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Introduction 

 
The Problem 

There are many applications for facial recognition systems.  Security is one of the most 

important and obvious applications for facial recognition. After recent terrorist attacks across the 

world, security in airports, subway systems, and all modes of transportation has become of 

utmost importance.  Highly sophisticated Facial Recognition systems can detect blacklisted 

individuals, thieves, or even high profile individuals without the use of identification cards.  

Facial Recognition systems can also reduce the use of fake identification cards in bars and 

casinos and thus reduce underage drinking and gambling. They can also replace keys for secure 

access areas such as bank vaults or even homes. In order to do this we must have a fast and 

effective method that can quickly process an image and identify the individual. 

 

Common facial recognition methods are applied to the frontal images of the face. This may not 

always be practical. When you consider that most CCT cameras are installed in places that 

require these systems be placed at a height, we get side or top views of the faces at best. We need 

a way to be able to extract meaningful features of the face and then be able to process the data.  

Therefore, we need a system that can handle variation in angle. 

 
The Solution 

We propose the following solution 

 

1. Face Detection – Finds the region of the face in an image using Skin Segmentation and 

Blob Extraction. 

 

2. Active Shape Models (ASM) – Uses the information from Face detection to intialize the 

ASM and iteratively fits the face to obtain shape information. ASM allows for varying 

angle and expression in an image.   

 

3. Pose Estimation – Uses shape information from the ASM and a 2-D MACE correlation 

filter to determine whether a person is facing Left, Straight, or Right.  We can also detect 

in between poses to a certain degree of accuracy. 

 

4. Facial Recognition – Uses shape and angle information from the ASM and Pose 

Estimation to recognize the person.  (We did not implement this due to time constraints) 

 

 

 



Previous Work 

 
This is the first time Active Shape Model (ASM) has been implemented in 18-551.  A similar 

algorithm called Active Appearance Model (AAM) was attempted by 'Big Brother and His 

Shifty Eyes,' Group 11 in Fall 2006.  They failed to implement their algorithm on the DSK. 

AAM gives texture and shape information while ASM only give shape information of an image.  

We believe that since ASM is less computationally expensive than AAM it will be more easily 

implemented on the DSK.   

For face detection we used skin segmentation and implemented our own algorithm for the 

morphological operations, which allowed for a faster implementation.  'Face Detection for 

Surveillance,' group 2, Spring 2002 also did face detection, however they used Skin 

segmentation and performed erosion and dilation as their morphological operations.  They 

implemented a subset of the Schneiderman and Kanade algorithm.  'I Spy and Follow,' group 2 

from Fall 2005 did face detection, however they used the Central Slice Theorem to help them 

detect an object., 

'I Spy and Follow,' group 2 from Fall 2005 used MACE filters for identification of their target 

objects such as cars and tanks.  We used a 2-D MACE correlation filter in combination with the 

ASM information to determine Pose Estimation.  Pose Estimation by ASM and correlation filters 

has never been done in 18-551 before. 

 

 

Database 

 
We will use the MULTI-PIE Database[1]. This Database has 68 people with 13 pose variations 

which is required for training the Model. We need to hand label all the images we need for the 

training. Test images need not be labeled.  

For ASM testing we will use: 

1. 20 people with three pose variations for each person, two images of each pose for 

training. 

2. 4 people with three pose variations for each person 

3. We will also choose 3 images with in between poses (Poses other than extreme Left, 

extreme Right, and Straight) for in-between pose estimation.  

 

 

 

 

 

 

 
 

 
Fig 1: (a) Room where the images were taken, (b) Example set of images     

[1] Baker, Simon.  “Pie Database.” The Robotics Institute. Carnegie Mellon University. 

http://www.ri.cmu.edu/projects/project_418.html 

 

http://www.ri.cmu.edu/projects/project_418.html


 
Face Detection 

 
The face detection is the initial step of our project. The purpose behind applying face detection 

on the DSK is to provide an initial position to the ASM. We start out with an image containing 

faces. The face detection attempts to find out the area containing the faces in the images. The 

coordinates of the face which is detected are passed to the next step as the initialization 

coordinates for the ASM. 

 

The face detection algorithm uses the skin detection as the first step of the algorithm. It uses 

particular thresholds for the R, G and B components of the image. The thresholds are normalized 

with the sum of the R, G and B components to allow for different types of illumination. Next a 

series of morphological operations are executed to remove the small blobs and fill in the holes in 

the image. A unique kind of morphological operations have been used which can give huge 

flexibility and control to the user. Once the morphology has been performed the blob detection 

finds the largest blob in the image and finds its dimensions. These dimensions are then checked 

to see whether they make a face. If thus validated, then the coordinates are given as the 

initialization parameters for the ASM. The block diagram below gives main steps of the face 

detection algorithm. The blob detection is an iterative process and will continue to execute till 

there are faces in the image. 

 

 
Fig 2: Skin Detection Flow Chart 

 

Skin Detection 

An RGB histogram model with 256 bins per channel has around 16.7 million degrees of 

freedom[2]. We can construct a general color model from the generic training set using a 

histogram with 256 bins per channel in the RGB color space. The histogram counts are converted 

into a discrete probability distribution P (.) 

[2] Statistical Color Models with Application to Skin Detection Michael J. Jones and James M. Rehg , Cambridge 

Research Laboratory Compaq Computer Corporation 



 

To visualize the probability distribution, a 3-D model in which each bin is rendered as a cube 

whose size is proportional to the number of counts it contains. The color of each cube 

corresponds to the smallest RGB triple which is mapped to that bin in the histogram.  

