication and helped decide what thresholds the image 

should be passed through. We made five threshold categories and the sum of white pixels decided which of 

these categories an image fell into. Working this out was purely trial and error and depended on the database 

of images. In some papers, researchers have mentioned thresholds that worked for them but they worked 

terribly for us. Ideally, the more the categories, the better and finer the distinction will be between images of 

varying lighting conditions. Since our database consisted of only 108 images, five categories worked just 

fine. The result of this color segmentation process was a bitmap image in which road signs and other red 

areas were colored white, otherwise black.  

 

Morphological filtering: 

Now that a bitmap image which has all red areas indicated as a ‘1’ is available, the image needed to be 

prepared for blob extraction. This is one of the aspects where we have spent a lot of our research time. A lot 

of papers talk about using morphological filters and how important it is in image processing. However, none 

give details as to what kind of morphological filters are good in road sign recognition. When staring at the 
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bitmaps of few of the images, it is very hard to design a filter that would distinguish noise close to the road 

signs and disconnected of the sign itself. When dilation was attempted, noise pixels that were one pixel away 

from the sign got connected as well as two big chunks of a sign also one pixel away.  

 

After trying a few filters, a couple of them seemed to help this cause well. This process was divided into a 

two-step process: Maintaining Connectivity and Weighted-average. 

 

In ‘Stop’ and ‘Do Not Enter’ signs, the vertical connections are lost in many cases and if the connection is 

very thin, it disappears when applying erosion. For this reason, first connections are confirmed and 

maintained while the rest of the pixels undergo the weighted-average filter. As you can see in figure 4, these 

are the cases under which the pixel under consideration remains white (turns white in the case of first kernel) 

and the weighted-average filter is not applied on it. 

 

You will also notice from the figures that we have maintained 

only vertical connections. As I mentioned above, this is 

implemented to not erode away the thin connections in ‘Stop’ 

and ‘Do Not Enter’ signs. All horizontal connections are passed 

on to the weighted-average kernel directly since there is a very 

small chance of this connection belonging to the sign itself. 

However, the only disadvantage to this is that if there is any 

noise that is either connected vertically or just one pixel away 

in a vertical manner, this would be joined to the main blob. This 

does not cause as much of damage as it helps. The recognition stage is likely to identify the road sign if noise 

is little but if a valid sign is rejected because it was disconnected by a pixel, it would have no chance of being 

identified. 

 

Figure 4 
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After ensuring vertical connections, an erosion filter is applied to reduce noise in the image. This was done 

using a weighted diamond kernel as shown in figure 5. Whether a pixel should be eroded or kept was decided 

by itself and its neighbors. If the sum of weights of white pixels was greater than or equal to 18, the pixel 

was changed to/kept white otherwise it was changed to ‘0’.  

 

The primary reason for adopting this diamond kernel and weights was to correctly identify the neighborhood 

of a pixel. Giving the pixel itself the same weight as one that is one pixel away did not 

seem the right way to filter. When using weighted-average, we are using a more 

accurate representation of proximity of white pixels. The four outermost pixels being 

white is very different from the immediate neighbors being white and a method that 

distinguished these two needed to be implemented. 

 

If this averaging filter was applied to pixels that were saved by connections, thin 

connections would disappear. Figure 6 shows a Do Not Enter bitmap before morphological 

filter is applied to it. The thin connection in the left is completely cleared even when the 

smallest erosion is applied to it. However, when we confirm connections, these pixels are 

left alone. This process does result in a little more noise but this is not very significant as compared to 

ensuring connectivity in signs. Overall, the image is mildly eroded and increasing the erosion by even a little 

fraction more was hurting a few images. 

 

Blob extraction: 

Now that we have a bitmap image with reduced noise using morphological filtering, the blobs will be 

identified as separate entities, all with the possibility of being a street sign. When using Matlab, one can 

simply call the function ‘bwlabeln’ after which all blobs can be treated as separate entities. However, when 

coding this algorithm in C, this is not very efficient in terms of memory and runtime. For this reason, the 

edges of all white chunks are retrieved. The algorithm that is later implemented requires accessing every 

Figure 5 

Figure 6 
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white pixel in a chunk. If we do not work only on the edges, it would become computationally very 

expensive by trying to access a lot more pixels in a chunk than needed. 

