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1. Introduction – The Project 
 

The problem occurs while studying and reading the professor’s notes that were uploaded 

onto the internet or looking over friend’s notes that have been lent to you, and you find 

yourself taking more time deciphering the handwriting than learning what is on the page.  

 

Automatically deciphering handwriting has huge applications, which includes currently 

implemented ICR technology that the Postal Service uses to help sort mail.  ICR 

technology applies to a wide scope of any data that is handwritten (i.e. forms) that needs 

to be processed.  Imagine if all forms could be run through a system, and automatically 

be entered into a database.    Automatic processing would drastically increase time 

efficiency and cut costs.      

  

 

 

2. Our Solution 
 

The solution to unreadable notes is putting them through a scanner, and converting the 

messy cursive into machine print (ASCII).  Our project will deal with the cursive 

segmentation and recognition of these notes.  This project will take a scanned image of 

words and segment the cursive letters.  To obtain correct segmentation of cursive letters: 

1) Document will be scanned in  

2) Scanned document will be turned into a binary image for further processing  

3) Normalization of handwriting to take out slant  

4) Thinning algorithm is applied to facilitate segmentation 

5) Segmentation algorithm to split each character for recognition 

6) Support Vector Machine (SVM) implementation for recognition   
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3. Prior Work 
 

In the past there have been three projects in 18-551 that have attempted handwriting 

recognition.  In spring 2002, Group 8 implemented an offline hand printed text 

recognition system using Fourier Descriptors.  The second project was done in spring 

2003 by Group 5, which furthered the previous year’s project by improving the 

segmentation algorithm, detected capital letters, and including context recognition.  The 

third project was done in spring 2005 by Group 9 which consisted of a PDA that was the 

input to an online handwriting recognition system.   

 

Thus far there has been no group to attempt cursive recognition.  Our project differs 

vastly from previous projects because we implement general projections for slant 

correction, implement a thinning algorithm in order to trace the words, our segmentation 

algorithm is much more complicated because the characters within a word are all 

connected in different ways, and we implement an SVM for recognition.   
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4. Quick Introduction to ICR 
 

Handwriting recognition is an ongoing task to solve.  Optical character recognition, OCR, 

is the attempt to turn handwritten print into ASCII, whereas intelligent character 

recognition, ICR, is the attempt to turn different fonts and styles, like cursive, into ASCII.  

ICR is a considerably harder task to accomplish due to variability and segmentation 

issues.  Even though ICR has been around for some time, it has not been universally 

implemented yet. 

 

There are commercial products that implement ICR solutions.  ABBYY has a product 

called ABBYY FormReader 6.5 Desktop Edition which can take structured or semi-

structured forms and capture key data that needs to be processed.  
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5. Data Flow 
 

 
 

 

 

Our system starts with the GUI where the user chooses an image of cursive text that 

should be converted to ASCII text.  The user puts in a threshold and then hits run.  The 

GUI starts executing the DSK code, which includes the slant correction, thinning, and 

segmentation.  The processed images are shown to the user in the GUI and then the user 

hits run recognition to run the SVM.  The results produced by the SVM are shown in the 

GUI.

DSK SIDE PC SIDE 
 
 
 
 
 

GUI 

Slant 

Correction 

Thinning 

Segmentation SVM 

Image Pre- 

Processing 
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6. Algorithms 
 

We will talk about the different algorithms that we used in each section as shown by the 

Data Flow chart. 

 

 

6.1 Preprocessing 

The first thing that is required to be done is to read in a bitmap file and convert it to an 

array.  This operation is performed on the PC side, and then the array is sent to the DSK 

to be processed further.  A ‘bmp’ file is simply an array of values, with an extra file and 

info header in order for the image to be read correctly.  We simply read in these pieces of 

information, and then send the size of the image and the array to the DSK.  We assumed 

all images being read in were already in the form of 256 grayscale.  In order to properly 

process these images further, we need to convert them to binary images.  A binary image 

is one in which there are only two colors, normally with a value of zero corresponding to 

a black pixel and a value of one corresponding to a white pixel. 