Figure 3(a) shows the histogram. This rendering uses a perspective projection model with a 

viewing direction along the green-magenta axis which joins corners (0, 255, and 0) and (255, 

0,255) and in color space. The viewpoint was chosen to orient the gray line horizontally. The 

gray line is the projection of the gray axis which connects the black (0, 0, 0) and white 

(255,255,255) corners of the cube. Down-sampling and thresholding the full size model makes 

the global structure of the distribution more visible. 

 

By examining the 3-D histogram from several angles its overall shape can be inferred. Another 

visualization of the model can be obtained by computing its marginal distribution along a 

viewing direction and plotting the resulting 2-D density function as a surface. Figure 3(b) shows 

the marginal distribution that results from integrating the 3-D histogram along the same green-

magenta axis used in Figure 3(a). The positions of the black-red and black-green axes under 

projection are also shown. The density is concentrated along a ridge which follows the gray line 

from black to white. White has the highest likelihood, followed closely by black. Additional 

information about the shape of the surface in Figure 3(b) can obtained by plotting its 

equiprobability contours. These are shown in Figure 3(c). It is useful to compare Figure 3(c) with 

Figure 3(a) as they are drawn from the same viewpoint. This plot reinforces the conclusion that 

the density is concentrated around the gray line and is more sharply peaked at white than 

black[3].  

 

An intriguing feature of this plot is the bias in the distribution towards red. 

This bias is clearly visible in Figure 3(d), which shows the contours produced by a different 

marginal density, obtained by integrating along the gray axis. The distribution shows a marked 

asymmetry with respect to the axis of projection that is oriented at approximately 30 degrees to 

the red line in the figure. This bias is due largely to the presence of skin in Web images. 

 

In summary, the generic color model built from Web images has three properties: 

1. Most colors fall on or near the gray line. 

2. Black and white are by far the most frequent colors, with white occuring slightly more 

frequently. 

3. There is a marked skew in the distribution toward the red corner of the color cube. 

Also 77% of the possible 24 bit RGB colors are never encountered (i.e. the histogram is mostly 

empty)[3]. 

[3] M. J. C. Van Gemert, Steven L. Jacques, H. J. C. M. Sterenborg, and W. M. Star. Skin optics. IEEE Trans. On 

Biomedical Engineering, 36(12):1146–1154, December 1989. 



 
 

Fig 3:(a), (b), (c), (d) Ref: [2] 

 

The color of skin in the visible spectrum depends primarily on the concentration of melanin and 

hemoglobin [2]. The distribution of skin color across different ethnic groups under controlled 

conditions of illumination is quite compact, with variations expressible in terms of the 

concentration of skin pigments (see [4] for a recent study). However, under arbitrary conditions 

of illumination the variation in skin color will be less constrained. This is particularly true for 

web images captured under a wide variety of imaging conditions. However, given a sufficiently 

large collection of labeled training pixels we can still model the distribution of skin and non-skin 

colors accurately. 

 

Given skin and non-skin histograms we can compute the probability that a given color value 

belongs to the skin and non-skin classes: 

 

1. P(rgb|skin) = s[rgb]/ Ts  

2. P(rgb|~skin) = n[rgb]/Tn 

where s[rgb] is the pixel count contained in bin [rgb] of the skin histogram, n [rgb]is the 

equivalent count from the non-skin histogram, and Ts and Tn are the total counts contained in 

the skin and non-skin histograms, respectively [1]. 

[2] Statistical Color Models with Application to Skin Detection Michael J. Jones and James M. Rehg , Cambridge 

Research Laboratory Compaq Computer Corporation 

[4] Symon D‟Oyly Cotton and Ela Claridge. Do all human skin colors lie on a defined surface within LMS space? 

Technical Report CSR-96-01, School of Computer Science, Univ. of Birmingham, UK, Jan 1996. 



The skin and non-skin color models can be examined using the same techniques we employed 

with the full color model. The contour plot marginalizations are formed by integrating the 

distribution along two orthogonal viewing axes. These plots show that a significant degree of 

separation exists between the skin and non-skin models. The non-skin model, is concentrated 

along the gray axis, while the majority of the probability mass in the skin model lies off this axis. 

This separation between the two classes is the basis for the good performance of our skin 

classifier, which will be described in the following sections. The only difference in the 

construction of these two models is the absence of skin pixels in the non-skin case. The result of 

omitting skin pixels is a marked increase in the symmetry of the distribution around the gray 

axis. This observation suggests that although skin pixels constitute only about 10% of the total 

pixels in the dataset, they exhort a disproportionately large effect on the shape of the generic 

color distribution for Web images, biasing it strongly in the red direction. This effect results from 

the fact that the skin class occurs more frequently than other classes of object colors (52 % of our 

images contained skin). 

Given skin and non-skin histogram models we can construct a skin pixel classifier.  

 

Thresholds 

The threshold are based on two parameters the R component and the sum of the R,G,B values. 

Below is the pseudocode of the  threshold pattern used. 

sum =(R +G+B ) ; 

 if (sum ~=0) 

   r1= R / (sum); 

   g1= G / (sum); 

b1= B / (sum); 

else  

   r1=0; 

g1=0; 

b1=0; 

end    

     if( r1> .38) 

          gg = g1 / r1 ; 

bb =b1 / r1 ; 

     else 

          gg=0; 

          bb=0; 

     end 

    if ( (gg  < .85) && (gg > .2) && (bb < .85) && (bb > .2)) 

      facedetect 

    area=area+1; 

    end  

Thus by using the sum we make the thresholds resistant to the illumination variations. i.e for 

different amount of illumination we ensure that the thresholds remain the same.  

