
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

“Look Who’s Talking” 
 
 
18181818----551, Fall 2007, Group 2, Final Report551, Fall 2007, Group 2, Final Report551, Fall 2007, Group 2, Final Report551, Fall 2007, Group 2, Final Report    

Han Joo Chae (hchae) 
Matt Keagle (mkeagle) 
Andrew Lam (aclam) 



 2

1. Project Details 
 

In seeking to prevent more disastrous attacks on the United States, 
many different spying devices will be used in the field of battle.  These 
bugging devices are very useful in monitoring the location and activities of 
important and dangerous terrorist cells.  However, with the introduction of 
these monitoring devices there exists a need for individuals to pour over the 
information that is constantly being recorded.  Without having knowledge of 
what type of information is being monitored, all of the continuous data must 
be scanned for useful information.  Because of the large amount of raw 
information streaming from the bugging devices, it is possible for someone 
viewing or listening to the stream to overlook key aspects of the 
conversations that could lead to preventing a terrorist attack.  Another 
possibility would be that once the moderator detects an important message, 
because it is nearly impossible to keep up with the real time stream of data, 
once the important speech has been heard and understood, there is a high 
possibility that the event has already occurred or is too late to be prevented.  
Overall, scanning the large amounts of data generate from bugging devices 
proves to be too time consuming and a waste of man-hours that could be 
devoted to more important tasks. 

In order to solve this problem, we proposed that several algorithms be 
developed to process the data in real time so that the information can be 
parsed and deemed as appropriate or urgent.  By marking the information as 
urgent, those people tasked with analyzing the data could work on other 
tasks while waiting for the algorithms we developed to highlight the 
necessary speech and when to search.  This not only provides the analysts 
time to work on other tasks, but also allows more immediate access to critical 
and time sensitive information that might have otherwise been overlooked.  
We identified three characteristics of the information that bugs receive that 
would identify the incoming raw data as important speech.  These three 
algorithms are voice activity detection (VAD), speaker identification (SID), 
and keyword spotting. 

With voice activity detection, the user would never have to wait around 
for someone to speak in the conversation because the user would have the 
ability to filter out the non-voiced signals and be notified of the presence of 
speech.  Speaker identification would be done in a non-text based fashion 
where we do not have the luxury of having the terrorists speak a particular 
set of phrases and rely on them to speak them again in their conversations.  
However, even though no specific words can be identified and trained upon, 
there would be a large amount of available speech from previous recordings of 
the wanted individual that can be used for training.  Large amounts of 
training data allow non-text based speaker independent systems to become 
viable within the scope of the problem.  The final algorithm to be developed is 
user independent keyword spotting which would be able to identify trained 



 3

keywords when they are spoken by any individual being bugged.  This would 
allow the user of the system to characterize the information that they are 
attempting to monitor and greatly increase the likelihood that the 
information identified will be pertinent.  All of these elements combined 
would greatly improve the practicality and efficiency of bugging devices. 

 

2. Previous Projects 

 
Previous 18-551 projects have worked in the area of keyword recognition and 
have adapted some of the algorithms used in our project for different 
purposes.  Here we will detail their work and how it differs from the work in 
our project.  There have been prior projects that have done keyword 
recognition, specifically in Spring ’00 when a group performed isolated 
keyword recognition in non-continuous speech using a text-based approach to 
model the speaker’s in the training set.  This work matched ours in that it 
matched the keywords; however, our case uses a non-text based approach and 
can be for any speaker of the keyword.  Other than this group no group has 
specifically attempted to identify keywords or speakers from modeled set of 
users.   

Groups in previous semesters have used some of the algorithms that 
we are using in our project such as Dynamic Time Warping (DTW) and our 
standard deviation approach to voice activity detection.  The DTW performed 
by the other groups was used to morph different speaker’s voices to others by 
helping to time align the data to the reference and not in an attempt to model 
the keyword.  In Spring ’04, Group 11 was able to code the DTW algorithm 
for their purposes on the DSK and in Fall ’06, Group 1 used the DTW 
algorithm programmed in Matlab for help with training data.  Neither of 
these groups used the sliding model method of the DTW algorithm, which 
will be explained later, in order to determine the presence of a specific 
keyword in speech.  Standard deviation has been used by Group 2 of Spring 
’00 and Group 6 of Spring ’02 as well as many others in methods of image 
processing to determine a noise threshold but has never been implemented 
with voice activity detection to determine the presence of speech.  This 
development is new to our project and was developed and implemented 
entirely by our group. 

The new material to 18-551 is the speaker and keyword recognition in 
continuous speech.  Continuous speech introduces the problems of separation 
of words within speech and other issues that come with the fact that people 
do not speak clearly in day-to-day speech.   Also, Gaussian Mixture Models 
and speaker and text-independent methods have not been tried in previous 
projects. 
 
 



 4

3. Overview of the System 

 

 
  

The system which we designed uses Matlab and the DSK for two 
different modes of operation.  The initial mode of operation which needs to be 
performed is the training.  This method is performed completely on the PC in 
Matlab in order to generate the models for each specific keyword and 
speaker.  The initial Matlab training step for the keyword recognition is to 
cut the recorded speech given by the user for the specific keyword to the size 
of solely the word and no non-speech.  Once the word has been recorded and 
cut to size, the user would then add it to the training set through the training 
GUI commands.  Behind the scenes, Matlab would be dynamically time 
warping the input speech based upon a reference template for the word.  This 
process eliminates the difference between how fast each person speaks the 
word and provides more accuracy for matching when comparing the keywords 
together in the next step.  As stated, the training process then generates Mel 
coefficients from the time warped input signal and averages the coefficients 
with the stored Mel coefficients for that word.  By averaging the Mel 
coefficients over time with different speakers and many iterations of the 
same word, you achieve a model of Mel coefficients that ideally represents all 
speakers of the same word.  By using that reference to model all of the 
speakers we hoped to match any different speaker of the same word. 