 

To get the edges from the bitmap image, we implement a similar algorithm as the one used in the function 

‘edge’ in Matlab. The result of this is a bitmap where all chunks of white pixel have disappeared and only the 

borders remain. We then remove all subset edges to reduce complexity and false blobs later. For instance, 

when getting edges of a Stop sign, there will be an octagonal shape from the edge of the entire sign and also 

edges of each of the letter of the sign. This is redundant and does not need to be sent for further processing. 

This step would backfire if the signs were caught within a larger chunk of white but this is extremely rare. 

Our next step is blob labeling which a computationally expensive algorithm and is significantly helped by 

using morphological filters (which reduces the number of such chunks) and by finding edges.  

 

 

 

 

 

 

 

 

 

The blob labeling can be explained by looking at figure 7. Figure 7(a) is an example of a chunk of white 

pixels on the top of the image. Since the black pixels are 0s and white pixels are 1s, we will start labeling 

blobs with 2s. We browse every pixel in the image row-wise to search for a white pixel. When we find a 

white pixel, we label it a number not already used. Since this is the first chunk we are labeling, it is labeled 2 

as can be seen in figure 7(b). Along with labeling the pixel itself, any 8-connected white pixels are also 

labeled the same number as shown in 7(c). Then we move on to the next pixel which is labeled 2 and not 1. 

Figure 7 
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This is because we have started identifying one blob and we want to finish with one before we move on to 

the next chunk. Thus when we move to the next pixel labeled 2 (which is the very next pixel), we turn all its 

neighbors to 2 as well as shown in 7(d). We continue searching the row for another 2 which is again the 

neighboring pixel. This time when we try to turn its neighbors into 2, we find that there are no unlabeled 

white pixels. Then we move to the next row and continue searching for a 2 and continue the same process. 

Since the second pixel is labeled 2, we label the first pixel as well. We move to the next row only when no 

changes have been made. When we reach a row where there is no pixel labeled 2 at all, this means that we 

are done labeling this blob and must start searching this image again for an unlabeled pixel and continue with 

the process by labeling it 3 and so on. This process could have been done iteratively or recursively. Even 

though it would have been easier to code recursion, using iterations made the algorithm more efficient. 

 

Now that we have labeled all white pixels, we can treat as separate blobs. For instance, to separate the blob 

labeled 2, we simple find the minimum and maximum row and column values which is all the information 

that we need to identify the blob. Similarly, these four values are retrieved for all labels and considered to be 

potential blobs. These blobs include every white pixel that was in the bitmap image and so they are too many 

to be sending to the recognition stage. We know the minimum size that we wanted to recognize by looking at 

a few images from our database and since the shapes of all street signs are regular and must fit in a square, 

we could eliminate blobs based on size and aspect ratio. This reduced the number of blobs by a huge percent 

since most blobs were little noise blobs all over the image. Also, this excluded those big blobs whose length 

over breadth ratio was very high or low. The following were the three conditions: 

 

1) The length and width must be a minimum of 40 pixels each 

2) The total number of pixels in the blob must be at least 2500 pixels and at most 30000 pixels 

3) The aspect ratio (i.e. length/width) must be between 0.67 and 1.5 
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On average, the number of blobs reduced from a whooping 100 to 2-3 blobs which are referred to as ‘valid’ 

blobs.  

 

These valid blobs are, however, not yet ready for the next step. The size and location of every pixel in the 

blob is important. Some images might have larger street signs compared to others while some may have the 

sign rotated along the vertical axis which makes the sign rectangular. We want to standardize all signs in 

terms of their size for the next step such that the features extracted from two identical signs, taken at different 

locations and distances, result in similar features. For this reason, we normalize/resize all signs to 50x50 

pixels. These dimensions were chosen based on the minimum size limit i.e. 40 pixels. To resize a blob that 

has fewer rows (or columns) than 50, we need to add rows (or columns) to normalize it. Adding to many 

rows (or columns) did not seem like a good idea because of the method we were using (as described below.) 

Down-sampling was not a problem because the rows (or columns) that remained acted as good 

representatives of the entire image. Moreover, 50x50 pixels size was a perfect size for us to extract features; 

neither was it computationally expensive nor was it too small to distinguish from the rest. 

 

To normalize the blobs, we adopted the simple algorithm of averaging and down-sampling. For instance, if 

we had a blob of 45x55 pixels, we need to add 5 rows and remove 5 columns. The way we select where to 

add rows is as follows: 

 

1) First we find the number of rows that need to be added (50 – 45 = 5 rows) 

2) Adding 1 to this number gives the number of divisions we need to make in the blob (5 + 1 = 6) 

3) Find the length of each subdivision. (45/6 = 7.5) This indicates that a row needs to be added after 

every 7.5 rows (Lets call this number n).  