 

Morphology 

We have implemented a simple and unique method of erosion and dilation ,which is much faster 

than the current method. Though simple this method gives a lot of flexibilty and further gives the 



user the ability to perform various operations ranging from erosion ,dilation to edge detection. 

All with the same algorithm but changing the parameters.  

The following is the pseudocode of the algorithm 

for x=1:1:n-1  // column 

       for y=1:1:m-1  // row 

         neighsum=0; 

            if ( (out(y,x) ==1) ) // it is a potential skin pixel. 

                     neighsum=sum of the 8 surrounding pixels;                         

                     if neighsum>5 

  make the pixels which are at a distance of 2 pixels (x or y ) as skin pixels 

                     elseif neighsum > 3 

  make the pixels which are at a distance of 1 pixel (x or y) as skin pixels.                 

                     Else 

Make the selected pixels as a non skin pixel 

                     end       

        end       // %end of the if loop, checking if skin pixel   

         end      //% end of the for loop incrementing the rows 

  end         //   % end of the for loop incrementing the columns 

 

Once this is done we can  run the entire sequence for different parameters thus giving us the 

flexibilty that we desire for the purpose of eroding and dilating of the image.  

In our program we have used this sequence twice for different parameters  of the neighsum.Since 

this does not involve the multiplication operations associated with the correlation of the 

structuring element of the erosion and dilation operatrions we can save a lot of cycles.Also here 

we essentially vary the structuring element size depending upon the probability that the 

associated pixel is a skin pixel. 

 

 A pixel which is a skin pixel will have neighbours which are skin pixels too. If there are more 

than 5 neighbouring pixels skin pixels then we can say with a high degree of confidence that the 

associated pixel is a skin pixel .Thus we use a bigger structing element an d thus make the pixels 

in the periphery of 2 pixels to be skin pixels. Similarly If there are more than 3 neighbouring 

pixels skin pixels then we cannot be sure weather the associated pixel is a skin pixel. But if we 

do nothing then we wont be able to fill the holes in the face.  

 

Thus we adopt a strategy to minimize our possible error by reducing the structuring element size 

and making the pixels in the periphery of one pixels to be skin pixels.Now if these were truly 

skin  pixel then this means that we are increasing the probability of these probable skin pixels to 

connect with more neighbors. Thus the reason for the second run of the algorithm with slightly 

stricter parameters. Thus if the pixels get connected in the first round then in the second round 

we can be certain that they are skin pixels and then proceed to use a larger structuring element  

 



Blob Extraction 

This is the part of the algorithm which extracts the blobs after the morphology is performed on 

them. We scan the image and find the maximum run of  horizontal skin pixels and then scan it 

again to find the maximum run of vertical skin pixels .For the maximum run of horizontal skin 

pixels, the column number is stored . Similarly for the maximum run of vertical skin pixels, the 

row number is stored[5]. 

Thus the potential centre of the largest blob in the image is obtained by using these coordinates. 

But since we need to specify a region of interest to pass on to the ASM, we compute the size of 

the rectangular block containing the blob and then  pass these coordinates to the ASM . From 

which the centre pixel is once again computed. The idea behind is to correct the centre in case 

the blob which requires to be extracted exceeds the image dimensions. Thus doing this 

automatically corrects the centre in case it is not exactly in the centre of the blob . 

 

Results 

The following are some of the results of skin detection algorithm and morphological operations 

They are results for groups of images. Since the morphological operations are of the same size 

some faces have got megred. The solution is to scale the structuring element accordingly for 

smaller sizes of faces.         

 

              
   Fig 4: (a) Test image, (b) Skin detected, (c) Morphological operated 

 

The test image in Fig 4a shows the detections of a group of people. By setting relatively strict 

thresholds one can quite accurately determine the skin pixels.  The upper part of the image there 

are a lot of falsely detected pixels but overall the algorithm manages to detect the faces in the 

picture thus giving the initial coordinates to the ASM. The image in Fig 4a brings out the 

algorithm advantage as it does not detect the woman‟s brown-yellow shirt even though it is quite 

close to the skin color 

 

        
     Fig 5: (a) Test image, (b) Skin detected, (c) Morphological operated 

 

The test image in Fig 5a shows the detections of a group of people who are at a distance. By 

setting relatively strict thresholds one can quite accurately determine the skin pixels.  Note that in 

[5] CMU Avinash Baliga, Dan Bang, Jason Cohen, Carsten Schwicking, Face Detection for Surveillance,18551 spring 

2002 project ,ECE, Cannegie mellon univeristy 



the center part of the image there are a lot of falsely detected pixels representing the pant of the 

person as it is quite close to a skin color but overall the algorithm manages to detect the faces in 

the picture thus giving the initial coordinates to the ASM. The detected trousers will be 

eliminated by the validation part of the algorithm where the dimensions of the detected blob are 

checked. The image brings out the algorithm advantage as it does not detect the t-shirt of boy on 

the right even though it is quite close to the skin color. 

         
                 Fig 6: (a) Test image, (b) Skin detected, (c) Morphological operated 

 

The test image in Fig 6a is used to show the ability of the algorithm to detect people of different 

races. Note since some of the clothes worn by the people are quite close to skin color these pixels 

are also getting detected. But this image also brings out one possible negative of this algorithm. 