The training path for the speaker identification takes a longer, 60 
second, sample recording from a single speaker in order to perform Gaussian 
Mixture Model representation of the speaker.  This procedure was performed 
three times for the different speakers in our group and could be repeated for 



 5

as many speakers as desired.  The generated results can then be stored on 
the DSK and used to analyze which person the current speaker most 
resembles. 

The analysis side of our system is performed on the DSK with all of the 
steps (VAD, DTW, and SID) all running in series to determine whether there 
is speech present, what speaker can be identified if they remain in the 
training set, and what words any of the unknown individuals are saying.  
First the raw data is processed by testing the standard deviation and 
determining whether or not it crosses the threshold to characterize it as 
speech.  Once speech has been determined, the DSK will begin processing to 
determine the presence of the keyword and the identity of the speaker.  The 
raw data is converted into the Short Term Fourier Transform (STFT) for the 
length of one keyword.  A similarity matrix is generated from the STFT of the 
raw data and the STFT of the stored reference.  This matrix is used to 
perform the dynamic time warping and generate the Mel coefficients that 
represent the time warped representation of the incoming signal.  If the 
incoming signal matches that of the word that you are trying to identify then 
the time warped version of the signal should have Mel coefficients that are 
similar to the stored data, no matter the speaker.  Once the Mel coefficients 
are generated the power difference from the stored Mel coefficients can be 
calculated and used to represent the similarity between the input word and 
the stored word.  The smaller the power difference is equivalent to a higher 
similarity.  The input to log likelihood calculations for SID is the resulting 
Mel coefficients from the DTW and the results of the log likelihood can be 
used to determine who out of the set of trained speakers the current speech 
represents.  Processing continues every 24 ms for the incoming data 
repeating the same calculations, assuming that speech has been detected. 

The results of the calculations would be the number representing the 
error power of the Mel coefficient matrices and the identified speaker from 
the set of trained speakers.  The small amount of data would be transferred 
back to the PC where the results can be shown within a GUI.  Although there 
are too many calculations to be performed for real time performance, given a 
faster processor with more internal memory, one day the process could be 
completed in real time. 
 
 

4. Description of the Algorithms 

 
Keyword Spotting with Dynamic Time WarpingKeyword Spotting with Dynamic Time WarpingKeyword Spotting with Dynamic Time WarpingKeyword Spotting with Dynamic Time Warping    



 6

 
 
 The keyword spotting method employs a sliding model comparison 
method utilizing Dynamic Time Warping to reliably characterize the 
difference between a word length chunk of incoming data and a reference 
template. [1]  At a sampling rate of 16kHz every 24ms, the time for one block, 
384 samples of raw input data are collected from the PC and sent to the DSK 
using a TCP/IP transfer.  Three 512 length Fast Fourier Transforms (FFT) 
are performed every time a new block is received on the current block plus 
the past block with an entire block length of overlap between each FFT.  This 
means that the step size of the FFT is 128 samples.  These numbers were 
chosen for the step size and block length in order to simplify the calculations 
to allow integer multiples of FFTs to be performed every new block.  Each of 
the three results of the FFT are stored into a circular buffer, which stores 
around 42 blocks worth of FFTs depending on the length of the word.  The 
three least recently used FFTs are discarded because they are no longer need 
in the keyword spotting algorithm on the DSK.   
 The FFTs have overlap to counteract the lack of overlap in the storing 
of raw data.  Because only the FFTs are used in the calculations there is no 
need to overlap the raw data and re-store the information.  Using a 512 
length FFT, only the past block data can affect the current data and therefore 
the amount of raw block data that need to be saved remains at two.  An 
example of how the FFT works on the incoming block is shown below: 
 

 



 7

Once the data has been successfully converted into the STFT, the 
necessary calculations can be performed to time warp the incoming signal.  
Dynamic time warping uses a dynamic programming technique to calculate 
the lowest cost path between the stored signal and the incoming signal.  
From this lowest cost path you can determine which sections of the incoming 
speech correspond to the sections of the stored data.  The matching parts of 
the incoming signal can then be aligned, skipping or deleting different parts 
so that you can determine the likelihood of matching the original signal 
without compromising the quality of the match from speaking the word at 
different speeds.  The dynamic programming calculations listed in the 
following equation calculate the minimum of the surrounding matrices and 
add it to the diagonal.   

 
DP(i+1, j+1) = DP(i+1, j+1) + min(DP(i,j), DP(i+1,j), DP(i,j+1)) 

 

Similarity Matrix

Input Signal

S
to

re
d 

S
ig

na
l

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Dynamic Programming Matrix

Input Signal

S
to

re
d 

S
ig

na
l

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

 
Figure: Lowest cost path through similarity matrix and DP matrix 

 
This would result in the lowest path lying along the exact diagonal if 

the matrices were completely aligned.  The two methods that we considered 
using in order to determine the match between the two signals was the error 
power matrix and the bottom right of the dynamic programming matrix 
which represented the lowest cost total distance between the two matrices.  
Throughout our implementations we reported both of the numbers in order to 
determine which of the two results functioned with more accuracy and 
stability amongst the many different users.  The lowest cost path 
theoretically should be much lower for any word that is much closer to 
matching the original signal; however, the input signal STFT does not change 
from user to user only serves as a reference for the time warping, so when 
separate users begin to use the system, the validity of the match begins to 
fail.  The averaged Mel coefficients on the other hand are able to account for 



 8

many different users and should theoretically increase in accuracy with more 
trained users and multiple training signals from each user.  We witnessed 
these results in our tests and found that the averaged Mel coefficients from 
the different users had a much higher rate of success than the lowest cost 
number in predicting the presence of the word in continuous speech of 
multiple users.     

After the dynamic programming matrix completes, following along the 
path of least cost allows the user to reconstruct the time aligned signal.  This 
signal is now warped in magnitude to match the template data and has phase 
distortions that associate any warping in magnitude without the same 
warping in the phase characteristics.  As it turns out, in our project the final 
result only comes from the magnitude characteristics that generate the Mel 
coefficients so the warping in the phase space does not affect our results.  
However, we did implement a phase vocoder algorithm, which will be briefly 
explained in the next section, to recalculate the correct phase of the time 
aligned signals.  Our design flow continues with the phase realigned signal 
being entered into the Mel coefficient generator which converts the frequency 
characteristics into the Mel spectrum. 