4) Since we cannot divide a pixel any further, we adopted a different method which is as accurate as it 

can get. 
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5) We now start from the first row and keep moving until the row number is greater than or equal to n. 

So when we reach 8, we know that this is the end of the first subdivision and a row needs to be added 

after this. 

6) We then multiply n by 2 and keep browsing till the row number is greater than the new n. The next 

row number is 15 that would be greater than or equal to 15 and so another row will be added after the 

15
th
 row.  

7) This process continues till the end during which the required number of rows are added. 

8) The value of each added pixel is calculated by checking the average of the 6 pixels around it. If the 

average is greater than 0.5, the pixel is made white and vice-versa. 

 

The same process occurs for columns as well and when down-sampling. The only difference being that in 

down-sampling, we do not need to take the averages. The row (or column) is entirely removed. The edge 

cases are handled appropriately. Some have two or three neighboring pixels and so the averages are taken 

accordingly. All valid blobs are now resized and ready for feature extraction. 

 

 

Feature Extraction 

 

In this second major step, we try to find out aspects about the concerned street signs that would distinguish 

them from the others. This can be called the ‘backbone’ of our recognition process. Selecting features did not 

only involve finding significant differences in street signs, but comparing some of the bitmap blobs that we 

were working on. We had to keep in mind noise, shifted and rotated signs, occlusions, etc. The robustness of 

our selected features determined the robustness of our system since these were the criteria that we were 

sorting the street signs on.  
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SOS of DtBs: 

One prominent feature of signs was their shape. Distinguishing shape would categorize triangles, circles and 

help us eliminate noise. The Yield sign was the only triangle, while the rest were all circles. The Stop sign, 

though being octagonal, is considered as a circle because it is very difficult to distinguish the two in the 

method that we are using. Moreover, with little noise, there would be no way to tell one from the other. If the 

blob did not fall into these two shape categories, it was disregarded as noise. This feature is called the SOS 

(Sum Of Squares) of DtBs (Distance to Borders). Below are the steps as to how these values are calculated. 

 

1) Find the distances from the border of the blobs to the first white pixel for each edge i.e. left, right, 

top and bottom. (as shown in figures 9 and 10) 

2) These vector graphs give a good indication of the shape of the possible sign from each corner.  

3) We compare these vector graphs to ideal triangle and circle templates (figure 8). The differences in 

these graphs are called the ‘error’ vectors and give an indication of how different a blob is from a 

template. The graphs in the figure are arranged in the order: left, right, top, bottom. 

4) However, these include vectors that would be completely off because of noise and occlusions. For 

this reason, we remove the outliers (represented by the bold lines in figures 9 and 10). 

5) Any error vector that is outside the range of Mean ± 1.5*Standard Deviation of the error vectors is 

considered as an outlier. 

Figure 8 
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6) The sum of squares of the remaining vectors is taken for each edge and each shape. Thus we now 

have 8 sums of squares which act as quantitative measures of the shape (the numbers written on the 

graphs.) 

 

 

Figure 9 

No. of color pixels: 

Once we know that a sign is showing the attributes of a circle, we need to find addition features to be able to 

distinguish exactly what sign it is. The best way to distinguish these signs is by understanding the color 

combinations of the blob. If we can exactly locate what color of pixels exist in a certain region of a blob, we 

can categorize it to be a specific sign. For instance, Do Not Enter sign has a white rectangle in the middle 

whereas the circle signs have some red in that region. In this section, we will only describe the features that 

we have decided to extract and in recognition as will describe their exact usage. 

 

Red Pixels: 

This is the total number of red pixels in the 50x50 pixel blobs. Since we are already working on bitmap blobs 

that have been computed based on redness, we use these bitmap blobs to find the total number of white 

pixels. This is an indication as to how red an image is. 
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White Midsums: 

This is a count of the number of white pixels (of color image) in the rows between 23 and 27 and between 

the columns 8 and 42. To get this, we set new thresholds to retrieve only white pixels. The result is a bitmap 

in which white pixels actually represent white in a color image and black represents everything else. The 

midsum is calculated from this bitmap. 