This is susceptible to shiny surfaces which are close to skin color as demonstrated by the 

detection of  pixels of the person „s black shiny leather  jacket with the metallic trinkets. 

 

The next section shows the face pixels detected for the images of the multi PIE database at 

different poses. The centre is marked with a cyan colored cross. The portion in red shows the 

part which has been added due to the morphological operations. The image 7b is the skin 

detection where some portion of the chin is not detected hence leading to the offset of the centre 

which is marked in blue. Here the image has been smoothened and the holes have been filled up 

so that it can be detected as a blob. 

 

                  
  Fig 7: (a) Test image, (b) Skin detected, (c) Morphological operated 

 

The next image below is that of the left view of the person. Many spots in the intermediate 

picture of the skin detected pixels have been eliminated while the holes have been filled up. 

 

                 .  
  Fig 8: (a) Test image, (b) Skin detected, (c) Morphological operated 

 



The Fig 9a is a right view of a person. Many of the falsely detected isolated skin pixels have 

been eliminated. In Fig 9b and 9c some part of the shoulder is also detected (because of the 

presence of the red and change of illumination at those areas). 

 

                    
  Fig 9: (a) Test image, (b) Skin detected, (c) Morphological operated 

 

Timing estimates  

All timing estimates computed are for images which are 240 *320 in size. 

Skin Detection  

1. 353*240*320 = 27,110,400 ( no optimization) 

2. 8,678,400 ( parallelization ,op level-3) 

3. Theoretical values assuming maximum parallelization as possible in the program 

4. 17 external memory accesses * 5.625* 320*240= 7,344,000 (external memory) 

5. Considering implementation using DMA ,we have to consider data in internal memory 

6. 17 *1.5*320*240= 1,958,400 (op-1) 

7. Math operations assumed to be running in parallel with the fetches because the fetch 

timings are higher. 

Morph  

1. 43,238,400 ( no optimization) 

2. 21,619,200 ( parallelization, op level-3) 

3. Theoritical = 42 accesses * 5.625 * 76800=18,224,640 

4. Considering implementation using DMA ,we have to consider data in internal memory 
42 *1.5*320*240= 4,838,400 (op-1) 

Blob Extraction (EXTERNAL MEMORY) 

Assuming only one blob of 100x100 extracted 

1. access per pixel=56250 cycles 

2. scans of entire image each with 2 external memory accesses =209850  

i. 5,22,240 ( no optimization)  

ii. 2,61,120   ( parallelization ,op level-3) 

Comparision with group 2 ,spring 2002timing estimates. [f4d] 

1. Circular structuring element, unoptimized: overflow in cycle counter 

2. Circular structuring element, square-skip, (dilate-erode, erode-dilate) to dilate-erode: 

3. 673 Mcycles 

4. Square structuring element, optimized: 

5. 563 Mcycles 

6. Virtual square structuring element, optimized & inlined: 

7. 547 Mcycles 

8. Virtual square structuring element, SBSRAM, DMA transfers: 

9. 527 Mcycles 

 

 



Active Shape Models 

 
We used Active Shape Models to find the shape information of the face.  This is later used for 

more efficient pose estimation. 

 
Algorithm 

Active Shape Model is a statistical approach to modeling shapes and appearances, which are 

used to represent objects in images. A model is trained from a set of images annotated by a 

human expert. By analyzing the variations in shape and appearance over the training set, a model 

is built which can mimic this variation.  An instance, X of the statistical model is created by 

defining position, orientation, and scale of the picture.  Then, we take an iterative approach to 

improving the fit of the instance X[6],[7],[8]. 

 

Since we have 3 poses we will build 3 ASM models, one for each pose. For a given test image 

we apply all the 3 ASM models and determine the best fit using texture features determined from 

correlation filters which will be explained at a later section. 

 

Training 

We have M training images and n points on each image.  

Each point has an x and y coordinates, so we have a vector of size 2n x 1 

 

Hence the training matrix X is of size 2n x M where we have M samples of 2n data. 

Each pixel location x and y is considered as data and the M images provide the samples for this 

data. 

xi = [ x1i  x2i  x3i ….  x2ni ] 
T   

……………………………………..(1) 

1. PCA is done on this data to reduce the dimension. So we have a set of eigenvectors and 

eigenvalues. The eigenvalues are used to weight the movement of the points.  

b*Pxx   ..……………………………………...……(2) 

where x  is the mean of all the input shapes 

and P = (p1|p2| . . . |pt) contains t eigenvectors of the covariance matrix    

and b is a t dimensional vector given by  

) x - x ( P b T  ..……………………………..……...………(3) 

 

The vector b defines a set of parameters of a deformable model.  

[6] T. F. Cootes, C. J. Taylor, D.H. Cooper, and J. Graham, “Active Shape models – Their training and application,” In 

Proceedings of Computer Vision and Image Understanding, Vol. 61, pp. 38–59, 1995. 

[7] Ghassan Hamarneh, Rafeef Abu-Gharbieh and Tomas Gustavsson, “Active Shape Models – Part I: Modeling Shape 

and Gray Level Variations” 

[8]  Rafeef Abu-Gharbieh, Ghassan Hamarneh and Tomas Gustavsson, “Active Shape Models – Part II: Image Search and 

Classification” 



 

2. With the landmarks over M training images we know the neighboring pixels around each 

landmark. We also take some pixels above and below each point. This number of above 

and below points is chosen by us.  The neighbors are not chosen in the x and y 

coordinates directly. The neighbors are chosen perpendicular to the edge of the point as 

seen in Fig 10. 