The Mel coefficients are generated by multiplying the frequency of the 
signal by weighted triangles of logarithmically increasing centered 
frequencies that are likely to match the harmonics of characterized speech.  
The Mel domain closely resembles the human ear in characteristics and it is 
for this reason that these coefficients are frequently used in speech 
processing for characterizing a speaker.  Our group had considered 
implementing Linear Predictive Coefficients (LPCs); however, previous 
groups and various textbooks highly recommended Mel cepstrum coefficients 
due to their superior representation of speech.  Once the realigned signal has 
been converted into the Mel frequency domain and filtered to represent the 
speech in coefficients, the result can be compared with the stored 
representation of the word from the training data by calculating the power 
between the two matrices.  This number can serve as a result of the current 
input signal matching the reference.   

Once a long enough signal of approximately 10 seconds has elapsed, 
then the standard deviation of the error can be calculated to estimate the 
noise with the farther peaks portraying a positive match against the target 
keyword.  After testing a threshold can be tested and mapped to determine 
when the keyword is officially detected in speech.  Depending on the situation 
and the level of false alarms that are desired, the threshold can be tweaked.  
Given our story and project aims, more overall false alarms than misses are 
preferable in order to avoid not being alarmed for important and potentially 
life-threatening information.  Ideally the peaks of the signal analyzed would 
be low enough to detect all speakers voicing the specified keyword and if the 
computations could be done fast enough then the process could be repeated 



 9

for multiple keywords in real time in order to even more accurately predict 
the conversation being held by the monitored suspects. 
 
Phase Vocoder (a note for future projects)Phase Vocoder (a note for future projects)Phase Vocoder (a note for future projects)Phase Vocoder (a note for future projects)        
 
 After working on the project and researching the online 
implementations of the DTW algorithm in Matlab, we discovered that the 
work by Dan Ellis [1] to be far superior and easily read and understood.  One 
of the parts of the DTW algorithm was the phase vocoder step that readjusted 
the phase characteristics of a time warped signal in order to preserve the 
time domain qualities.  This step allows the signal to be inverted back into 
the time domain after being warped and still maintain some intelligibility as 
the original signal just at a different speed.  The algorithm changes only the 
phase characteristics and does not alter the magnitude of the STFT of the 
time aligned signal, which made it irrelevant for our project.  However, we 
did not realize this until the algorithm had been completely implemented on 
the DSK and working in its entirety.  So future groups that which to 
implement a dynamic time warping algorithm that involves re-synthesizing 
the speech back into the time domain to play it, we have developed the code 
necessary. 
 
 
 
 

Voice Activity DetectionVoice Activity DetectionVoice Activity DetectionVoice Activity Detection    (VAD)(VAD)(VAD)(VAD)    
 

 
 
The Voice Activity Detection (VAD) uses a standard deviation to get the 
energy level of the signal to determine the presence of speech. We calculate 
the standard deviation of one block and if the standard deviation is greater 
than the threshold, we set that as high. In our DSK implementation, we use 
the block size of 24ms. To calculate the threshold, we used Cumulative 
Distribution Function in terms of error function defined as: 

 

 [7] 



 10

Since we assume there will be white noise, we set mean to zero. We also set 
the standard deviation to one to make the calculation easier and thus, we 
obtained the Probit function: 
 

  [7] 
 
By putting 99.99% into p in the Probit function, we are able to get the 
number of standard deviation steps from zero. The level we get by 
multiplying the number of steps to the average standard deviation of noise 
guarantees 0.01% chance of that level or above being noise. However, 0.01% 
means that it has that high of a chance of having false alarm whenever VAD 
gets run and that is not sufficient. Thus, we find the Time till a False Alarm 
(TFA) and set it make it to have only maximum one error in one hour. That 
is: 
 

TFa = (3600secs/0.024secs)(samples) ≈180,000 samples 

 
From the TFA, we obtained the Probability False Alarm that is: 

 
PFa = 1/TFa = 1/180,000 

 
Therefore, we get a new probability: 
 

p = 1- PFa = 99.9994%  
 
By putting that to the Probit function, we get 4.3376 steps from zero. Since 
the average standard deviation of noise we measured is 0.0008272, we get: 
 

Threshold = 0.0008272 * 4.3376 = 0.003588 
 
When the standard deviation of the signal goes higher than the threshold we 
set that as high. However, that is still not enough because it will ignore that 
silence in the middle of the speech and it will also pick up the clicking noise 
around. Thus, we use a buffer of 30 blocks. When there are more than ten 
blocks that are greater than the threshold, we say there is speech. This way, 
it is very simple to implement and works very well at the same time and that 
is why we use the method in our project. 
 
 
Speaker IdentificationSpeaker IdentificationSpeaker IdentificationSpeaker Identification    (SID)(SID)(SID)(SID)    
 



 11

 
 

Our system implements a text-independent closed-set automatic 
speaker identification system. This means that we will identify the speaker of 
unknown continuous speech from a set of trained speaker models. We use a 
combination of MFCC and GMM to train our models. We take the maximum 
log-likelihood as our identified speaker. 

Speaker Identification consists of two phases: training and testing. In 
the training phase, we first take a length of input data and characterize the 
speech by some method. Currently MFCC is the most popular used 
parameter in Automatic Speaker Recognition systems since they are 
relatively easy to calculate and they are fairly good at representing the 
independent low level acoustics from speaker to speaker. Mel Frequency can 
be thought of a representation of human hearing. Just like our hearing 
capability, Mel Frequency is logarithmic and has more frequency resolution 
in the lower end of the spectrum and less resolution at higher frequencies[6].  
 