 

The most common way to convert from a gray image to a binary image is to use 

“thresholding”.  Thresholding is when you set a value to decide whether or not a pixel 

will be black or white.  A common threshold for text images is 200. This means, in a 256 

grayscale image, that all pixel values below 200 become black, and all values above 200 

become white.  However, the intensity of a writing sample can vary greatly between 

authors, thus it is imperative that we are able to correct for this. 

 

In order to achieve maximum results in the other sections, we desire an image of the 

writing sample that has both very little background noise (random black pixels in the 

background that are not part of the text) and has almost no “holes” in the image.  A hole 

can be defined as either a white pixel in the middle of a character (where there should 

normally be a black pixel) or any gap between characters that is suppose to be connected.  

Since we found it very difficult to implement an algorithm that could properly threshold 

the image every time, we chose to have the user input the threshold to use for each image.  

This is much like if a user were scanning an image and they saw the result came out far to 

light, the scanner would allow them options to darken the image.  This is exactly what we 

are doing.  If the user sees that the thresholded image is to light or dark, they can adjust 

the threshold accordingly to achieve maximum results.  If the user does not input a 

threshold however, it will automatically default to a value of 200. 

 

After we threshold the image, we will also need to “zero pad” the image.  This step 

simply involves adding a border of white pixels around the entire image.  Although this 

step is not necessary, it is very important for improving efficiency in later steps.  In other 

steps later on, we will often be checking the neighboring pixels for an individual pixel.  

Thus, if we find a black pixel on the border of an image, we will need to check each time 

to make sure that we don’t try and access a pixel outside the image (and thus our program 

would crash).  Thus if we add this border of white pixels, and we only perform 
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processing to the pixels from our original image, this will insure that when we are 

looking at an edge pixel, we will never accidentally call an out of bounds pixel, we will 

now be accessing the newly added border pixel instead. 

 

 

6.2 Handwriting Normalization 
Handwriting fluctuates greatly between people.  Although humans can correct for this 

variability, it is a very complex task to have a computer understand off-line written text.  

Not only do people vary in their style for writing letters, but they also vary in geometric 

features.  Hence, it is a typical step to correct for such geometric factors by normalizing 

handwriting before segmentation.  Specifically, eliminating and/or taking into account 

slant angle and skew angle using generalized projections is an important pre-processing 

step.  Figure 1 is an example of the definition of skew and slant.   

 

 
Figure 1 [1] 

 

General projections (GP) are an extension of projection profiles (PP).  To deal with these 

projections our image needs to be represented in binary black and white.  Black will 

represent text.  The PP will count up the black pixels located in every row.  The rows 

with the greatest amount of black pixels represent highest likelihood of that pixel being 

part of text.  Although, if there are many black pixels around the word (such as noise), 

then the PP method will not be very reliable.  GP’s are used to give greater weighting to 

black pixels that are adjacent to one another.  Thus the more adjacent pixels, the more 

likely it is part of a word, and the more weighting it is given.  Figure 2 shows the 

difference between PP weight and GP weighting. 
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Figure 2 [1] 

 

Slant estimation provides a slight rotation of the word in order to make the letters 

vertical.  Many algorithms try to detect long quasi-vertical strokes and use their features 

in order to estimate the slant angle.  GP uses all the image data in order to avoid the 

pitfall of quasi-vertical strokes if only a few are present.  Thus if a word doesn’t have 

many l’s f’s or such other long characters that have long strokes, GP’s will be able to 

define the slant angle. 

 

In order to find the slant angle we calculate the GP’s along angles from -15 ۫  to 45 ۫ using 
eight equally spaced projections.  The angle with the greatest GP is considered to be the 

region where the greatest slant angle will be present.  Thus our new outside angles will 

become the GP’s that were one less and one greater than the maximum GP we obtained.   

We iteratively do this until we are testing GP’s within one degree of each other.  Thus, 

instead of testing 61 angles, we are testing 23 angles to decrease the processing time. 