 

 

 

 
Fig 10: Path along which the model  

will search for the best fit. 

 

These neighbor points are stored for later comparison with the test images. We take the 

mean derivative of these points and normalize it.  

This Matrix is now called MnDrPoints and is of size  

( (num of points above landmark) + (num of points below landmark) + 1  ) * 2n 

where n is the number of landmarks we have labeled. 

 

Testing 

For a test image we do not have the landmarks. We have the general location of the face.  

We start from the mean shape of the ASM.  

1. For each landmark we check the neighboring pixels and compare with trained data in 

MnDrPoints to find the new location  of each pixel. Once we have the new location we 

apply some constraints on the shifts dx to synchronize the movement of all the points so 

that the shape is smooth  

      Note – this constraint can be any thing and is decided based on the type of data 

 

With the new location we get new PCA weights. b = eigenvectors/shape 

Use the new value of b for the next iteration to find the next shape. We do this for a number of 

iterations till the shape converges.  

 

The PCA and the intensity values around each landmark are both used to find the exact shape of 

the object in a test image.  

 



ASM in Action 

Initial Pose   After 5 Iterations  Convergence 

 

 

 

 

 

 

 

 
Fig  11: Example of ASM fitting from Tim Coote‟s paper 

 

Results 

Examples of the the Correct ASM model fitting the face. 

 

LEFT ASM    Straight ASM    Right ASM 

 

 

 

 

 

 

 

 

 
 (a)   

  (b)  

   (c) 

 

 

 
Fig 12: (a)Left ASM on a Left face, (b)Straight ASM on a Straight Face, (c) Right ASM on a Right Face 

 



Example of the wrong ASM fitting the face. 

 

 

 

 

 

 

 

 
Discussion of Results 

The fitting on the face is dependant on a number of design parameters. Some of them are  

1. Initialization – The quality of the ASM fitting is heavily dependant on knowing where the 

face is. Hence we need a face detection module for our project. 

2. Number of search points – The asm fitting depends on the number of points above and 

below the landmark that we train on and also the number of points below and above the 

landmark that we search during the fitting. In our project we chose 5 points above and 

below for landmarking and 12-15 points above and below for searching. The 

performance will obviously improve is we increase the number of points in our training 

stage.  

3. Multiple of Standard Deviation – The movement of the ASM algorithm is controlled by 

the multiple of the standard deviation that is specified as an input to the algorithm. Higher 

this number, greater is the degree of freedom to the ASM. Typical values vary around 

thrice the standard deviation. In our project, we allowed the user to specify this as an 

input to the GUI. This allowed us to see the effect of the multiple on the ASM fitting for 

the same initialization.  

 

Limitations 

ASM is particularly useful for segmentation and tracking kind of applications. 

 

There is some evidence of using ASM for recognition[9]. This greatly depends on the choice of 

landmarks. We have to be sure to choose the landmarks such that the variation is different across 

different classes. This will lead to weights that are different across classes and we can classify 

objects based on these weights. Face Recognition using ASM is still a research topic. 

 

ASM can be extended to Active Appearance models (AAM) where we use both shape and 

texture information to model and recognize a face. This is computationally more intensive and 

gives much better results. The texture features are also used in the iterative procedure. Note that 

in ASM we also use the gray level appearance in some way to determine the new location of the 

pixels, but AAM works by reconstructing the face from the shape vectors and comparing that to 

the actual trained data to determine the convergence. Hence the complexity is significantly 

greater. There has been significant work on recognition, tracking using AAMs.  AAMs on face is 

a popular area of research and has proved to give good recognition rates. This is a good area of 

further work in 18-551 
 

Fig 13: (a)Left ASM on Straight Face (b)Left ASM on Right Face 

 [9] Yu Yuan and Kenneth Barner, “An active Shape Model Based Tactile Hand Shape Recognition with Support Vector 

Machines” 



Timing Estimates 

 

Theoretical estimates 

Image access 

The image is accessed  

(numSeacrhPointsBelow * numSearchPointAbove * numLandmarks) per iteration.  

So the access times for the image access is  

12 * 12* 20 * 5.6 per iteration.  

= 16128 cycles per iteration.  

 

This is because the image is in external memory. Since we don‟t know exactly which pixel will 

be accessed each time and considering the overhead of transferring the area of the image to 

internal memory each time, we felt it was better to have the image in external memory.  

Explanation : The pixels that are accessed depends on the deformation and given low 

deformation constraints the points can move significantly. This means we cannot exactly 

estimate before hand which part of the image has to be stored in internal memory. To do the 

transfer for each iteration , in our opinion increased the overhead. 

 

Inverse matrix of 4x4 matrix 

This was an external piece of code and not optimized. This took approx 10,000 cycles per 

inverse. The results of the inverse were compared with matlab for many matrices to ensure the 

accuracy of this piece of code. Except for precision errors the results were accurate.  

= 11,324 cycles per iteration 

 

Operations 

There are many functions that are called multiple times. Each of them access various 40x1 

vectors to perform operations on them. While it is hard to keep track of all the operations and 

how many times each one is called. We can make a theoretical estimate for each function per 

iteration and check against the practical values.  

All the variables are in internal memory. Only the image is in external memory.  