 

 

Figure 10 

 

Black pixels: 

The no turn signs have everything in common except the black arrow in the middle. We needed to find a way 

such that we can differentiate between the left, right and u-turns. We again use dynamic pixel aggregation to 

retrieve the black areas of a blob with the least noise and maximum density in the right areas. Moreover, 

since the arrow was in the middle of the blob, we decided to forcefully remove noise in areas that we are sure 

would not contain the arrows. We used the template shown in figure 11 for this purpose. If a pixel is white in 

the template, that particular pixel in the blob is turned black. As you can see in the figure, all red areas in a 

no turn sign and everything outside is turned black. This leaves only the pixels within the circle. Based on 
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location of the arrows, we count the number of white pixels in the bitmap of different locations as shown in 

figure 12. The regions are referred to as Top, Top-Right, Bottom-Left and Bottom-Right.  

 

 

 

 

 

 

   

 

 

Hierarchical Classification/Recognition 

 

This is the final step of our project in which we determine the status of each blob i.e. if its noise or actually a 

sign and if it is a sign, what sign is it. This step uses all the features calculated in the previous step to find the 

identity of the blobs. The entire process can be summarized as a tree structure as shown in figure 13.  

 

 
 

 

Firstly, we use the SOS of DtBs to determine the shape of the blob. As mentioned in the previous section, we 

get 8 numbers which must be used to determine what the shape looks like. Since our system was being 

designed keeping in mind the possibility of noise and occlusions, it was not a good idea to enforce all four 

sides to demonstrate the properties of a particular shape. We believed that allowing for two sides to be 

affected by noise and occlusions is allowable. However, if three sides are affected, it would be hard to 

distinguish between a three side affected sign or noise that by chance demonstrated the properties of a circle 

or a triangle. Thus, if DtBs of any two sides of the blob is lesser than the threshold provided, we consider it 

Figure 11 

Figure 11 Figure 12 
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to be that shape. However, we do not take care of the condition if which two sides corresponding to a circle 

and the other two to a triangle and neither have we encountered any such image.  

 

If we find that it is a triangle, we conclude the sign to be a Yield sign or if the vectors do not match both, we 

disregard it as noise. If the sign is classified as a circle, there is further classification that needs to be done to 

determine whether it is Stop, Do Not Enter or no turn signs (No Right Turn, No Left Turn, No U-Turn.) We 

now use our color pixel features to help in this further classification.  

 

If the number of red pixels in the sign is low and the midsum number is moderately high, it is considered to 

be a no turn sign. When the midsum number is low, it is identified as Do Not Enter and if the number of red 

pixels is very high and midsum is also high, it is a Stop sign. This does not give very accurate results when 

the Do Not Enter sign is significantly shifted because the midsum value would not represent what it should. 

We realize that these are very few features to distinguish three signs. However, this is the best we could do in 

the given time-frame and they actually gave us very good results. Ideally we would decide on a couple of 

more features to confirm our identification but most of our time was dedicated to detection, the part which 

required the most effort.  

 

Lastly, when we know that a blob is a no turn sign, we must use the black arrow to determine exactly which 

no turn it is. We take the number of white pixels in the bitmap in each of the four regions as mentioned in the 

previous section. Figure 14 shows exactly how the three no turn signs differ in these regions.  

 

 

 

 

 

 

 

 

 

 

 Figure 12 
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RESULTS: 
 

Test Data 

 Our recognition system processed 640x480 pixel RGB images and attempted to recognize any of the 

six traffic signs mentioned earlier in them. The images we tested were taken from a Nokia N95 cell phone 

camera to mimic the field of vision of a driver of a car. Below are the results of our testing. 

 

  Total Positives False 

Positives 

Accuracy 

Stop 28 20 1 71.4% 

Do Not Enter 28 23 0 82.1% 

Yield 10 8 1 80.0% 

No Left 19 14 1 73.7% 

No Right 16 11 0 68.8% 

No U-Turn 7 6 0 85.7% 

  108 82 3 75.9% 

Figure 13 

 
Stop and Do Not Enter signs were tested extensively with very satisfactory results. No Left Turn signs were 

not far behind in accuracy. It was the No Right Turn where we would have liked a better recognition rate. 

We see a discrepancy in the number of signs tested of each type. This is because No U-Turn and Yield signs 

are found particularly on highways and it is rather difficult to stop and click a shot of such signs. This 

explains the low number of those signs tested. Overall, the recognition rate was pretty impressive. 
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� Original Image 

 

In this image, there are two signs, varied in 

size and one is obstructed by the other. 