 

After the slant angle is obtained we do a transformation of the image in order to fix the 

slant of the image.  This is done by “shifting” the image.  We start by moving along the 

bottom row of the image.  For each pixel, we will look at the line on the image that 

corresponds to the slant angle that we found.  For example, if we had a square image, and 

the slant angle was 45°, then our first line would run from the bottom left pixel to the top 

right pixel in the image.  Each pixel on these lines should be then shifted over, such that 

they are now in a straight line.  If you picture the square image again, the 45° line should 

now run straight up and down, and should be the left border.  Thus we are simply shifting 

each pixel in the image to correct for the slant angle that we detected. 

 

 

6.3 Thinning 

In order to properly implement our segmentation algorithm, it is a requirement that we be 

able to trace through our image.  In order to accomplish this, we need every black line in 

our writing image to be only 1 pixel in width.  We will implement a thinning algorithm to 

make this happen. 
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There are several different types of thinning algorithms that can be used.  The largest 

division of thinning algorithms comes between iterative and non-iterative algorithms.  

Iterative algorithms will keep performing on the image until it can no longer find pixels 

to change.  Conversely, a non-iterative algorithm will perform all the operations once on 

the image.  Since we require the line width of characters to be exactly one pixel wide, we 

will use an iterative algorithm, since this will give us a thinner image. 

 

Since we decided to use an iterative thinning algorithm, we must now decide whether to 

use a parallel or sequential algorithm.  A sequential algorithm will pre-compute the 

border pixels, and then apply a set of rules to each.  A parallel algorithm will look at one 

pixel at a time, and the decision for deletion of a pixel will be based on the results of the 

previous iteration.  Although sequential algorithms are often faster (since each pixel does 

not always need to be examined), we decided to use a parallel algorithm because of the 

ease of implementation and the more effective thinning of an image. 

 

Each time we process a pixel, we follow a set of rules to determine if a pixel should be 

deleted.  We start by performing two different iterations.  Our goal throughout these 

operations is to determine if the pixel is an edge pixel, and thus could be effectively 

thinned.  For each pixel in the first iteration, we will check the surrounding 8 pixels (the 

3v3 grid, with the pixel being the middle) and store there values.  If there are between 2 

and 6 black pixels around this pixel, we will want to consider this pixel for deletion.  

Second, we will want to determine if there are only two sides to the edge (a white side 

and a black side).  We determine this by seeing how many times in our 3v3 grid that 

neighboring pixels change color.  Thus if we move around the outside of our 3v3 grid in a 

single direction (clockwise or counter-clockwise), there should only be one change going 

from a black pixel to a white pixel.  This must be true to still be considered for deletion.  

Thirdly, we will want to make sure that our pixel is not part of a flat edge.  For example, 

we do not want there to be a black pixel with the only 3 white pixels to be on one side.  

Although these pixels may eventually be deleted, we will first want to delete the corners 

of this line, and work our way in.  This section is where our 2 iterations differ.  In our 

first iteration, we check the left and top of the neighboring pixels to see if there are 3 

white pixels.  The second iteration will check for this border case on the bottom and right 

sides.  This makes sure we are not thinning twice in a row, and thus over thinning, and 

actually losing part of the image.  We will repeat the first iteration until there is so longer 

a pixel we can change.  We do the same thing for the second iteration, performing pixel 

deletions until there are no longer any pixels to delete.  Below is an example of what a 

thinned picture looks like.  Images of a thinned cursive writing sample will appear in the 

results section. 
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6.4 Word Segmentation 

Before we are able to segment the characters in a word, we must first separate a line of 

writing into individual words.  This task is fairly easy, as we assume there should be a 

white space between words.  Our algorithm searches for this line of white pixels that is 

separating different words.  In order to ignore any noise, our algorithm tests to make sure 

any black pixel is connected to at least 7 other black pixels.  This indicates to us that the 

pixel is indeed part of a word, and not just noise.  In order to increase accuracy, this 

number could always be increased; however, there was generally not much noise and 

limiting it to 7 pixels increased efficiency.  Once we found the location of the first and 

last pixel of a word (viewing from left to right), we are now ready to use these values for 

the character segmentation. 