 

ASM functions 

AlignShapeToShape 

 (11 multiplies, 10 adds, 21 memory access) * 20 times  

  = 21/2 *1.5* 20 = 330 cycles  

 (3 memory access, 1 add, 1 multiply)*14*4 times + 16 memory access 

  = 168 + 12 = 180 cycles 

 inverse migs =  11,324 cycles  

 (3 memory access, 1 add, 1 multiply)*16*4 times + 16 memory access 

  = 204 cycles 

 (3 memory access, 1 add, 1 multiply)*16 times + 4 memory access 

  = 204 cycles 

 (4 memory access) * 20 times 

  = 60 cycles 

Total = 12,302 

 



ScaleRotateTranslate 

 (4 multiplies, 4 adds, 8 memory accesses) * 20 times  

  = 120 cycles 

Total = 120 cycles 

 

LimitTheJump 

 40 memory accesses 

Total = 40*1.5 = 60 cycles per call 

 

Find_dx 

 40 times*(3 memory access, 1 adds) 

  = 40*2*1.5 = 120 cycles 

 scalerotatetranslate( ) 

 40 memory access 

  = 40*`1.5 = 60 cycles 

 scalerotatetranslate( ) 

 40 times*(3 memory access, 1 adds) 

  = 60 cycles 

Total = 480 cycles per call 

 

LimitTheB 

 (2 accesses )* 40 times 

 numEigenvalues memory accesses, numEigenvalues multiplies 

  = 120*10*1.5 = 1800 cycles 

Total = 1800 cycles per call 

 

NormalizeShape 

 40 memory access = 60 cycles 

 Scalerotatetranslate() 

 (2 memory access, 2 adds) * 20 times 

  = 1.5* 20 = 30 cycles 

 (4 memory access,  2 adds) * 20 timess 

  = 2*1.5*20 = 60 cycles 

Total = 270 cycles per call 

 

GetBeforeAfterPoints 

 (2 memory access, 2 adds) 

  = 2*1.5 = 3 cycles  

Total = 3 cycles per call 

 

GetMatchingPosition 

 20 memory accesses 

 (2 adds, 3 memory access)*24*20 

  = 20*1.5 + 2*1.5*24*20 = 1470 cycles 

Total = 1470 cycles per call 

 



GetNormalAngle 

 (4 memory access) 

  = 4*1.5 = 6 cycles 

Total = 6 cycles per call 

 

Find_db 

 (2 memory access)*40*numEigValues 

  = 1200 cycles 

 (1 add, 1 multiply, 4 memory access), 40*numEigValues times 

  = 2400 cycles  

Total = 3600 cycles per call 

 

GetLineCoorsThruPoint 

 (3 memory access, 2 adds, 1 multiply)*24 times 

  = 3*1.5*24 = 75.6 cycles per call 

Total = 75.6 cycles  

 

Total number for all ASM functions  

= 12,302+75.6+3600+6+1470+3+270+1800+480+60+120 

= 20179 minimum cycles per iteration 

 

Practical  

Find_db = 4276 cycles 

GetNormalAngle = 13 cycles 

LimitTheJump = 4670 cycles 

ScaleRotateTranslate = 1730 cycles 

InverseMatrix[10] = 12586 cycles 

LimitTheB = 2124 cycles 

GetBeforeAfterPoints = 43 cycles 

AlignShapeToShape = 12,672 cycles 

GetLineCoorsThruPoint = 125 cycles 

GetMatchingPosition = 1632 cycles 

NormalizeShape = 338 cycles 

Find_dx = 493 cycles 

 

Total = 28193 minimum cycles per iteration 

 

 

Pose Estimation 

 
We used a 2D Mace Correlation filter on the nose region of the face.  The nose region was 

extracted by shape information given from the ASM.  Our correlation was an invariant filter and 

could be moved around the face.    

 

[10] Inverse matrix computer Program, written by Tao Pang in conjunction with “An Introduction to Computational 

Physics”, published by Cambridge University Press in 1997 



Algorithm  

 

MACE Filter 

The Minimum Average Correlation Energy (MACE) Filter is designed to minimize the average 

energy E in the correlation plane or Average Correlation Energy (ACE). The effect of 

minimizing the ACE is that the resulting correlation planes would yield values close to zero 

everywhere except at the location of a trained object, where it would produce a strong peak.   

The Resulting MACE filter is as follows in a vector form[11]. 

 

hMACE = D-1 X (X + D-1 X) -1 c………………………………………………….. (4) 

 

If we have N training images with each image having d pixels.   

X in equation 4 is d x N.  C has  the prespecified correlation peaks from the N images and D is 

the  average power spectrum density.  D is calculated by taking the average magnitudes squared 

of vector X. 

 

Implementation 

We first implemented this in Matlab with various filter sizes. We then decided to make it part of 

the user input. Hence we allow the user to choose the filter size over which the correlation has to 

be performed. The correlation filter is generated dynamically in matlab and stored to be sent to 

the DSK. The overlap and add is done over a larger image area than the filter size. This is 

different from Lab 3 as we do not have a 3x3 kernel but overlap and add over the size of filter 

window using the entire 40x40 or 100x100 window as a kernel. Since we are doing correlation 

we apply this window over a larger area. For example we apply the 40x40 window over a 60x60 

image area that is given by the ASM.  

The Peak of this correlation plane is found and then maximum value is sent back to the PC for 

comparison.  