 
Flow of MFCC Calculation [6] 

 
To calculate the MFCCs, our system first takes the speech signal and 

applies a pre-emphasis filter in order to emphasize the higher frequencies [6]. 
This filter can be written as follows: x[t] = x[t] - .97x[t-1]. The signal in then 
windowed every 25ms with no overlap, by a hamming function. Traditionally, 
there is overlap but for the purpose of conserving cycles, we have opted for no 
overlap. A hamming function is used because there is less effect from the side 
lobes. 

Next, we take a 512 point FFT and convert the log amplitudes of the 
result to the Mel scale. As stated before, the Mel scale is logarithmic such 
that there is greater granularity at lower frequencies, similar to human 
hearing. We then take the DCT of the result to get the cepstrum and we have 
our 13 MFCC. These coefficients is the used as input to train our Gaussian 
Mixture Model. 



 12

The GMM models our parameters by using a mixture of 16 weighted 
Gaussian densities. The weights sum to one and the density used is the 
likelihood function which is defined as: 
 

[6] 
 

Where the pi is the following distribution function: 
 

[6] 
 

Usually the log-likelihood is calculated instead such that the likelihood for 
the set of frames can be added together instead of multiplying as shown 
below. 

[6] 
 

Commercial systems use anywhere from 64 to 256 mixtures but due to the 
computational time needed, we opted for 16 gaussians. The GMM is a 
mixture model that maximizes the likelihood of the data using a mixture of 
Gaussians using the EM algorithm. The EM is an iterative algorithm that 
increases the log-likelihood such that for a new model λ, p(X|λ) > p(X|λ). The 
re-estimated weights, means, and variances are calculated as follows. 
 
 Mixture Weights: 

 
 Means: 

 
 Variances: 

 
Usually 5-10 iterations of the EM algorithm are sufficient to reach an 
approximate convergence, meaning that the change in likelihood is less than 
some threshold. 
 



 13

Testing of the SID system is simply taking the test input speech, calculating 
the MFCC, and calculating the likelihood of the test speech signal with each 
speaker model in the set. The speaker model that returns the maximum 
likelihood score is naively identified as the test speaker. This is the least 
computationally intensive decision algorithm, which is why it used in this 
project. 
 

5. Training, Testing, and Results 

 

  
 
Figure.  Our GUI for training and testing. 
 
  

The training and testing for the algorithms that we developed are both 
performed through the GUI that is pictured above.  The broad range of 
functions in our GUI allowed us to simply and efficiently add and train new 
words into the data set.  Also, the GUI was the window for recording the 
variable length segment of speech to be analyzed with the three algorithms.  
In order to determine the potential capabilities of the DSK in determining 
the presence of a keyword and identify a speaker, we implemented a DSK 
simulation mode in Matlab so that the results could be quickly analyzed and 
interpreted with different sampling rates and block lengths.  For the dynamic 
time warping application it was crucial that the user was able to by hand 
choose the length of the word that was recorded and averaged because the 
algorithm had a limit on the amount that it could warp the input signal.  By 



 14

keeping the incoming keyword recordings to the same length we were able to 
maintain an accurate representation of the keyword in Mel coefficients.  
When testing the validity of the keyword we used the DSK simulation mode 
in order to show what the results of our C code on the DSK would produce.   
  
Result for Keyword SpottingResult for Keyword SpottingResult for Keyword SpottingResult for Keyword Spotting    
    

Below are some figures of the transformation and success of the 
recognition of the keyword in speech as the keyword is adapted with multiple 
trained users and an untrained speaker.  As you can see in the diagram of 
figure one, the system will clearly identify the specific keyword when the 
keyword has been trained only with the person who is currently speaking.    

0 100 200 300
200

400

600

800
Error Power Matrix

0 100 200 300
0

10

20

30
Comparison in Matrix

0 5 10

x 10
4

-0.2

0

0.2

0.4

0.6
Original Signal

 
The graph to highlight is the graph in the upper left which is the results of 
the error power over time with the recorded speech below.  The speaker was 
the only person trained to the word and they spoke the words “bombing, 
climbing, and robbing” with pauses in between the words.  Bombing was the 
word that was trained for the specific user and as you can see it has the 
lowest peak of the three words which means that the Mel coefficients 
generated for that word match closest to the stored coefficients.  The 
difference between the peaks is 13 percent of the entire peak of the matched 
word.  Even though the other words which sound similar to the trained word 
are peaks in the data, they can be clearly identified as lying below the 
matched keyword. 



 15

 This time we trained the data with two more speakers to attempt to 
morph the keyword to be speaker independent and reliable at detecting the 
speaking of bombing for any user.  After training three speakers, each 5 
times, the third speaker repeated the same three words as the first speaker 
and the results are shown below. 

0 100 200 300
0

200

400

600

800
Error Power Matrix

0 100 200 300
0

10

20

30

40
Comparison in Matrix

0 5 10

x 10
4

-0.4

-0.2

0

0.2

0.4
Original Signal

 
As you can see in this figure, the mean of the data is much higher at 575 
because the Mel coefficients have been warped for multiple users so they are 
not fundamentally a match for each of the speakers.  However, the peaks 
themselves match almost exactly to the peaks of the first trained data set 
with just one person so the speaker independent capability of our keyword 
spotting algorithm seemed to be working at this time. 
 Next we tasked a random individual with speaking the word bombing 
in a sentence to determine if our method was truly speaker independently 
recognizing the keywords.  The results are shown below of one of the 
members of another 18-551 classmate speaking bombing in a sentence.  The 
sentence was not necessarily clearly spoken nor was the speech separated by 
word so the results would test the robustness of our method in the worst case 
scenario. 