 

 

6.5 Character Segmentation 

The segmentation part of this project is the true meat and bones.  In order to have any 

chance at character recognition, you will need to segment the characters in a word 

properly.  With printed text, you will always have a gap between characters.  However, 

with cursive text, each word is one long string of black pixels; thus the problem of 

segmentation becomes exponentially harder.  In researching algorithms, we found that 

many were either too simple or too complex.  Many of the algorithms compensated for 

their short comings at segmentation by using a sort of lexicography.  They would often 

use a weighted system to decide, as they built a word, what the next character should be.  

For example, if there algorithm recognized the first letter in a word to be a ‘c’, and the 

next character was decided to either be an ‘h’ or an ‘n’, there “dictionary” would tell 

them that it was much more likely that the letter was an ‘h’ rather than an ‘n’.  Although 

this would greatly improve accuracy of our segmentation and recognition, doing 

something such as this would have required too much time, and thus we had to bound our 

project.  With that said, we required an algorithm that would effectively segment without 

any sort of dictionary help. 

 



Cursive Handwriting Segmentation and Character Recognition 

18-551 Group 3 of Fall 2007 

 

 12 

Throughout our research, we did come across one major principle of segmentation that 

appeared to be crucial for properly segmenting cursive text.  This principle is the idea of 

“over-segmentation”.  In order to properly segment all characters, it is ideal that for some 

characters your actually segment more times than actual characters.  This becomes very 

apparent if you think about the letter ‘w’.  The character ‘w’ is virtually the same as a ‘u’ 

and an ‘i’ put together.  Thus, it would not be desirable to segment the entire letter ‘w’, 

but rather segment it such that it would appear there are 3 “i’s” in a row.  Then during our 

recognition, we can try to reform the letter ‘w’ by putting some of the segmentations back 

together.  It is very easy to put words back together by adding two segmentations 

together, but it would not be possible to split two characters apart without the proper 

segmentation.  Thus, it is imperative that we use over-segmentation. 

 

Since ICR of cursive writing is still a topic of heavy research, we decided to develop our 

own segmentation algorithm.  Our algorithm is based on tracing both the upper and lower 

contours of the image to find when connectors between characters are used.  Usually, 

connectors between characters are the only lines connecting two characters.  This means 

that if you tried tracing the upper and lower contours, these connectors should be traced 

by both the upper and lower tracing algorithm.  Although we could simply just try 

vertical line segmentation, our algorithm will be much more effective in figuring out 

segmentation points, as there will be more rules we can implement with tracing to 

determine the optimal point for segmentation. 

 

First, we will trace the upper contour of the word.  To do this, we follow a simple set of 

rules.  We follow the direction set as shown below. 

 

1 2 3 

8 X 4 

7 6 5 

 

We will try and move to direction 1 first.  If that pixel is white, then we will try and move 

to direction 2 and so forth.  In order to ensure full tracing though, if two consecutive 

pixels are black, then we will first move in the cardinal direction.  For example, if 3 and 4 

are both black, we will move to 4 first, and then we will move to 3 the following move.  

This will ensure we visit every pixel in the trace.  We will also keep track of every pixel 

visited to ensure we never revisit a pixel twice to avoid an infinite loop.  At each pixel, 

we also check to see if we are very at an intersection point (a pixel such that we can 

choose between 2 directions to travel, not including pixel we just moved from).  If we 

ever get to a dead-end (i.e. the top of a ‘t’), then we simply revert back to the last 

intersection point, and try a different direction from there.  We will keep performing 

these operations until we get to the end of the word pixel. 
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Now that we have the upper contour traced (and saved in a separate array), we will want 

to trace the lower contour.  In order to increase efficiency, we will perform the 

segmentation of characters as we trace the word.  We start by tracing the lower contour of 

the word.  We will trace the lower contour exactly as we did with the upper, except we 

will use a new hierarchy for the direction to travel, as shown below. 

 

7 6 5 

8 X 4 

1 2 3 

 

 The first thing we are checking for is when the upper and lower contours trace is on the 

same line for at least 3 pixels without splitting apart.  If this occurs, we mark that point as 

a segmentation point, with a few exceptions. 