 

 

 

 

 

 

 

 

� Morphed Threshold Image 

 

Even though one sign is obstructing the 

other, they are two distinct blobs. Our 

threshold is successful in extracting the 

relevant red areas. Further Morphological 

filter enhances the blobs. 

 

 

 

 

� Blob Extracted Image 

 

As expected, the two blobs are identified 

and forwarded to the recognition. Our 

recognition is successful in identifying 

both the signs as No Left-Turn and Yield 

sign. 

 

Analysis 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 

Figure 15 

Figure 16 



 26 

 

���� Original Image 

 

This image is a little darker taken 

sometime after twilight. We can see that 

the sign is not that prominent. Also there 

are some bright street lights and red rear 

car lights. 

 

 

 

 

 

���� Morphed Threshold Image 

 

This is where our adaptive threshold is in 

full effect. Even though the saturation and 

value of the sign is not high enough for a 

regular bright sign, our detection relaxes 

the boundaries due to the dark ambience. 

 

 

 

 

 

���� Blob Extracted Image 

 

Only one blob meets the size and aspect 

ratio requirements. It is forwarded to our 

recognition which is successful in 

classifying it as a No U-Turn Sign. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 

Figure 18 

Figure 19 
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Noise Blobs:  

Our feature extraction lays the foundation of rejecting noise blobs. Our hierarchical classifier uses the 

features calculated to recognize the shape of the blob. If it doesn’t find a triangle or a circle, it marks the blob 

as noise. As we can see in figure 20 (a) and (b), both the blobs passed our detection phase but were correctly 

classified as noise by our recognition phase. 

 

 

 
Figure 20(a) 

 

 
Figure 20(b) 
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Noise Interference:  

In some unwanted cases, noise from the background interferes with the sign. Typically, a red building or 

something in the shade of red in darker images displays such phenomenon. Below is one of those examples. 

 

 
Figure 21 

 

 
Figure 22 

 

 

 

 

 

 

 

 

 

 

���� Original Image 

 

This image displays a problem which our 

project fails to address. Under bad lighting 

conditions, with a more relaxed threshold, 

more and more unwanted areas are tagged. 

 

 

 

 

 

 

���� Morphed Threshold Image 

 

As you can see from this bitmap image, the 

background noise (very slightly red in 

shade) is also classified as part of the sign. 

Now the extended blob is forwarded to the 

recognizer. Due to such an anomaly, our 

recognizer classifies it as noise. 
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False Detection:  

In some extremely rare cases, our algorithm falsely classifies a blob as a sign. We can see below in Fig 23, 

where a bunch of red leaves is recognized as a Yield sign. This is happening because of the mere shape of the 

arrangements of the red leaves. If we observe carefully, the red extracted bitmap image looks like a broken 

upside down triangle. 

 

 
Figure 23 

 

 

Irregular Illumination:  

Irregular illumination on the sign results into abnormal shading. In figure 24 we can see that a strong light 

from the right side is actually dividing up the sign into two distinct colors. The left half is normal red, while 

the right half is bright orange in color. Here the left half fall within the selected threshold for the image and 

hence being identified as seen in the morphed threshold image. While the second half is invisible as it did not 

satisfy our threshold. Thus our detection phase fails to label the sign as a blob. 

 

              
 

Figure 24 
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Rotation Invariant:  

Our detection and recognition algorithm is not too sensitive to rotation. As long as the overall shape and the 

features are maintained, rotation has no effect on the result. But if a sign is 

restated to such an extent so as to change the shape, it would not recognize the 

blob. Not only the shape but also the features play an important role in rotation 

especially in circular/octagonal signs. Rotation has no effect on the shape, but 

might disrupt the features our classifier uses to identify them. Figure 25 is an 

instance of a rotated Stop sign which is recognized accurately. 

 

 

 

 
Figure 26 – This Stop is an indication of the smallest sign that our system could recognize.  

The No Right Turn sign is not recognized.  

 

 

 

Figure 25 
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What Didn’t Work/Issues 

In this project, we set off with a target of recognizing both red and yellow traffic signs. But in our testing 

phase, yellow signs did not work well for us. The reason behind this was that the spectrum was very narrow 

for yellow in HSV domain unlike that of red. Another problem with yellow signs was that yellow lies 

between red and green in the hue domain. Both red and green are dominant colors found extensively in the 

background. Hence, we dropped the idea of recognizing yellow signs and redirected our focus on red signs. 