 16

0 100 200 300
200

400

600

800
Error Power Matrix

0 100 200 300
10

20

30

40
Comparison in Matrix

0 5 10

x 10
4

-0.2

-0.1

0

0.1

0.2
Original Signal

 
The results shown above were promising although not as profound as when 
the speaker was in the trained data set.  The lowest peak in the upper left 
graph was in fact the word bombing in the sentence.  However, the peak was 
not as low as the other results and there were some other low peaks in the 
data that were not the word bombing.  This showed that the speech was 
harder to recognize when the words were more blurred together and the 
speech was more rapid.  The results did show though that the keyword 
bombing was the lowest peak of the entire sentence, however the difference 
between the keyword and the next highest peak was only 4 percent of the 
mean. 
 We believe that these results were promising in showing that an 
unknown speaker could speak into the bug and have the specific trained 
keyword be recognized by our method.  The margin of error would be high in 
the fact that the peaks of the recognized keyword would not differ much from 
the noise level, however with more trained users and with a higher sampling 
rate, we believe that the results would be more robust and accurate.  After 
performing the same calculations on the DSK, the results showed to be 
almost exactly the same as the results in the Matlab simulation with some 
rounding errors that only affected numbers up to the second decimal place.  
We also noticed that the C code implementation that we developed in the 
Unix environment was different than the Matlab implantation and DSK 
implementation even though the code in the Unix environment and DSK 
environment were exactly the same.  The error was very negligible and we 



 17

believe that it can be attributed to the difference in the <math.h> libraries of 
each of the respective coding environments. 
 
Results for SIDResults for SIDResults for SIDResults for SID    
 
Speaker Models for the Speaker Identification algorithm are trained using 
existing MATLAB code for GMMs and MFCC. This is done by recording long 
inputs of speech data from each model. The speech is then windowed into 
24ms windows and the MFCC’s are then calculated for each of the windows. 
The multi-gaussian parameters that maximize the log-likelihood for the 
entire set of MFCC are then calculated. Stored for each model are the means, 
variances, and the weights of each of the Gaussians in this mixture. As stated 
previously, we use 16 Gaussians with 13 MFCC to define each model. In the 
testing phase, the model that maximizes the likelihood of the given test 
speech input is selected as the identified speaker. Below are samples from 
one such test. 
 

       Test 
 
Model 

Test 
Andrew 

Test 
HanJoo 

Test 
Matt 

Model 
Andrew 

----9.29269.29269.29269.2926 -11.6856 -9.0887 

Model 
HanJoo 

-10.3661 ----11.187011.187011.187011.1870 -9.7759 

Model 
Matt 

-9.9598 -11.7052 ----8.54168.54168.54168.5416 

Test result from 5 seconds of test input 
 
Ideally for each test input speech, the model that maximizes the likelihood is 
the same person as the test input speech (i.e. the diagonals are the maximum 
value in each column as shown in the sample results above). Training a 
balanced model, that has data from the entire range of someone’s voice, poses 
a huge challenge in any SID system. In commercial speech verification 
systems, users are usually told to read several pages of text as naturally as 
possible in order to capture phonemically balanced data. Our models were 
recorded in just 60 seconds and the speakers were told to say anything they 
wanted in a natural everyday voice. This method worked amazingly well 
under certain controlled conditions, otherwise worked somewhat sporadically. 
The accuracy of the SID system is highly dependent on how close the input 
speech is like the model, and the correct ID percent rate was usually near 
perfect when a model is recorded at around the same time as the sample test 



 18

input. However, slight variations in voice, such as mood or drowsiness from 
working too much, can throw off the SID system as shown in the next figure.  
 
The layouts of the results are in the same format as before, except normalized 
and utilizing the MATLAB image function for ease of view. Notice the middle 
column in each of the results. The left result is one such case where each 
person was talking fairly close to the model data such that the diagonal is the 
highest value (or lightest blue) for each test input. The right result is where 
Han Joo spoke with a little more excitement in his voice than usual, where as 
in the training model, he sounded exhausted and tired. As seen in the results, 
with the ‘excited Han Joo’ data, the identified speaker is not very clear. 

 
More training data or more test data is not necessarily going to produce more 
accurate results, however generally more data is preferred to more accurately 
represent the speaker. If the test data was spoken in a fashion not covered by 
the training data, then there is a lower chance of identifying the correct 
speaker. The figure below shows one such example where 30 seconds of model 
data produced higher likelihood values than 120 seconds of model data. 



 19

Note for Future ProjectsNote for Future ProjectsNote for Future ProjectsNote for Future Projects    
The majority of current systems now employ the use of a universal 
background model or UBM, which is a single model trained by a handful of 
people representative of the population, in hopes of isolating speaker 
independent characteristics of speech [6]. Results have proved that UBM 
provide a more accurate identification at the cost of greater computation 
during the decision phase (one more model to calculate likelihood for and a 
more involved way of determining the winner). Future projects should 
consider the use of a UBM when creating a text-independent speaker 
identification system. It is also possible to construct a naive open-set ID 
system by using setting a likelihood ratio threshold between the likelihood of 
a speaker model, and the likelihood of a background model, for speaker 
verification purposes. 
 
ResultsResultsResultsResults    for VADfor VADfor VADfor VAD    
    
Voice Activity Detection is implemented on DSK and MATLAB is used to 
visually graph the result. Below is one of the results that are successfully 
detecting the speech. 

0 0.5 1 1.5 2 2.5

x 10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

x 10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

    
As can be seen above, it successfully removes the clicking noise and the non-
speech region. Since we use average standard deviation of noise in the place 
we are interested in and determine the threshold based on that data, our 
VAD algorithm is able to erase the noise that will always present in that 
place, such as fanning noise. In addition, by using a buffer of 30 blocks after 
the standard deviation threshold, the algorithm can get rid of silence by 
differentiating speech and silence and, at the same time, can keep the short 
silence in the middle of the speech. Moreover, it successfully erases the 
clicking noise that can happen during the recording. We set it to decide the 
presence of speech when there are more than ten blocks that are higher than 
the standard deviation threshold in the buffer. Throughout the testing, the 
number ten turned out to be the best number that guarantees VAD not to 
miss any speech and minimizes the noise it may contain. Since we are more 
interested in speech and do not want to loose any of the speech data, our VAD 
more focuses on having all the speech even though it may contain very small 



 20

noise. However, it still very well erases silence and never had any clicking 
noise throughout the test. Although it may seem very simple, our algorithm 
is very powerful, and that is the main reason that we implemented this 
algorithm.  
 