1. If the point is within 2 pixels of another segmentation point, we ignore it and 
move on 

2. If the point is within 5 pixels of the start or end of a word 
3. The pixel must be moving in an upward direction, or have just moved in an 

upward direction.  All connectors between words should at some point move in an 

upward direction.  This prevents us from segmenting to early in a character. 

4. If the upper and lower contours travel along the same line for many pixels (more 
than 12 for our algorithm).  This will often occur in a letter such as an ‘r’.  To deal 

with this, if the pixel count of travelling together is over 12, we will segment at 

the next intersection point (When the upper and lower contours split).  Note that 

we look for intersections points, and not when the lower contour is without the 

upper contour.  For such letters as ‘i’, the upper contour does trace elsewhere, but 

the lower contour trace is still always part of the upper trace.  This is why we look 

for intersection points instead. 

If none of these exceptions occur, we mark that point as a segmentation point. 

 

 

6.6 SVM – Support Vector Machine (Character Recognition) 

We decided to use Support Vector Machines to recognize our segmented characters due 

to the fact it gives in the best results in pattern recognition and is easy to implement. 

SVM is a set of methods used in machine learning for classification and regression from 

a set of learning data. Each of these samples in the learning data is mapped to a value in a 

higher dimensional space. The data is classified by coming up with an optimum  

N-dimensional hyper plane which separates data into positive and negative examples.  
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The plane will be chosen to have the largest distance from the hyper plane to the nearest 

of the positive and negative examples. This is known as finding the maximum margin 

and the greater the margin, higher are the rates of classification. The vectors that define 

the width of the margin are known as support vectors. 

Here is the representation for a simplified two-class problem where the squares are the 

positive samples and the ovals are negative   

 

  
 

For the purposes of our project, we used a multi-class SVM since our problem was to 

classify into one of 52 classes (26 lowercase & 26 uppercase) instead of just classifying 

into positive and negative samples. 
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6.6.1 RBF (Radial Basis Function) Kernel
1
 

Using a kernel function, SVM’s are an alternative training method for polynomial, radial 

basis function and multi-layer classifiers in which the weights of the network are found 

by solving a quadratic programming problem with linear constraints. In this case, since 

there is a non-linear relationship between the classifiers and number of features is not too 

large, we opted to use the RBF or radial basis function kernel which is of the form. 

   , where gamma is an input and xi is 

the training vector and K is the kernel function 

 

We used the libsvm package
2 
to implement the SVM part of our project. A classification 

task usually involves training and testing data which consists of data instances. Each 

instance in the training set contains one “target value" (class labels) and several 

“attributes" (features). The goal of SVM is to produce a model which predicts target 

value of data instances in the testing set which are given only the attributes.  

The training data file is of the format: 

1 1:0.5 2:0.5 3:0.5……10:0.5 

….. 

….. 

….. 

N 1:0.5 2:0.5 3:0.5……10:0.5 

 

where the class (1 to N) is the target class and the attributes or features are represented in 

increasing order with its value.  

The input file is the set of features we extract from our segmented characters with 0 as 

the target class indicating unknown and in the same format as our training data mentioned 

above. The working of the SVM is in two stages. There is a one-time training process 

which outputs a file (model) which is the learning of the SVM based on the training data. 

In the second stage, the SVM predicts a target class applying this model on the testing 

data. 

 

 

6.6.2 Parameters
2
 

The libsvm software that we used accepts two parameters for the RBF kernel: C and 

gamma. 

C refers to the penalty parameter which imposes a cost on misclassification and this plays 

a role in the size of the margin discussed earlier. It has been observed that when C is 

greater , gamma should be lower and vice versa so an optimal trade-off is required. We 

                                                 
1
  www.dtreg.com/svm.htm  Support Vector Machines 
2
 
 http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf  A guide to using the libsvm 
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utilized a Python script grid.py included in the libsvm package to give us the optimal 

values
2
.  Hence, we used C=128 and g=2 for our RBF Kernel. 

Gamma is used in the computation of the kernel 

 
 

6.7 Features 

To uniquely identify each character, it is necessary to identify and extract certain unique 

features from the character. This is our input into our recognition algorithm or the SVM 

discussed later. We used two primary methods: zoning density and width/height ratio to 

give us 10 total features (9 from the zoning density and the width/height ratio)  

 

 

6.7.1 Zoning Density Algorithm 

The character is divided into 9 equal boxes (3 x 3 matrix) like shown in the figure below. 