 

Another aspect which did not work as well as we would have wished was the noise interference. Even with 

our adaptive threshold of red color segmentation, some pictures give false impression of brightness. 

Typically, a picture shot at night time with many cars and street lights in it. Even though the ambience is 

dark along with the signs, the lights increase the number of bright pixels and thus forcing a threshold 

corresponding to a real bright image. Also different lighting conditions affect the recognition. Even if a 

picture is shot in bright daylight, a sign may not have any illumination on it and hence not be recognized. 

Typically, an image in broad daylight, except the light is behind the sign and not on it. This will result into a 

dull sign with bright background. 
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DSK IMPLEMENTATION: 

Memory 

The on board memory is classified into two parts, namely internal and external. Internal memory is the 256 

KB available on the chip itself. External memory is the on board memory sizing to 1.2 MB. As we 

mentioned earlier, the image size we are processing is 480x360 pixels (25% cropped from the bottom and 

left portions of 640x480 pixels). Now with that size, it is impossible to keep the original image in RGB 

domain in the internal memory. Hence, we keep it in the external along with the red extracted image and the 

bitmap border image. The no turn template (50x50 pixel bitmap image) is also stored in external memory. 

The internal memory is used by all the local counters and flags used in the algorithm described. The blobs 

which are extracted are resized (50x50 pixel bitmap image) and saved in the internal memory also, along 

with the black extracted bitmap image of the same size. 

 

Code size: 

− DSK code: 1650 lines (46 KB) 

− PC code: 508 line (14 KB) 

 

Upon testing the access times, we find that internal memory access are substantially faster than external 

memory (1.5 cycles for internal memory compared to 5.5 cycles for external memory). Hence the most 

computationally complex functions in our project are: 

 

 RGB to HSV (w/ thresholding): 10.9 million cycles (63.5 cycles/pixel) 

Morphology: 13.8 million cycles (80.4 cycles/pixel) 

 

These times are higher than expected. This is because the image RGB to HSV conversion processes is 

located in the external memory and hence every iteration will need to access each pixel from the external 
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memory. Morphological filter too works on the red extracted bitmap image located in the external memory, 

hence take so many cycles to process. 

 

Paging 

To optimize the speed of our implemented algorithm, we tried implementing paging in the computationally 

complex functions. No improvement was seen in the RGB to HSV function as each element got accessed 

once every iteration. Hence paging the image data would not help save accesses. Also, paging would we 

impossible to implement in the blob extraction function as it is a recursive implementation. Hence, paging 

the image blocks would just increase the downtime of each recursive call dusting function. Also there is no 

guaranteed pattern access in the recursive calls for blob extraction. It could be that paging would result into 

paging a whole block for just one access, which would increase the processing time rather than making it 

quicker. 

 

However, paging could have been useful in the morphological filtering as kernel of two neighboring pixel 

will have. As shown in figure 27, 1 and 2 are the pixels which are 

processed and yellow pixels are the ones which are repeated in the two 

consecutive kernels. Hence, paging the image while applying the 

morphological filter helps increase performance time. But it will not be 

visible in our project as the kernel we use is extremely small. If a larger 

kernel were to be used, paging would definitely be advantageous.. 

 

 

Figure 27 
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Optimization 

Using the GCC optimization level three, we saw a need to further optimize the code for better timing results. 

The major optimization changes could be categorized in the following four topics: 

 

• Loop unrolling – We unrolled the big loops which iterate over the rows and columns of the image. This 

allows the processor perform computations in parallel than in series, hence making the loops go faster. 

• Local variables for repeated calculations – Instead of computing small calculations over and over again, 

its better to save that value in a local variable and use it wherever needed. This helps in speed by saving 

unnecessary calculations already done before and by saving accesses to external memory. 

• Minimizing function calls by saving values used in future – Rather than calling the functions every single 

time to calculate the same values, we save the return values of specific functions and use them in other 

functions. This helps minimizing functions calls, hence reducing the complexity of the code. 

• Writing to external memory only when features are finalized – When something is to be written to 

external memory, we make sure it is the final value to be written. We avoid writing base values to 

external memory and then changing it as we go. This again saves accesses, reducing the total time. 
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POSSIBLE IMPROVEMENTS 
 

• Detection – For future, more ranges in hue domain could be defined in the detection phase to enable the 

system to detect signs of different color. Traffic sings in the US are mainly red, yellow and blue. All 

three could be detected if the hue domain was properly divided and adjusted according to the brightness 

of the image. 