 

6. What worked and what did not 
 

The system that we developed proved to be relatively robust for 
speakers that were trained in our set of data and for keywords that were 
spoken clearly in sentences.  However, our system did face some errors and 
problems, mostly when situations were not ideal.  Originally when we were 
testing our data, we used an omni-directional webcam in order to record 
audio signals, which was not ideal.  When we finally received our headset 
that was suggested by the staff of 18-551, we tested our headset against the 
webcam and discovered that the headset had a much lower standard 
deviation for noise than the webcam.  Below is a picture of the two standard 
deviations over time for a “speechless” environment. 

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

 
The headset on the right has a standard deviation three times lower than the 
webcam.  Also, the headset is a directional microphone pointed directly at the 
mouth and proves to show much better results in quality of recording the 
input speech.  Another issue that we ran into during our testing was the 
variability of the noise in the PC sound cards.  Different computers had 
different ambient noise levels and this changed the standard deviation 
threshold that was used by our code for voice activity detection.  Once the 
standard deviation was recalculated, the VAD algorithm would work again 
immediately. 
 One of the errors with the keyword spotting algorithm was because the 
recorded audio was continuous speech, the words of the speaker naturally ran 
together and blended, not allowing for the algorithm to easily discern the 
pronounced beginning and ending of words.  This led to errors in our results 
and peaks in places that would not normally have had detections had the 
individual pronounced each word clearly.  This is an inevitable error that 



 21

could only be resolved with a variation on phoneme detection and word 
separation algorithms that could reconstruct words.  Another obvious 
downfall of our approach is the use of error power as our detection method 
because that leads to many different words that sound like the specified 
keyword approaching the same levels of detection.  There is no weighting on 
the different sections of the word so words that have the same endings as the 
keywords and have the same length would match the word in the parts that 
they have the same ending.  In our current system we do not counteract these 
weak spots of the algorithm, but are still able to produce good results for 
unknown speakers.  An avoidable error that we originally encountered was 
the attempt at recognizing unknown speakers while only having the keyword 
trained for one user.   

0 200 400 600 800 1000 1200 1400
200

250

300

350

400

450

500

550
Error Power Matrix

0 200 400 600 800 1000 1200 1400
5

10

15

20

25

30
Comparison in Matrix

0 2 4 6 8 10 12 14 16

x 10
4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Original Signal

 
In the upper left figure, the three lowest peaks on the right of the data 

were all occurrences of the word bombing and the peaks to the left were not 
any of the keyword.  This sentence was spoken very quickly by an unknown 
speaker and there were errors involved.  However this was expected and 
remedied by training multiple users per keyword. 

Another problem we encountered was in the manner of speaking for 
the SID algorithm.  If an individual was trained speaking with a specific 
demeanor and changed this manner of speaking in the analysis phase than it 
is unlikely that this person would be able to be recognized.  This is the 
limitation of the GMM algorithm as it approximates a model for the given 
training data and does not allow for adaptations in the speech patterns of the 
individual.  Limitations such as this exist for all SID algorithms and are 
difficult to be remedied in a non-text based speaker independent system; 
however, since we are assuming that the individual will originally speak 
normally, we will eventually be able to correctly identify the speaker. 

The current SID system is a closed-set system which means that the 
algorithm will always identify one of the targets in the database. This is a 
known limitation and creating an open-set system requires further analysis 
in speaker verification which demands more resources than we currently 
have.  Also the current system only detects one speaker at a time. 



 22

Conversation between two people will not work for the current system. A 
multiple-speaker detection system would require further processing to 
determine when the current speaker stops talking and another speaker has 
begun.  Another variable that would severely decrease the probability of a 
true identification would be increasing the number of models in our set. Not 
only will this require more processing power, but it would decrease the 
chance of a correct match. For a small set of three models, the probability of 
identifying a correct speaker is much more likely than a set of ten speakers. 

A note on the use of different FFT’s is the choice of a specific radix to 
be used for the size of the FFT.  We originally attempted to use the radix-4 
FFT that was used in lab because of its superior speed to the radix-2 FFT; 
however we optimized all of our code to perform 512 length FFT’s and for 
some reason the FFT did not return the correct results.  This is because the 
radix-4 FFT’s require a length that is a power of 4 which 512 is most 
certainly not.  We had overlooked that fact and it should be noted by future 
groups in choosing the FFT that the length of the FFT is another determining 
factor of which radix FFT you ultimately decide to use.  The cycle time for all 
of the FFT’s we considered is included in our Appendix A. 
  
 

7. Processing Speed and Data Rates 

 
 Our original intent was to have the entire analysis data flow exist on 
the DSK and run in real time.  However, getting into the project we realized 
that the difficulty of integrating the different parts together and maintaining 
correct results in addition to the limited amount of processing power on the 
DSK would not allow a real time simulation of our code.  Also, we were 
having troubles with our microphone and the MIC IN line of the DSK getting 
the power boost to work and amplify the signal enough to be analyzed.  Even 
with the changes in goals from the outset of the project, given some sacrifices 
we were able to get the code working on the DSK and matching the results of 
the PC-side C code and Matlab results.  Another original goal was the have 
multiple keywords analyzed at the same time, however with processor 
limitations it was not possible to analyze this many in real time and only one 
keyword at a time was implemented. 
 We had started at the update with a sampling rate of 32 kHz but were 
reminded that this was an unnecessarily high rate because speech 
characteristics do not exist at the Nyquist frequency of 16 kHz.  We lowered 
our sampling rate to 16 kHz which was an optimization in it reduced the 
amount of data we had to analyze for each block of data.  Another plan we 
had implemented in the outset was recalculating the entire STFT each time a 
new block was received.  The re-calculation was unnecessary because data 
farther than the number of FFT samples taken behind the current block 
cannot affect the STFT of the current block and therefore do not need to be 