The number of black pixels in each of these cells in proportion to the total number of 

black pixels in the characters is used as a feature. So, the percentage of black pixels in 

each cell contributed to 9 features.  

              
Using this characteristic, it is possible to distinguish an ‘h’ from an ‘n’ etc.

3
 

 

 

6.7.2 Width/Height Ratio 

The second feature we used was width to height ratio. Some letters are defined by their 

length while others are characteristically wide.  

For example, an ‘f’ has a width to height ratio of 0.4957 while an ‘m’ has a width to 

height ratio of 2.3529. 

                                                 
2
 
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

  A guide to using the libsvm 
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7. Training, Testing and Validation Sets 

 
To train our SVM’s, we got 11 different samples of each character. 1 set out of these 11 

different samples was used for validation and 1 set not present in these 11 different 

samples in the training set was used for testing. They were in 256 color .bmp format. 

Some of the sample characters we used are: 

         
There wasn’t any noise or distortion in our samples that we had to account for. 
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8. Results 
 

 

The results are broken up into 4 sections: Slant Correction, Thinning, Segmentation, and 

SVM.  We will also show 3 examples of images we tested, showing the thresholded 

image, the slant corrected image, the thinned image, and then the final segmented image.   

 
Slant Correction 

Although we have no numerical way of determining how our normalization worked, we 

can see from all of our test images that it seemed to work with extreme accuracy.  We 

were able to account for any angle, positive or negative, and correct for that angle.  The 

normalization we used was pretty straight forward and worked as expected. 

 

Thinning 
Once again we have no numerical way to determine how our thinning worked.  However, 

we do feel fairly comfortable in the implementation and results from this algorithm.  The 

algorithm did do exactly what we wanted, although in certain cases it did seem to slightly 

over thin the image, which resulted in missed segmentation points. 

 

Segmentation 

Overall, our group was extremely happy with the results from the segmentation 

algorithm.  Due to the fact that we developed the algorithm ourselves, the accuracy rate 

of 86.5% was right near our goal.  Although our final project goal was dependent upon 

how well the SVM worked, we were very pleased with the accuracy of segmentation, 

especially on very neatly written samples.  Below are 3 different samples, all with 

varying results 

 

The first example is the best sample handwriting sample we had.  We were able to 

properly detect every segmentation point that we wanted.  Although there are a few extra 

segmentation points, our character recognition should be able to weed those out.  For 

example, if we slice a ‘g’ in half, then our SVM should be able to see that the combined 

segmentation of ‘g’ is much closer to a character than either half of a ‘g’. 
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The second image was an average image, having a few missed points, but on the whole 

still segmented fairly well. 
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The third image was one of the worst ones.  For various reasons, the image failed to 

detect about 30% of the desired segmentation points. 
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Below is a chart which summarizes our results from 19 images, which gave a total of 153 

words.  In total, we were able to detect 603 points out of a desired 697 points.  This 

results in an 86.51% accuracy for segmenting images. 

 
Words Total Correct 

Segmentation 

Points Found 

Total 

Segmentation 

Points Needed 

(Total 

Characters) 

9 30 32 

7 30 33 

9 25 28 

10 42 47 

7 33 36 

7 31 34 

6 24 29 

8 30 33 

9 37 37 

8 32 33 

5 17 21 

9 33 40 

8 30 36 

8 41 49 

10 35 50 

8 33 37 

7 33 43 

8 34 40 

10 33 39 

 

 

 

After analyzing all 19 of our test images, we found two distinct reasons for why the 

segmentation failed.  These two reasons account for a large majority of the missed points 

as well. 