• Recognition – More features are to be added if the number of signs to be recognized are increased 

substantially. Also with more features, it will be extremely hard to define a hierarchical classifier with 

just human intuition. Some sort of neural network (like SVM) would be required to weight those features 

for recognition. 

• Optimization – Paging will definitely help if a bigger kernel is used for morphology. 

• Video processing – This system could be easily extended to a video. By using some image enhancing 

algorithms with the help of consecutive frames, a decent image can be obtained. From that image, a sign 

can be recognized. This forms the basis of autonomous driving. 
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SCHEDULE: 
 

• 17 Oct – Starting initial Matlab testing of detection on web images. 

• 29 Oct – Detection modifications and test data collection. 

• 31 Oct – Starting DSK coding for detection. 

• 12 Nov – Detection complete on DSK, weighing different recognition algorithms.  

• 12 Nov – Midterm Oral presentation. 

• 19 Nov – Recognition options, SVM or Hierarchal Classification. More test data collection. 

• 22 Nov – Features decided, reject SVM and go ahead with hierarchy. GUI started. 

• 29 Nov – Everything working on DSK, last minute optimization on all algorithms, coding and transfers 

for better results. More data collection. 

• 03 Dec – Oral in class, demo at night. 

• 10 Dec – Final project report due. 
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WHO DID WHAT? 
  

It is difficult to classify different aspects of our project to particular individuals. Even though we all had our 

areas of interest and expertise, we worked as a team and contributed wherever we thought our input would be 

crucial. Below is an overall description of various topics and who was involved: 

 

• Matlab testing – All the group members were involved in this step. At this stage we didn’t know much 

about the algorithms helpful to our project. 

• Detection – Kaushal started molding the detection algorithm with some valuable inputs from Pratik. 

Hussain was responsible for the C implementation of detection algorithm. 

• Feature Extraction – Pratik spear headed the key feature extraction methods. Kaushal and Mudit assisted 

him with some of the issues he faced.  

• Hierarchy Classification – Mudit was mainly responsible for making sense of the features in this 

recognition part. Valuable contributions were given from Pratik and Kaushal. 

• DSK coding – DSK C coding was mainly done by Hussain and partly by Kaushal. Debugging was done 

by Pratik, Kaushal and Hussain jointly. 

• GUI – Hussain was the man behind the fancy GUI shown in the demo. It basically combined the PC with 

DSK, initiated transfers between them and displayed results in a graphical fashion which would make 

sense to a common man. 

 

 

 

 



 38 

 

REFERENCES: 
 

[1] Maldonado-Bascon, S., Lafuente-Arroyo, S., Gil-Jimenez, P., Gomez-Moreno, H., Lopez-Ferreras, F., 

(June 2002) “Road-Sign Detection and Recognition Based on Support Vector Machines,” in IEEE 

Transactions on Intelligent Transportation Systems, pp.685-688, Tokyo, Japan. 

  (HSV implementation, Shape classification, DtB vectors, Hierarchical Classification) 

 

[2] Shaposhnikov, D., Podladchikova, L., Golovan, A., Shevtsova, N., Hong, K., Gao, X., (2002) “Road Sign 

Recognition by Single Positioning of Space-Variant Sensor Window”,  

  (Color Segmentation) 

 

[3] Nguwi, Y., Kouzani, A., (June 2006) “A Study on Automatic Recognition of Road Signs”, 2006 IEEE 

Conference on Cybernetics and Intelligent Systems, pp.1-6, Bangkok, Thailand. 

  (Color Segmentation, Dynamic pixel aggregation, Shape classification)  

 

[4] Kaye, M., Krishnakumar, A., Stehle, L. (Spring 2002) “What’s Your Sign? Improving Driver Safety with 

Road Sign Recognition”, Pittsburgh, USA.  

  (Previous project done on the same topic) 

 

 

(All C code written from scratch) 

 

 

 

 

 

 

 

 


	Abstract
	Detection
	Color Segmentation:
	Morphological filtering:
	Blob extraction:

	Feature Extraction
	SOS of DtBs:
	No. of color pixels:

	Hierarchical Classification/Recognition
	Test Data
	Analysis
	What Didn’t Work/Issues
	Memory
	Paging
	Optimization