 23

recalculated.  Therefore, we optimized our original code by implementing the 
circular buffer for the STFT described in the DTW description section.  The 
block length was set to 384 samples in order to make it a multiple of three 
times the FFT step size of 128 so that the 512 length FFT would fit perfectly 
three times in two blocks.  This allowed no data to be missed when 
calculating the FFT and reduced the total number of FFT’s to be taken while 
remaining a longer length, 512, FFT to keep the frequency characteristics of 
the data intact.   
 The block length of 384 at a sampling rate of 16 kHz also produced a 
window size of 24ms which was the recommended window size that was 
reported in many of the readings and Professor Sullivan in class as an 
accepted standard.  An overlap of each window is also considered standard; 
however we accommodate the overlap in our FFT instead of in the raw data 
which allows us more time to process the current block of raw data.  The 
number of Mel coefficients that we chose was 13 because it was the default 
value used in the Matlab scripts and it provided accurate results that are 
shown in the results section. 
 The voice activity detection algorithm that we selected proved to be 
extremely robust while relatively simple to implement.  The total time that 
the code takes to execute, ~1 million cycles, is minimal compared to the 
processing of the other algorithms.  The number of blocks out of 30 that were 
decided upon to determine speech was decided on a trial and error basis and 
the final decisions that we made proved to be both accurate and robust.  A 
buffer of data of ones and zeros of length thirty also proved to be extremely 
small compared to the size of the data stored by the other functions.  Overall 
the VAD algorithm was not processor or memory intensive.  

It takes ~9,398,016 cycles just to calculate the log-likelihood for one 
24ms window's worth of coefficients for just ONE speaker model. We have 
three models to test against and just testing one model, brings us above the 
threshold for running a real time system. Loop unrolling does not seem to 
affect efficiency. As a side note, double precision was used in order to get the 
same accuracy as MATLAB on the DSK. Using single precision would yield 
zero in some cases and completely screw up results, however this is only the 
case on the DSK. Using GCC on the PC, single precision was perfectly fine in 
representing small enough numbers. 

Optimizations in calculations have been accomplished by pre-
computing values not dependent on the input data x, (i.e. the coefficients in 
front of the exponential in each likelihood calculation) and storing them as 
updated weights. This reduces the number of calculations slightly by 
(Number of Coefficients) X (Number of Gaussians) + 2 = 210 additions, one 
subtraction, three multiplications, one division and 3 log operations per log-
likelihood calculated. However this an insignificant improvement compared 
to the number of total cycles needed for one calculation of a log-likelihood. 
 



 24

 
 
The dotted boxes show which part of the calculations can be pre-computed 
and combined independently from test input, x, before hand. 

Because of the struggles to get all of the code working together we were 
unable to spend much time optimizing the code after we were able to get it 
working.  In attempting to profile the non-optimized code we converted all of 
the code in the DTW algorithm into separate functions that could be 
separately profiled.  The total number of cycles for each function of the 
Dynamic Time Warping algorithm is shown below in the figure.  The total 
number of cycles to maintain real time was approximately 5,454,545 cycles 
which was obviously not met by the total number of cycles of the current 
program.  The DTW took a total of 218,781,802 cycles and even with our 
suggested optimizations we do not believe that we could have met the real 
time goal.  Surprisingly to us the actual dynamic programming calculations 
that were performed on the DSK took very few cycles of the total time for 
calculation.  After analyzing the amount of processing taking place in the 
dynamic programming routine, there are not a lot of calculations and there is 
only one two dimensional matrix that is traversed.  However, unlike the 
dynamic programming routine, the similarity matrix calculations take most 
of the time on the DSK.  In retrospect this makes sense because of the large 
number of matrix manipulations and the matrix multiplications that need to 
be performed to set up the dynamic programming matrix.  The dual access to 
external memory for each matrix multiplication that is performed multiple 
times accumulates to make the total number of cycles extremely large in 
comparison to the other procedures. 
 We initially anticipated the STFT of the entire word with each new 
block to take the most time in our cycles and the calculations still allowed us 
to perform the results in real time.  However, we realized that only three 
FFTs needed to be performed each block and upon coding that the DTW 
algorithm was the heart of the processing time on the DSK.  Also, this 
processing time did not allow us to continue with our real time approach.  
Some optimizations that could be made would be to reduce the two 
dimensional references to the external memory matrices to one dimensional 
accesses to avoid mallocing two dimensional arrays.  We believe that this 
could reduce the amount of time spent in accessing external memory matrices 
by half of the current amount.  Another optimization would be moving the 
frequency domain of the STFT to the rows of the matrices to increase the 
possibility of a cache hit due to the large amount of accesses along the row 
dimension.  Obviously, as in lab 3, paging the data from external memory to 
internal memory to perform the calculations would decrease greatly the 
number of cycles to perform each calculation.  As seen in lab 3 this can reduce 



 25

the amount of calculations by almost a factor of 10 assuming that the number 
of actual calculations is small inside the loops.  This would be a task that 
could be completed by a future group or our group given more time to 
complete the project.  Overall, external memory accesses and the large 
number of matrix calculations needed for the DTW algorithm were what took 
the most amount of time and would need to be reduced in order to get the 
code working on the DSK in real time. 
 For the implementation that we were able to get working on the DSK 
we transferred the entire STFT for the signal and the stored sample each 
block time.  This transfer totaled to 86,352 bytes for the input signal and the 
same number of bytes for the reference signal.  By timing on the PC the 
amount of time to transfer this amount of data we were able to measure the 
transfer speed of the small amount of data that we were sending.  The 
average time to send the entire amount of data was 101.5 microseconds 
which transferred to 830.8 kilobytes/second transfer from the PC to the DSK.  
This data transfer rate was much smaller than that measure in the labs and 
we believe that this reason is similar to the reason described by Group 6 of 
this year in their presentation that the chunks of data are sent only once and 
are rather small.  This means that they suffer from the overhead that must 
be established before they are able to transfer and are not able to reach the 
peak transfer rate before all of the data has been sent. 
 