 

1. We failed to segment the letter ‘s’ properly.  Normally an ‘s’ is suppose to look like the 

figure on the left, however, many of people’s handwritten ‘s’ actually look like the 

figure on the right.  Our algorithm is waiting for that intersection point as circled 

below, before it thinks there is a segmentation point.  However, with many of the ‘s’ 

in our samples, the ‘s’ looks like the one on the right, which doesn’t have this 

intersection point.  Thus our algorithm does not think there is suppose to be a 

segmentation point, and fails in this instance. 
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2. The second area that our algorithm often fails is with ‘i’ and ‘u’.  Normally our 

algorithm would see an intersection point as shown below on the left, and will look to 

segment as soon as the trace moves in an upward direction again.  This would be right 

smack center through the ‘u’ (which is a good thing; we want to segment the ‘u’ in half).  

However, do to faults with both our thresholding and our thinning, we show below on the 

right what the thinned ‘i’ actually looks like in some examples.  We can see there is no 

intersection point, and thus our algorithm thinks that we are still tracing the same 

character, and it doesn’t know to segment as soon as the trace moves upward again. 

 

      
 

SVM 

We managed to get 95.8333% accuracy with our validation using a RBF kernel using 

parameters C=128 and g=2. 
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But, our testing on untrained data did not give us anything above 60 %. This was mainly 

because we could not get enough distinguishable features for the SVM to make a good 

classification. Furthermore, our accuracy could have been increased if the number of 

samples were greater. In the context of the whole project, we could not integrate the 

SVM fully into our cursive handwriting segmenter and recognizer because there was no 

feedback mechanism from the SVM. Therefore, since we were using over-segmentation, 

we could not guarantee that our DSK was sending whole characters to the SVM and this 

led to the SVM sending back random outputs. We would have been successful either if 

we had found some way to combine over-segmented bits to make a character (hard) or 

got some feedback from the SVM saying that it does not think that the input is a character 

and then we could have recombined it based on that feedback.  Overall, our SVM was 

unable to output the written sample within any degree of accuracy.
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9. Available Software 

 
For our project we wrote most of the code.  We used available open source code for the 

thinning and SVM algorithms. 

 

Online Source Code 

1. Thinning Algorithm 
This algorithm was found in a paper of survey’s of thinning algorithms.  The code 

was written in Matlab.  After testing it in Matlab, it was converted it into C and 

placed it onto the DSK. 

2. SVM Code 
This code is in an executable format written in C. 

 

Our Code 

1. Preprocessing 
Read in bitmap image in C and then thresholded the image to convert it to a 

binary image.  Implemented on the DSK. 

2. Handwriting Normalization 
Slant detection and correction algorithm was written in Matlab and tested.  

Afterwards converted into C and implemented on the DSK. 

3. Segmentation Algorithm 
Segmentation algorithm, which includes tracing upper and bottom contours in 

order to find segmentation points was written and tested in Matlab.  Later it was 

converted to C to be implemented on the DSK. 

4. Features for SVM 
Features that include zoning were written in Matlab and then converted to C to be 

implemented on the DSK. 

5. GUI 
GUI was written in Java, and interfaced with DSK and SVM code. 
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10. Optimization, Paging and Parallelism 

 
Images were read in on the PC side and the size and dimensions were passed to the DSK 

along the 2-D matrix of the values. The average size of the image of the sentence we 

were segmenting was 500 x 50 pixels (20-25 Kb, 1 byte per pixel, 256 color bmp). 

Periodic copies of this matrix are made for the sake of algorithms (thinFrame, padFrame, 

newFrame etc.) but were freed appropriately to avoid memory leaks. So, memory 

problems were avoided.  Direct paging could not be done since subtle modifications had 

to be made to the new matrix. 

We optimized by using the third level of optimization (-o3) on Code Composer. 