 

Results 

An example of the MACE correlation filter is shown in Fig 14a and an example correlation 

output is shown in Fig 14b. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 14:(a) example of MACE filter simulated in Matlab, (b)Correct Correlation output on a test image simulated in 

Matlab 

 

[11] Savides, Marios, B.V.K Vijaya Kumar, and Pradeep Kholsa.  “Face Verification Using Correlation Filters.” Carnegie 

Mellon University – Electrical and Computer Engineering. http://www.ece.cmu.edu/~kumar/Biometrics_AutoID.pdf 



In Fig 14b we notice the high peak and the low side lobes.  This is an example of how the MACE 

filter works.  It minimizes side lobes to zero and maximizes correlation with the trained object. 

 

 

Fig 15: GUI output for an example of Pose Estimation working on a Straight Face. 

 

We tested the pose estimation over a set of images and documented the results as shown in the 

following tables. 

 

These are tables for the extreme left, straight, and right images.  Ten test images were used.  

 

 
 

 

 

 

 

 

 

 

Table 2: +5 shift initialization 

 

 

 

 

 

 

 

 

Table 3:  +10 shift initialization 

 

 
 

 

 

 

 

Image Angle # of Images 

Tested 

Left Straight Right 

Left 10 80% 20% 0 

Straight 10 0 100% 0 

Right 10 0 0 100% 

Image Angle # of Images 

Tested 

Left Straight Right 

Left 10 70% 30% 0 

Straight 10 20% 80% 0 

Right 10 0 10% 90% 

Image Angle # of Images 

Tested 

Left Straight Right 

Left 10 70% 20% 10% 

Straight 10 0 70% 0 

Right 10 0 10% 90% 

Table 1: Zero shift initialization 



Table 4: +20 shift initialization 

 

 
 

 

 

 

 

Table 5: Zero shift initialization 

Image Angle # of Images 

Tested 

Left Straight Right 

Straight (22
o
 

Left) 

10 20% 80% 0 

Straight (22
o
 

Right) 

10 0 100% 0 

 

Table 1 represents perfect initialization of the ASM, it reads as follows: A left image was 

estimated as left  80% of the time and 20% of the time it was estimated as straight.  A straight or 

right image was estimated as straight and right respectively 100% of the time.  Table 2 and 3 

follow in a similar manner. 

 

Table 5 depicts the results of a straight image looking 22 degrees to the left and straight image 

looking 22 degrees to the right.  As you can see the results are quite accurate. 

 

 
Fig 16:  Example of a straight image looking 22

o
 to the left, it is identified as straight 

 

Discussion of Results  

The above results show that the pose estimation varies with the degree of initialization.  The 

further the initial ASM is from the exact position the worse the estimation becomes.   

 

However an average accuracy of about 75% remains up to +10 off the accurate position.  The 

accuracy nears 100% at exact initialization and down to about 50% at +20 initializations.  Also a 

straight image that is 22
o 
off to the left or right is generally depicted as straight. i.e Fig.16.  When 

we were testing this we saw that the second highest correlation output to a straight image 22
o
 to 

the left or right was the left or right ASM fitting respectively.  Therefore, the results were 

generally quite accurate.   

 

Image Angle # of Images 

Tested 

Left Straight Right 

Left 10 50% 40% 10% 

Straight 10 30% 70% 0 

Right 10 0 40% 60% 



In addition, the Correlation output results vary with the size of the filter, as expected. Since the 

region over which we apply the correlation filter is a function of the filter size, we see the pose 

estimation is better with some filter sizes on particular test images vs. others.  We are certain 

there are different ways of estimating the pose, either through neural network or some other 

parametric method. This could be a good area of further work in 18-551. 

 

Limitations 

The pose estimation is initialization sensitive. When developing the pose estimation we assumed 

that the ASM would fit the face perfectly even with a starting position that was not very close to 

the centroid of the face. This is a key assumption for our pose estimation which may not always 

hold true due to the error rate of the ASM fitting. 

 

Trouble Shooting 

Before, we decided to use a correlation filter we tried many alternate algorithms for pose 

estimation: 

 

1. Discriminant analysis on the landmarked points as recommended by the original Tim 

Cootes paper. We transformed the test image landmarks to an LDA subspace and tried to 

use those coefficients for classification. This did not work as well as expected, because of 

the poor discriminability of the landmarks.  

2. Initial SVM but were unable to pursue it by varying the landmarks and the number of 

landmarks due to time constraints. We think with the right SVM model and better 

training we might be able to increase the performance of the pose estimation. We were 

unable to test this Hypothesis. 

3. Minimum distance classifiers in the PCA and the image subspace for recognition. For a 

given pose we got the coefficients, and found the minimum distance to the coefficients of 

each training image.  We hoped to be able to perform face recognition by this method. 

This did not give very good results. The coefficients of the particular test face were closer 

to the wrong face than the correct one. 

4. Minimum distance classifier comparing the resultant shape from the ASM fitting with the 

training image shapes. This led to the same results as before.  

 
Graphical User Interface 

 
We built a GUI in Matlab.  It displays results for Face Detection, Active Shape Model, and Pose 

Estimation and allows for easy execution of these codes from one window. 

 

How it works 
1. The GUI loads the image, saves the 3 channels as binary files. It also reads in all the user 

inputs required for the Face detection and the ASM. It then stores all the data in files. The 

GUI then executes the ASM PC exe code that reads in all the data from the files and sets 

up the socket for transferring this data to the DSK. 

 



2. The DSK code is executed separately, and the DSK code reads in the data from the PC 

code to perform the face detection first , the ASM of the 3 poses next and the pose 

estimation for each pose next. The results that are returned to the PC are the score of the 

test image against each pose. This maximum of this score gives us the estimated pose.  