    
    
    
    

Amount of memory used per algorithm:Amount of memory used per algorithm:Amount of memory used per algorithm:Amount of memory used per algorithm:    
    

Algorithm 
Memory Size 
(Calculation) 

Memory Size 
(Overhead) 

DTW 425,333 10,920 
VAD 0 120 
SID 3,888 4,672 

 
 

Amount of cycles per DTW algorithm:Amount of cycles per DTW algorithm:Amount of cycles per DTW algorithm:Amount of cycles per DTW algorithm:    
    

DTW Algorithm Section Number of Cycles 
Compute Magnitude 5,607,810 
Compute Sim Matrix 156,272,570 

Dynamic Programming Calc. 46,998 
Phase Vocoder 26,235,003 
Mel Coefficients 30,619,421 

  
  

Total Number Cycles 218,781,802 



 26

 
Amount of cycles per Amount of cycles per Amount of cycles per Amount of cycles per VADVADVADVAD    algorithm:algorithm:algorithm:algorithm:    

 
Total Number of Cycles: 1,568,908 

 
Amount of cycles for the SID algorithm:Amount of cycles for the SID algorithm:Amount of cycles for the SID algorithm:Amount of cycles for the SID algorithm:    

    
Total Number of Cycles for One Speaker Model (there are 3): 9,398,016 

 
 
 
 

Appendix A. FFT cycle timings 

FFT Name Radix 
Length 
of FFT 

SP 
or 
DP 

Average 
or Single 
Execution

Number of 
Executions

Incl. 
Total 

Incl. 
Max 

Incl. 
Min 

Incl. 
AverageTheoretical 

DSPF-sp-
cfftr2_dit 2 512 SP Average 50 53899411117 1077310779 9258 

DSPF-sp-
cfftr4_dif 2 512 SP Average 50 62367212838 1246612473 8187.5 

DSPF-sp-
cfftr2_dit 4 256 SP Average 50 2095934626 4183 4191 4138 

DSPF-sp-
cfftr4_dif 4 256 SP Average 50 1881514254 3753 3763 3696 

 
 
 
 

9. Final Work Schedule 
 
Tasks completed by person: 
 

• Matt Keagle 
o Researched and implemented the DTW algorithm in Matlab and C Code. 
o Implemented the melfcc code in Matlab and C to categorize the speakers. 
o Designed the GUI interface for training and analysis of keywords. 
o Attempted to combine in real time all of the algorithms using the MIC input 

and DSK -> PC output. 
o Developed the DTW DSK simulator in the GUI for the worst case scenario of 

not getting the code to work due to massive bugs. 
• Andrew Lam 

o Performed the extensive research to decode the Matlab GMM data. 
o Implemented the log-likelihood analysis in C and worked together to combine 

the code on the DSK. 
o Integrated the log-likelihood analysis into the DSK simulator in Matlab. 



 27

o Worked very hard on the final paper early thinking it was due today, making 
it easier for us later. 

• Han Joo Chae  
o Performed the mathematical calculation and analysis of the standard 

deviation Voice Activity Detection algorithm 
o Implemented the Voice Activity Detection algorithm in Matlab and C and 

made the GUI output look much more sophisticated. 
o Worked to integrate all of the elements of the GUI together in a seamless 

manner to allow it to be visually appealing and readily understandable. 
• All 

o Worked as hard as possible and put in the maximum amount of effort to get 
the project done 

 

10. References 
 
A note on what we did and what had been done: 
 
The Matlab code for the DTW algorithm had already been implemented [1] 
and used in order to warp time samples.  However this code was not 
expanded for use in comparison and all of the comparison was implemented 
by our group.  Using the Mel coefficients instead of the lowest cost path 
resulted because the Mel coefficients are averaged over each new recording 
and the STFT is not.  Using the guidance of [3] and the advice of Professor 
Stern we were able to implement the DTW sliding model method.  GMM code 
was readily available on the web [5] and is considered the front-runner in 
text-independent speaker identification.  This code along with [2] help in 
understanding the algorithm we were able to simply implement the C code 
for the log likelihood classifier and Matlab training data.  Many groups have 
used standard deviation to get energy level of the signal in image processing; 
however our method was totally new in VAD, and the code and algorithm was 
implemented completely on our end without the knowledge from other 
sources. 
 
[1] D. Ellis (2003). Dynamic Time Warp (DTW) in Matlab  

o Web resource, available: 
http://www.ee.columbia.edu/~dpwe/resources/matlab/dtw/. 

o Provided all of the Melfcc and DTW code in Matlab 
[2] PEREZ-MEANA, HECTOR. Advances in Audio and Speech Signal Processing : 
Technologies and Applications. Hershey, PA: Idea Group Pub. 2007. 

o Overview speech process (373) 
o GMM (398) 

[3] RAMACHANDRAN, RAVI. Modern Methods of Speech Processing. Boston: Kluwer 
Academic Publishers, 1995.  

o Word Spotting (123) 
o HMM Parameters (193) 
o Word Modeling (195) 
o Speaker Recognition (299) 

[4] KLEVANS, RICHARD. Voice Recognition. Boston: Artech House, 1997.  
o Summary of techniques (15) 



 28

o Tested Results (107) 
[5] Alexander, Anil. “Automatic Speaker Recognition: A Simple Demonstration using 
Matlab for the Biometrics course, Communication Systems, EPFL, 2004”. Updated 17-
November-2007. 

o GMM MATLAB example code 
o http://scgwww.epfl.ch/courses/Biometrics-Lectures-2005-2006-pdf/03-

Biometrics-Exercise-3-2005/  
[6]  EURASIP Journal on Applied Signal Processing 2004:4, 430-451. 
A Tutorial on Text-Independent Speaker Verification 
 

o This link was especially helpful in explaining the basic overview of the 
speaker identification process. It provides a useful explanation of MFCC and 
GMM and how they are usually implemented in an Automatic Speaker 
Recognition system. 

[7]  Cumulative distribution function. Normal distribution. Wikipedia. November 3, 2007. 
November 13, 2007. <http://en.wikipedia.org/wiki/Normal_distribution/> 

o This link was helpful to get a basic idea of how the Probit function works to 
calculate the standard deviation steps from zero in VAD. 

 