The selected functions on theDSK and their associated timings on using Function 

Profiling: 

 

 

preproc()            88,696 cycles or 0.00354784 secs 

zeropad()       231,449 cycles or 0.00925796 secs 

threshold()       64,263 cycles or 0.00257052 secs 

segmentLines() 1,153,689 cycles or 0.04614756 secs 

thin()    8,619,633 cycles or 0.34478532 secs 

traceLower() 233,735 cycles or 0.00934940 secs 

traceUpper() 222,985 cycles or 0.00891940 secs 

 

 

It should be noted that all these functions vary wildly from image to image especially the 

segmentation algorithm (traceLower) because the outer loop is controlled by the number 

of words. As such it will vary with the length of the word (number of black 

pixels).traceLower and traceUpper showed good optimizations with up to 7 iterations 

done in parallel while the other functions showed up to 2 iterations done in parallel. The 

most time-intensive part was actually writing the intermediate files for purposes of 

displaying on the GUI but the actual algorithms were executed very quickly.
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11. The Demo 

 
To demo our final project, we implemented a Java GUI that showed the processed image 

at different stages in each of the algorithms.  In our demo, the user could load any bmp 

image file from any directory.  Then, the user enters the threshold to use (default 200), 

and hits the threshold button.  This copies the image file into the DSK working directory, 

and passes the threshold to be sent to the DSK.  Once the user is running the DSK, they 

hit run simulation, and it will begin to display the images as they are processed through 

the DSK.  Once the DSK is completely done, the user is free to run the SVM on the 

processed image.  The output text will be displayed in the box at the bottom. 
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12. Division of Labor 
 

TASK RESPONSIBILIY OF 

Preprocessing Jon 

Slant Correction Irina 

Thinning Jon 

Segmentation Jon 

SVM Implementation Siddarth 

SVM Features Irina/Siddarth 

Implementation on DSK Siddarth 

GUI Irina 

 

*Note: Although we have split up the responsibility and leadership of each task, there 

was considerable overlap as we worked together on nearly every task. 
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13. Schedule 

 
Week 1 (October 8):  

� Continue to understand algorithms  

 

Week 2 (October 15):    

� Compile database  

� Start Preprocessing Images 

 

Week 3 (October 22): 

� Further understand normalization algorithms  

� Start implementing normalization algorithms (General Projections)  

 

Week 4 (October 29): 

� Continue/Finish implementing normalization algorithms  

� Further understand segmentation algorithms  

� Start implementing segmentation algorithms  

 

Week 5 (November 5): 

� Continue implementing segmentation algorithm  

� Implement segmentation algorithm on DSK  

� Prepare for oral updates (Everyone) 

 

Week 6 (November 12):  

� Finish implementing segmentation algorithm  

� Finish Thinning algorithm on DSK 

� Implementation of SVM 

� Start working on GUI output of system  

 

Week 7 (November 19):  

� Thanksgiving Break 

 

Week 8 (November 26):  

� Finish all loose ends (aka stay up all night, every night in lab) 

� Optimize code 

� Prepare for oral presentation 

 

Week 9 (December 3):  

� Complete Final Write-Up  
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14. Conclusion - Future Improvements 

 
There is an enormous amount of work that could be done for future projects (or if we had 

another semester!). 

 

1. Reading an entire document instead of just one line at a time 
2. Dealing with both colored and grayscale images (very easy to do, just simply ran 

out of time) 

3. Thresholding could have been done through and algorithm, not through user input 
4. Noise cancelling algorithm in the preprocessing stage 
5. A filling algorithm, to fix and gaps between characters (currently a gap between 

characters will cause the word to finish segmenting early and miss a large portion 

of the word). 

6. A thinning algorithm that would not loose intersection points.  This was one of 
the biggest reasons for missed segmentation points. 

7. If the other 4 steps are implemented, then the segmentation algorithm would 
improve greatly.  However, it may be optimal to have a different set of rules 

based on different images to improve accuracy. 

8. More training and more features for our SVM.  Had we had more time, it would 
have been optimal to use around 50 training samples for each character, and 

around 20-30 “good” features for the SVM.  We were no where close to either of 

these numbers, thus our poor results in the SVM section. 

 

As a pioneering group with cursive recognition, we feel we have set a decent path for any 

groups who wish to follow.  Since we had to research everything without the help of prior 

groups, breaking ground on individual sections took longer than planned.  We were 

simply unable to successful finish implementing the SVM, although, the rest of the 

project worked as we had hoped.  Future groups should hopefully be able replicate our 

project with a working character recognition algorithm.  Overall, we were pleased with 

our project; however, we were slightly disappointed we were unable to successful 

implement our SVM algorithm with a high rate of character recognition.
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