 

3. The Face detect debug intermediate images are displayed in the GUI. The ASM also 

sends the intermediate shapes to the PC.  This happens multiple times with every 

converging iteration. These steps show us how the shape deforms as it searches for the 

best fit in the test Image.  

 

 

GUI 

  

 
Fig 17: GUI of our Pose estimation Project 

 



Process flow 
 

1. The skin segmentation algorithm, finds an approximate location of the face.  

 

2. The 3 ASM models are applied one by one on the test image. Once the shape converges 

to the best fit, the ASM coordinates are used to find the central region of the face. 

Typically this would be the T–section of the face.  

 

3. We compare using simple dot products around this region, with mace filters that we built 

from all the training images. The mace filters are pre-computed from the same region of 

the faces in Matlab and sent to the DSK for calculating the score. 

 

The Process flow in the form of a flow chart is shown below in Fig 11. 

 

 
 

        Fig 11. Process Flow 

 

 

 

Schedule and Distribution of Tasks 
 
Planned Tasks Scheduled Start 

Date 
Scheduled End 
Date 

Task 
responsible 

Be familiar with ASM 
theory and code  
-Read the papers by Tim 
Cootes 
-Project Meeting to 
understand ASM 
-Read the matlab code by 
GHassan 

10/01/2007 10/10/2007  
 
 
Abhay 
Chandni 
Sheethal 

PC DSK Matlab GUI 

Loads the Image to Run 
ASM/Face Detection Face Detection 

  ASM 

Pose Estimation 

Reads the Data from 
GUI and the Sends 
Image to DSK 

Gets Face Detection 
Results and sends it 

to ASM on DSK 

Gets ASM and Pose 

estimation results  

Displays ASM result 

Displays Detected 

Pose 

1 2 

3 

4 

5 6 7 

8 



-Run the examples and try 
different parameters of data 

Implement Face detection 
in matlab and test 
-Understand various 
methods of face detection 
-Implement face detection 
using skin segmentation on 
matlab and test images 

11/22/2007 11/15/2007 Abhay 

Implement Face detection 
on DSK 
-Understand Schniederman 
Kanade algorithm 
-Implement on PC side and 
test with images 

11/16/2007 11/24/2007 Abhay 

Convert ASM matlab code 
to C and test 
-Start with skeleton code and 
build functions 
-Test on PC side 
-Compare performance with 
matlab code 

10/11/2007 11/15/2007 Sheethal 

Get ASM working on DSK 
for Test Images 
-Load the code onto DSK 
-Test the code on the DSK 
-Compare performance with 
matlab code 

11/16/2007 11/24/2007 Sheethal 

Timing Estimates - Report 
Face Detection 
ASM 

10/11/2007 11/15/2007 Abhay 
Sheethal 

Implement Pose Estimation 
in matlab  
-Implement the correlation 
filter and classification 
-Test the correlation output 

11/01/2007 11/25/2007  
 
Sheethal, 
Chandni 

Implement Pose Estimation 
in DSK 
-Implement the correlation 
filter and classification 
-Implement the data transfer 
bw PC and DSK 

12/02/2007 12/03/2007  
 
Sheethal,  
 
Abhay 

Test The Pose estimation –
Continously test the Pose 
estimation to improve the 
algorithm 

11/01/2007 12/03/2007 Chandni 

Develop the GUI to load the 
Face from a file and run the 
ASM 
-Prepare GUI requirements 
-Design the GUI on paper 
-Develop the base GUI 
design 
-Group review of the GUI 
design 

11/18/2007 11/22/2007  Sheethal 

 



-Link the GUI to the DSK/PC 
code 
-Test complete GUI that 
implements all requirements.  

Integration of all modules  12/02/2007 12/03/2007 Sheethal 

Testing of all modules  12/02/2007 12/03/2007 Chandni 

 

 

Implementation Issues 
 

During the initial development and testing phases, several problems became apparent. The most 

immediate problem was our pose estimation. We had tried multiple algorithms in matlab, but the 

results of the pose estimation were not accurate enough. As mentioned above we tried svm‟s, 

discriminant analysis and minimum distance classifiers using the shape and the coefficients. 

Finally we used spatial correlation filters to perform a dot product over the region of interest and 

to determine the pose. This meant the algorithm would run much, much slower.  

 

For the ASM algorithm , it would not help the algorithm to get the image to internal memory as 

for each iteration we would access only 480 pixels. But we could have moved the image to 

internal memory for the face detect. This would mean that we use DMA and we would need to 

get 3 channels into the internal memory + space for the output. We were unable to complete this 

section of the code due to time constraints. Also since we would need 4 such buffers, the block 

size would be much smaller than what we used in Lab 3 where we used a block size of 40. We 

estimated that given our code size we would need at max a block size of 25 rows.  

 

Implementing the ASM and pose estimation accurately took up the entire duration of the course 

and hence we were unable to optimize the code to a great extent. We were also unable to perform 

extensive testing of the ASM on a greater number of landmarks, since that would involve a lot of 

manual landmarking.  

 

 

Conclusion 
 

We were able to implement everything up to and including Pose Estimation on the DSK.  We 

were unable to find a way to do Face Recognition due to the limits of our implementation of the 

ASM as well as time constraints.  Therefore for future 18-551 groups, either improvement on the 

ASM behavior or a different algorithm that provides texture information such as AAM should be 

implemented for Face Recognition.   
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